REFERENCES

- A-sasutjarit, R., Sirivat, A., and Vayumhasuwan, P. (2005) Viscoelastic properties of carbopol 940 gels and their relationships to piroxicam diffusion coefficients in gel bases. <u>Phamaceutical Research</u>, 22, 2134–2140.
- Akerman, S., Akerman, K., Karppi, J., Koivu, P., Sundell, A., Paronen, P. and Jarvinen, K. (1999) Adsorption of drugs onto a poly(acrylic acid) grafted cation-exchange membrane. <u>European Journal of Pharmaceutical Sciences</u>, 9, 137–143.
- Akerman, S., Akerman, K., Karppi, J., Koivu, P., Sundell, A., Paronen, P. and Jarvinen, K. (1999) Influence of ionic strength on drug adsorption onto and release from a poly(acrylic acid) grafted poly(vinylidene fluoride) membrane. <u>International Journal of Pharmaceutics</u>, 178, 67-75.
- Appel, G., Yfantis, A., Gopel, W. and Schmeiber, D. (1996) Highly conductive polypyrrole films on non-conductive substrates. <u>Synthetic Metals</u>, 83, 197-200.
- Arbizzani, C., Mastragostino, M., Nevi, L. and Rambelli, L. (2007) Polypyrrole: A drug-eluting membrane for coronary stents. <u>Electrochimica Acta</u>, 52, 3274-3279.
- Banga, A.K. (Eds.) (1998) <u>Electrically Assisted Transdermal and Topical Drug</u> <u>Delivery</u>. London: Taylor & Francis Ltd.
- Bhat, S.V. (2005) <u>Biomaterials Second Edition</u>. Harrow: Alpha Science International Ltd.
- Bose, S., Ravis, W.R., Lin, Y., Zhang, L., Homann, G.A. and Bango, A.K. (2001) Electrically-assited trandermal delivery of buprenorphine. <u>Journal of</u> <u>controlled release</u>, 73, 197-203.
- Cakmak, G., Küçükyavuz, Z. and Küçükyavuz, S. (2005) Conductive copolymer of polyaniline, polypyrrole and poly(dimethylsiloxane). <u>Synthetic metals</u>, 151, 10-18.
- Carrasco, P.M., Grande, H.J., Cortazar, M., Alberdi, J.M., Areizaga, J. and Pomposo, J.A. (2006) Structure-conductivity relationships in chemical polypyrroles of low, medium and high conductivity. <u>Synthetic Metals</u>, 156, 420-425.

- Chiellini, E., Sunamoto, J., Migliaresi, C., ottenbrite, R. and Cohn, D. (Eds.) (2001) <u>Biomedical Polymers and Polymer Therapeutics</u>. Newyork: Plenum.
- Dai, H., Chen, Q., Qin, H., Guan, Y., Shaen, D., Hua, Y., Tang, Y. and Xu, J. (2006) A temperature-responsive copolymer hydrogel in controlled drug delivery. <u>Macromolecules</u>, 39, 6584-6589.
- Dunn, R.L. and Ottenbrite, R.M. (Eds.). (1991) <u>Polymeric Drug and Drug Delivery</u> <u>Systems. Washington, D.C.: American Chemical Society.</u>
- Elliott, J.E., Macdonald, M., Nie, J. and Bowman, C.N. (2004) Structure and swelling of poly(acrylic acid) hydrogel: effect of pH, ionic strength, and dilution on the crosslinked polymer structure. <u>Polymer</u>, 45, 1503-1510.
- Gade, V.K., Shirale, D.J., Gaikwad, P.D., Savale, P.A., Kakde, K.P., Kharat, H.J. and Shirsat, M.D. (2007) Influence of process parameters on the conductivity and surface morphology of polypyrrole films. <u>International Journal of</u> <u>Polymeric Materials</u>, 56, 167–176.
- Gassner, F., Graf, S. and Merz, A. (1997) On the physical properties of conducting poly(3,4-dimethoxypyrrole) films. <u>Synthetic Metals</u>, 87, (1) 75-79.
- Gondaliya, D. and Pundarikakshuda, K. (2003) Studies in formulation and pharmacotechnical evaluation of controlled release transdermal delivery system of bupropion. <u>AAPS PharmSciTech</u>. 4(1), 1-9.
- Gudeman, L.F. and Peppas, N.A. (1995) pH-Sensitive membranes from poly(vinyl alcohol)/poly(acrylic acid) interpenetrating networks. <u>Journal of Membrane</u> <u>Science</u>, 107, 239-248.
- Hidalgo, M., Reinecke, H. and Mijangos, C. (1999) PVC containing hydroxyl groups-II. Charaterization and properties of crosslinked polymers. <u>Polymer</u>, 40, 3535-3543.
- Jaskari, T., Vuorio, M., Kontturi, K., Urtti, A., Manzanares, J.A. and Hirvonen, J. (2000) Controlled transdermal iontophoresis by ion-exchange fiber. <u>Journal of controlled release</u>, 67, 179-190.
- Jensen, M., Hansen, P.B., Murdan, S., Frokjaer, S. and Florence, A.T. (2002) Loading into and electro stimulated release of peptides and proteins from chondroitin 4-sulphate hydrogel. <u>European Journal of Pharmaceutical Science</u>, 15, 139–148.

- Kang, H.C. and Geckeler, K.E. (2000) Enhanced electrical conductivity of polypyrrole prepared by chemical oxidative polymerization: effect of the preparation technique and polymer additive. <u>Polymer</u>, 41, 6931-6934.
- Khatua, S. and Hsieh, Y. (1997) Chlorine degradation of polyether-based polyurethane.

Journal of Polymer Science Part A: Polymer Chemistry, 35, 3263 - 3273.

- Kontturi, K., Murtomaki, L., Pentti, P. and Sundholm, G. (1998) Preparation and properties of a pyrrole-based ion gate membrane as studies by the EQCM. <u>Synthetic Metals</u>, 92, 179-185.
- Kontturi, K., Pentti, P. and Sundholm, G. (1998) Polypyrrole as a model membrane for drug delivery. Journal of Electroanalytical Chemistry, 453, 231–238.
- Krings, L.H.M., Havinga, E.E., Donkers, J.J.T.M. and Vork, F.T.A. (1993) The application of polypyrrole as counterelectrode in electrolytic capacitors. <u>Synthetic Metals</u>, 54(1-3), 453-460
- Lee, J.K., Kim, D.Y. and Kim, C.Y. (1995) Synthesis of soluble polypyrrole of the doped state in organic solvent. <u>Synthetic Metals</u>, 74, 103-106.
- Li, Y. and He, G. (1998) Effect of preparation conditions on the two doping structures of polypyrrole. <u>Synthetic Metals</u>, 94, 127-129.
- Lim, V.W.L., Li, S., Kang, E.T., Neoh, K.G. and Tan, K.L. (1999) In situ XPS study of thermally deposited aluminium on chemically synthesized polypyrrole films. <u>Synthetic Metals</u>, 106, 1-11.
- Liu, T., DeSimone, J.M. and Robert, G.W. (2006) Cross-linking polymerization of acrylic acid in supercritical carbon dioxide. <u>Polymer</u>, 47, 4276-4281.
- Marins dos Santos, L.M., Lacroix, J.C., Chene-Ching, K.I., Adenier, A., Abrantes, L.M. and Lacaze, P.C. (2006) Electrochemical synthesis of polypyrrole films on copper electrodes in acidic and neutral aqueous media. <u>Journal of</u> <u>Electranalytical Chemistry</u>, 587, 67-78.
- Massoumi, B. and Entezmi, A. (2001) Controlled release of sulfosalicylic acid during electrochemical switching of conducting polymer bilayer. <u>European</u> <u>Polymer Journal</u>, 37, 1015-1020.

- Nateghi, M.R. and Borhani, M. (2008) Preparation, characterization and application of polyanthranilic acid-co-pyrrole.
- Otten, R.M. and Kim, S.W. (Eds.). (2001) <u>Polymeric Drugs and Drug Delivery</u> <u>Systems.</u> Lancaster: Technomic Publishing Company, Inc.
- Peppas, N.A. and Wright, S.L. (1996) Solute diffusion in poly(vinyl alcohol)/poly(acrylic acid) interpenetrating networks. <u>Macromolecules</u>, 29, 8798-8804.
- Peppas, N.A. and Wright, S.L. (1998) Drug diffusion and binding in ionizable interpenetrating networks from poly(vinyl alcohol) and poly(acrylic acid). European Journal of Pharmaceutics and Biopharmaceutics, 46, 15-29.
- Petitjean, J., Tanguy, J., Lacroix, J.C., Chane-Ching, K.I., Aeiyach, S., Delamar, M. and Lacaze, P.C. (2005) Interpretation of the ultra-fast electropolymerization of pyrrole in aqueous media on zinc in a one-step process: The specific role of the salicylate salt investigated by X-ray. photoelectron spectroscopy (XPS) and by electrochemical quartz crystal microbalance (EQCM). Journal of Electroanalytical Chemistry, 581, 111– 121.
- Pouchert, C. J. (1997). The Aldrich Library of FT-IR Spectra: Milwaukee: Aldrich Chemical Company.
- Prasad, R., Koul, V., Anand, S. and Khar, R.K. (2005) Transdermal iontophoretic delivery of methotrexate: physicochemical consideration. <u>Trends Biomater</u>. <u>Artif. Organs</u>, 18(2), 187-190.
- Prissanaroon, W., Ruangchauy, L., Sirivat, A. and Schwank, J. (2000) Electrical conductivity response of dodecylbenzene sulfonic acid-doped polypyrrole films to SO₂-N₂ mixtures. <u>Syntetic Metals</u>, 114, 65-72.
- Rosner, R. B., and Rubner, M. F. (1994) Solid-state polymerization polypyrrole within a Langmuir-Blodgett film of ferric stearate. <u>Chem. Mater</u>, 6, 581-586.
- Ruangchuany, L.,W. (2003) <u>Development of polypyrrole-based sensors for vapors</u> of flammable chemicals. Ph.D. Thesis in Polymer Science. The Petroleum and Petrochemical College, Chulalongkorn University.

- Ruangchuany, L., Sirivat, A. and Schwank, J. (2004) Electrical conductivity response of polypyrrole to acetone vapor: effect of dopant anions and interaction mechanisms. <u>Synthetic Metals</u>, 140, 15-21.
- Serra, L., Domenech, J. and Peppas, N.A. (2006) Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol)hydrogels. Biomaterials, 27, 5440-5451.
- Skotheim, T.A., Elsenbaumer, R.L. and Reynolds, J.R. (Eds.). (1998) <u>Handbook of</u> <u>Conducting Polymers Second Edition, Revised and Expanded</u>. Newyork: Marcel Dekker.
- Small, C.J., Too, C.O. and Wallance, G.G. (1997) Responsive conducting polymerhydrogel composites. <u>Polymer Gels and Networks</u>, 5, 251-265.
- Song, K.T., Lee, J.Y. and Kim, H.D. (2000) Solvent effects on the characteristics of soluble polypyrrole. <u>Synthesis Metals</u>, 110, 57-63.
- Song, M.K. and Kim, Y.T. (2004) Synthesis and characterization of soluble polypyrrole doped with alkylbenzenesulfonic acids. <u>Synthesis Metals</u>, 141, 315-319.
- Soontornworajit, B., Wannatong, L., Hiamtup, P., Niamlang, S., Chotpattananont, D., Sirivat, A. and Schwank, J. (2007) Induced interaction between polypyrrole and SO₂ via molecular sieve 13X. <u>Materials Science and Engineering B</u>, 136, 78-86.
- Stassen, I., Sloboda, T. and Hambitzer, G. (1995) Membrane with controllable permeability for drugs. <u>Synthetic Metals</u>, 71, 2243-2244.
- Sutani, K., Kaetsu, I., Uchida, K. and Matsubara, Y. (2002) Stimulus responsive drug release from polymer gel. Controlled release of ionic drug from polyampholyte gel. <u>Radiation Physics and Chemimstry</u>, 64, 331-336.
- Tarvainen, T., Svarfvar, B., Akerman, A., Savolainen, J., Karhu, M., Paronen, P. and Jarvinen, K. (1999) Draug release from a porous ion exchange membrane in vitro. <u>Biomaterials</u>, 20, 2177-2183.
- Taepaiboon, P., Rungsardthong, U. and Supaphol, P. (2006) Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs. <u>Nanotechnology</u>, 17, 2317–2329.

- Tanodekaew, S., Prasitsilp, M., Swasdison, S., thavornyutikarn, B., Pothsree, T. and Pateepasen, R. (2004) Preparation of acrylic acid grafted chitin for wound dressing appication. <u>Biomaterials</u>, 25, 1453-1460.
- Tian, B., and Zerbi, G., (1989) Structure, lattice dynamics and spectra of pristine and doped polypyrrole. <u>Syntetic Metals</u>, 28, 1-6.
- Toshima, N. amd Ihata, O. (1996) Catalytic synthesis of conductive polypyrrole using iron (III) catalyst and molecular oxygen. <u>Synthetic Metals</u>, 79, (2) 165-172.
- Venkatesh, S., Hodgin, L., Hanson, P. and Suryanarayanan, R. (1992) In vitro release kinetics of salicylic acid from hydrogel patch formulations. <u>Journal</u> <u>of Controlled Release</u>, 18, 13-18.
- Wadhwa, R., Lagenaur, C. F. and Cui, X.T. (2006) Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. <u>Journal of Controlled Release</u>, 110, 531-541.
- Weast, R.C. and Astle, M.J. eds. (1978) CRC handbook of chemistry and physics, 59th edition. Boca Raton, FL: CRC Press, Inc.
- Wu, C.S., Lin, F.Y., Chen, C.Y. and Chu, P.P. (2006) A polyvinyl alcohol/psulfonate phenolic resin composite proton conducting membrane. <u>Journal of</u> <u>Power Sources</u>, 160, 1204–1210.
- Xue, S. and Yin, G. (2006) Proton exchange membranes based on modified sulfonated poly(ether ether ketone) membranes with chemically in siti polymerized polypyrrole. <u>Electrochimica Acta</u>, 52, 847-853.
- Yeom, C.K. and Lee, K.H. (1996) Pervaporation separation of water-acetic acid mixtures through poly(vinyl alcohol) membranes crosslinked with glutaraldehyde. Journal of Membrane Science, 109, 257-265.

....

APPENDICES

Appendix A Determination of functional groups by Fourier Transform Infrared Spectroscopy

The PPy, doped PPy and SSA were characterized by FT-IR spectroscopy in order to identify functional groups. Optical grade KBr (Carlo Erba Reagent) was used as the background material. 10 mg sample was mixed with 50 mg KBr. An FT-IR spectrum was observed by using an FT-IR spectrometer (Thermo Nicolet) in the absorption mode with 32 scans at a resolution of 4 cm⁻¹. For PAA drug load PAA and drug-load PPy/PAA blend film were using the ATR-FTIR spectrometer to investigate interaction between drugs and blend film.

Figure A1 FT-IR spectra of PPy and doped PPy with 5-sulfosalicylic acid at various doping levels.

Figure A2 Absorption infrared spectra of: (a) PPy powder; (b) PPy doped with SSA; (c) SSA powder; (d) pure PAA hydrogel; (e) SSA-loaded PAA hydrogel; and (f) SSA-loaded PPy/PAA blend film.

The absorption infrared spectrum of PPy and doped PPy with 5-sulfosalicylic acid is shown in comparison in figure A1. The peak at 1280 cm⁻¹ and a broad region at 3426 cm⁻¹ are assigned to the stretching vibration and the bending vibration of N-H bond, respectively (Kang and Geckeler, 2000 and Tian and Zerbi, 1990). The peaks at 3000-2800 cm⁻¹ represent the aliphatic C-H bonds and the peaks at 1543 and 1465 cm⁻¹ can be identified as the asymmetric and the symmetric C=C /C-C stretching vibrations in pyrrole ring (Khatua and Hsieh, 1997, Rosner and Rubner, 1994, Wadhwa *et al.*, 2006, Toshima and Ihata, 1996 and Tian and Zerbi, 1990). After polypyrrole is doped with 5-sulfosalicylic acid, the peak at 3426 cm⁻¹ disappears. The band at 1181 cm⁻¹ and 590 cm⁻¹ represent the S=O and S-O stretching vibration of sulfonate anions which compensated the positive charges in the polypyrrole chains (Gassner *et al.*, 1997 and Pouchert, *1997*).

Figure A2 show the absorption infrared spectra of PPy powder, PPy doped with SSA, SSA powder, pure PAA hydrogel, SSA-loaded PAA hydrogel and SSA-loaded PPy/PAA blend film. In pure PAA, drug-load PAA and drug-load PPy/PAA blend film, we observed a broad region around 3000 to 3600 cm⁻¹ assigned to OH

stretching and C=O stretching and CO⁻ due to intermolecular hydrogen bonding in the same region (Peppas and Wright,1998). The peak at 1705 represents C=O starching in pure PAA but is seen at 1698 and 1701 in the drug-load PAA hydrogel and drug-load PPy/PAA blend film, respectively.

For pure SSA, two peaks at 1038 and around 670 cm⁻¹ assigned to the sulfonate groups (SO³⁻) stretching (Weast and Astle, 1978). For drug-loaded PAA hydrogel and drug-load PPy/PAA blend film, the sulfonate groups (SO³⁻) stretching grows and has a gradual shift of OH stretching. These results indicate the H-bonding between the sulfonate groups of sulfosalicylic acid with hydroxyl group of PAA hydrogel (Wu et al., 2006).

. .

		Wavenumber (cm ⁻¹)							
Assignment	Pafarancas	Paf	PPy	PPy:SSA=1:1	PPy:SSA=1:3	PPy:SSA=1:5	PPy:SSA=1:10	PPy:SSA=1:50	
Assignment	Keitereites	2420	3426	-	-	-			
0-H	What al. (2006)	3000 3600	-	3116	3095	3097	3118	3116	
	Rospor and Rubner 1004	2017							
	Kosher and Rubich, 1994	2917	2923	-	-	-	-	-	
	Khatua and Fisien, 1997	2934							
v _s CH ₂	Rosner and Rubner, 1994	2851	2851	-	-	-	-	-	
v _s CH ₂	Khatua and Hsieh, 1997	2852		1700	1700	1701	1600	1700	
C=0	Gassner et al., 1997	1720		1700	1700	1701	1099	1700	
<u>v N-H</u>	Wadhwa et al., 2006	1550	1542	1544	1540	1541	1540	1542	
v C=C	Toshima and Ihata, 1996	1550	- 1343	1344	1340	1341	1340	1342	
v C=C	lian and Zerbi, 1990	1546	+						
v _{as} C=C	Toshima and Ihata, 1996.	1480	1465	1473	1470	1457	1456	1473	
$\nu_{as}C=C$	Tian and Zerbi, 1990	1470	ļ						
_v C-C & C-N	Tian and Zerbi, 1990	1391	-	-	-	•	-	-	
v C-N ·	Toshima and Ihata, 1996	1380	1383	1397	1314	1397	1397	1397	
N/A		-	-	-	-	-	-	-	
Deformation vib.	Toshima and Ihata, 1996	• 1300							
C-H & N-H def	Tian and Zerbi, 1990	1295	1280	1294	1288	1291	1297	1297	
v C-C	Kang and Geckeler, 2000	• 1290			_				
C-H & N-H def.	Tian and Zerbi, 1990	1242	-	•	-	-	-	-	
<u>v</u> C-N	Kang and Geckeler, 2000	1190	-	-	-	-	-	•	
v S=O	Gassner et al., 1997	1180	1176	1185	1172	1178	1174	1186	
v of Py ring	Kang and Geckeler, 2000	1167		-	-	-	-	-	
v C-C & C-N	Tian and Zerbi, 1990	1148	-	-	-	•	•	-	
N/A			-	1126	1079	1121	1125	-	
C-H def.	Tian and Zerbi, 1990	1050	-	-	-	-	-	-	
v of Py ring	Shen et al., 1998	1045	1039	1042	1037	1041	1039	1043	
in-plane N-H	Zaid et al., 1994	1029							
v of Py ring	Shen et al., 1998	968	960	965	962	964	964	965	
v of Py ring	Shen et al., 1999	922	-	-	-	-	-	-	
out-of plane C-H	Zaid et al., 1994	908	911	912	885	900	895	914	
out-of plane C-H	Zaid et al., 1995	767	780	785	783	784	783	786	
SO ₃ ⁻ group	Weast and Astle, 1978	670	674	672	668	671	670	670	
v S-O	Pouchert, 1997	620	612	618	599	616	615	619	

Table A1 Peak positions from FT-IR spectra of PPy and doped PPy with 5-sulfosalicylic acid

Table A2 The FT-IR absorption spectrum of pure PAA, pure SSA, drug-load PAA hydrogel and drug-load PPy/PAA blend film

Wavenumber (cm ⁺¹)	Ass	signments	References
3000-3600 [3000-3500]	О-Н	stretching	Wu et al. (2006)
2941 [2940]	CH ₂	stretching	Bhat <i>et al</i> . (2005)
1421 [1430]	СН	2 bending	Bhat <i>et al.</i> (2005)
1330 [1300]	C-	O stretching	Wu et al. (2006)
1089 [1096]	C=O str	etching vibration	Bhat <i>et al.</i> (2005)
847 [850]	. C-C	stretching	Bhat <i>et al.</i> (2005)
1036 [1030]	S=O symr	netric stretching	Wu et al. (2006)
716 [700]	S-O symm	netric stretching	Wu et al. (2006)
	а) (а)		

÷.

. . .

Appendix B Scanning Electron Micrograph of PPy and doped PPy with 5sulfosalicylic acid at various doping ratios

Figure B1 The morphology of polypyrrole powder at magnification x 1500.

.

Figure B2 The morphology of polypyrrole powder at magnification x 3500.

Figure B3 The morphology of doped polypyrrole powder with 5-sulfosalicylic acid (1:1) at magnification x 1500.

Figure B4 The morphology of doped polypyrrole powder with 5-sulfosalicylic acid (1:1) at magnification x 3500.

Figure B5 The morphology of doped polypyrrole powder with 5-sulfosalicylic acid (1:5) at magnification x 1500.

Figure B6 The morphology of doped polypyrrole powder with 5-sulfosalicylic acid (1:5) at magnification x 3500.

Figure B7 The morphology of doped polypyrrole powder with 5-sulfosalicylic acid (1:10) at magnification x 1500.

Figure B8 The morphology of doped polypyrrole powder with 5-sulfosalicylic acid (1:10) at magnification x 3500.

Figure B9 The morphology of doped polypyrrole powder with 5-sulfosalicylic acid (1:50) at magnification x 1500.

Figure B10 The morphology of doped polypyrrole powder with 5-sulfosalicylic acid (1:50) at magnification x 3500.

Appendix C Determination of the Correction Factor (K)

The electrical conductivity of sample was measured by a two-point probe meter. The meter consists of two probes, making contact on the surface of thin layer sample. These probes were connected to a source meter (Keithley, Model 6517A) for a constant voltage source and reading the resultant current.

The geometrical correction factor was taken into account of geometric effects, depending on the configuration and probe tip spacing:

$$K = \frac{w}{l} \tag{C.1}$$

where K is geometrical correction factor

w is width of probe tip spacing (cm)

1 is the length between probe (cm)

In this measurement, the constant K value was determined by using a standard sheet with a known resistivity value; we used silicon wafer chips (SiO₂). K was calculated by using Equation C.2:

$$K = \frac{\rho}{R \times t} = \frac{I \times \rho}{V \times t}$$
(C.2)

where K = geometric correction factor

 ρ = resistivity of standard silicon wafer which were calibrated by using a four point probe at King Mongkut's Institute Technology Lad Krabang (Ω.cm)

$$t = film thickness (cm)$$

$$R = film resistance (\Omega)$$

$$I = measure current (A)$$

V = voltage drop(V)

Standard Si wafer were cleaned to remove organic impurities prior to be used according to the standard RCA method (Kern, 1993).

Table C1 The raw data of the determination of the geometric correction factor (K) of probe number 1 with silicon wafer whose sheet resistivity of 107.373 Ω /sq., 25 °C, R.H. 65%

Va	oltage ((V)		Current (A)		Corr	ection facto	or (K)	
1	2	3	1	2	3	1	2	3	
0.1	0.1	0.1	1.52E-08	1.49E-08	1.50E-08	1.63E-05	1.60E-05	1.61E-05	
0.3	0.3	0.3	1.43E-07	1.44E-07	1.43E-07	5.12E-05	5.14E-05	5.12E-05	
0.5	0.5	0.5	1.02E-06	1.01E-06	9.59E-07	2.18E-04	2.18E-04	2.06E-04	
0.8	0.8	0.8	4.42E-06	4.47E-06	4.41E-06	5.93E-04	6.00E-04	5.92E-04	
1	1	1	8.01E-06	7.99E-06	7.94E-06	8.60E-04	8.58E-04	8.53E-04	
1.5	1.5	1.5	1.41E-05	1.43E-05	1.42E-05	1.01E-03	1.02E-03	1.02E-03	
2	2	2	1.76E-05	1.76E-05	1.77E-05	9.45E-04	9.47E-04	9.50E-04	
2.5	2.5	2.5	1.98E-05 ·	1.99E-05	1.98E-05	8.52E-04	8.54E-04	8.53E-04	
3	3	3	2.22E-05	2.24E-05	2.21E-05	7.93E-04	8.00E-04	7.91E-04	
4	4	4	2.65E-05	2.65E-05	2.65E-05	7.12E-04	7.11E-04	7.10E-04	
5	5	5	3.10E-05	3.10E-05	3.09E-05	6.65E-04	6.66E-04	6.64E-04	
6	6	6	3.72E-05	3.75E-05	3.72E-05	6.66E-04	6.72E-04	6.66E-04	
7	7	7	4.49E-05	4.59E-05	4.54E-05	6.89E-04	7.05E-04	6.96E-04	
Average						6.20E-04	6.25E-04	6.20E-04	
			Average	2		6.22E-04			
			SD				3.18E-04		

.

.

Figure C1 Voltage vs. current of the probe calibration with Si-wafer whose sheet resistivity of 107.373 Ω /sq., 25 °C, R.H. 65%.

Appendix D Conductivity Measurement

The specific conductivity which is the inversion of specific resistivity (ρ) of undoped PPy, doped PPy with sodiumsalicylate, and doped PPy with 5-sulfosalicylic acid dihydrate pellets were measured by using the two-point probe connected to a source meter (Keithley, Model 6517A) for a constant voltage source and reading resultant current. The thickness of pellets was measured by a thickness gauge. The applied voltage was plotted versus the current change to determine the linear ohmic regime of each sample. The applied voltage and the current change in the linear ohmic regime were converted to the electrical conductivity of the polymer by using equation (D.1) as follows:

$$\sigma = \frac{1}{\rho} = \frac{1}{R_s \times t} = \frac{I}{K \times V \times t}$$
(D.1)

where σ = specific conductivity (S/cm)

 ρ = specific resistivity (Ω .cm)

- R_s = sheet resistivity (Ω)
- I = measured current (A)
- K = geometric correction factor
- V = applied voltage (voltage drop) (V)
- t = pellet thickness (cm).

From the geometric correction factor (K) = 6.22×10^{-4} , the specific conductivity of undoped Ppy was 1.149 S/cm with standard deviation of 0.039 S/cm. The electrical conductivity of undoped PPy is rather high due to APS, the oxidant used in the polymerization process, produced HSO4⁻ which also acted as a dopant.

For doped PPy the specific conductivity increased as the doping level is increased as present in Table 1. The increase in electrical conductivity can be attributed to the increases in the number of charge carriers, the degree of crystallinity and the charge mobility (Soontornworajit, 2007).

Table D1 Determination the specific conductivity (S/cm) of PPy and doped PPy

 with 5-sulfosodiumsalicylic acid

Sample	Specific conductivity (S/cm)	SD
РРу	1.149	0.039
PPy:SSA=1:1	1.154	0.040
PPy:SSA=1:5	2.072	0.038
PPy:SSA=1:10	3.312	0.093
PPy:SSA=1:50	51.836	1.605

Table D2 The raw data of the determination of the polypyrrole, thickness = 0.055 cm, at 25 °C, R.H. 65%

V	oltage (V)		Current (A)		Corre	ction fact	tor (K)
1	2	3	1	2	3	1	2	3
0.02	0.02	0.02	7.03E-07	7.04E-07	7.05E-07	1.054	1.055	1.058
0.04	0.04	0.04	1.44E-06	1.44E-06	1.44E-06	1.081	1.083	1.083
0.06	0.06	0.06	2.30E-06	2.31E-06	2.31E-06	1.152	1.153	1.155
0.08	0.08	0.08	3.05E-06	3.05E-06	3.05E-06	1.143	1.144	1.144
0.1	0.1	0.1	3.80E-06	3.80E-06	3.80E-06	1.140	1.140	1.139
0.12	0.12	0.12	4.67E-06	4.67E-06	4.67E-06	1.166	1.167	1.168
0.14	0.14	0.14	5.42E-06	5.42E-06	5.43E-06	1.161	1.162	1.163
0.16	0.16	0.16	6.30E-06	6.30E-06	6.30E-06	1.180	1,181	1.182
0.18	0.18	0.18	7.06E-06	7.05E-06	7.05E-06	1.176	1.175	1.175
0.2	0.2	0.2	7.80E-06	7.81E-06	7.81E-06	1.170	1.171	1.172
0.23	0.23	0.23	9.07E-06	9.06E-06	9.07E-06	1.182	1.182	1.183
0.25	0.25	0.25	9.83E-06	9.84E-06	9.84E-06	1.180	1.180	1.181
0.28	0.28	0.28	1.11E-05	1.11E-05	1.11E-05	1.189	1.189	1.189
0.3	0.3	0.3	1.15E-05	1.16E-05	1.16E-05	1.148	1.155	1.160
	Average					1.149	1.149	1.150
Average							1.149	
			SD				0.039	

Figure D1 Determine the ohmic regime of polypyrrole, thickness = 0.055 cm, at 27 °C, R.H. 65%.

	oltage (V)		Current (A)		Conductivity (S/cm)		
1	2	3	1	2	3	1	2	3
0.02	0.02	0.02	7.93E-07	7.92E-07	7.92E-07	1.158	1.158	1.157
0.04	0.04	0.04	1.57E-06	1.57E-06	1.56E-06	1.145	1.145	1.143
0.06	0.06	0.06	2.47E-06	2.46E-06	2.46E-06	1.202	1.198	1.199
0.08	0.08	0.08	3.24E-06	3.25E-06	3.24E-06	1.184	1.186	1.184
0.1	0.1	0.1	3.62E-06	3.63E-06	3.65E-06	1.060	1.061	1.067
0.12	0.12	0.12	4.90E-06	4.89E-06	4.90E-06	1.193	1.191	1.194
0.14	0.14	0.14	5.62E-06	5.63E-06	5.64E-06	1.174	1.176	1.177
0.16	0.16	0.16	6.48E-06	6.49E-06	6.50E-06	1.183	1.186	1.188
0.18	0.18	0.18	7.18E-06	7.22E-06	7.22E-06	1.167	1.172	1.172
0.2	0.2	0.2	7.51E-06	7.59E-06	7.60E-06	1.098	1.109	1.111
0.25	0.25	0.25	9.84E-06	9.87E-06	9.88E-06	1.151	1.154	1.155
0.3	0.3	0.3	1.15E-05	1.15E-05	1.15E-05	1.117	1.120	1.121
	Average						1.155	1.156
Average						1.154		
			SD			0.040		

Table D3 The raw data of the determination of doped polypyrrole with 5-sulfosalicylic acid at 1:1 ratio, thickness = 0.047 cm, at 25 °C, R.H. 65%

Figure D2 Determine the ohmic regime of doped polypyrrole with 5-sulfosalicylic acid at 1:1 ratio, thickness = 0.047 cm, at 25 °C, R.H. 65%.

	oltage (Conductivity (S/cm)					
1	2	3	1	2	3	1	2	3	
0.02	0.02	0.02	1.18E-06	1.18E-06	1.17E-06	2.013	2.011	1.997	
0.04	0.04	0.04	2.39E-06	2.39E-06	2.39E-06	2.044	2.044	2.047	
0.06	0.06	0.06	3.76E-06	3.76E-06	3.76E-06	2.145	2.145	2.145	
0.08	0.08	0.08	4.92E-06	4.92E-06	4.92E-06	2.102	2.102	2.103	
0.1	0.1	0.1	6.05E-06	6.05E-06	6.06E-06	2.068	2.070	2.071	
0.11	0.11	0.11	6.81E-06	6.82E-06	6.82E-06	2.118	2.120	2.121	
0.13	0.13	0.13	7.95E-06	7.96E-06	7.97E-06	2.093	2.096	2.096	
0.15	0.15	0.15	9.03E-06	9.05E-06	9.06E-06	2.060	2.063	2.067	
0.18	0.18	0.18	1.10E-05	1.10E-05	1.10E-05	2.088	2.092	2.096	
0.2	0.2	0.2	1.19E-05	1.19E-05	1.19E-05	2.032	2.032	2.034	
0.25	0.25	0.25	1.50E-05	1.52E-05	1.49E-05	2.052	2.080	2.039	
0.3	0.3	0.3	1.80E-05	1.82E-05	1.81E-05	2.052	2.075	2.064	
Average							2.077	2.073	
	Average						2.072		
			SD				0.038		

Table D4 The raw data of the determination of doped polypyrrole with 5-sulfosalicylic acid at 1:5 ratio, thickness = 0.054 cm, at 25 °C, R.H. 65%

Figure D3 Determine the ohmic regime of doped polypyrrole with 5-sulfosalicylic acid at 1:5 ratio, thickness = 0.054 cm, at 25 °C, R.H. 65%.

	oltage (V)			Conductivity (S/cm)			
1	2	3	1	2	3	1	2	3
0.02	0.02	0.02	1.37E-06	1.37E-06	1.38E-06	3.095	3.109	3.124
0.04	0.04	0.04	2.78E-06	2.79E-06	2.79E-06	3.147	3.154	3.160
0.06	0.06	0.06	4.44E-06	4.45E-06	4.46E-06	3.350	3.358	3.366
0.08	0.08	0.08	5.88E-06	5.89E-06	5.90E-06	3.327	3.336	3.343
0.1	0.1	0.1	7.34E-06	7.36E-06	7.37E-06	3.326	3.331	3.336
0.12	0.12	0.12	9.04E-06	9.06E-06	9.07E-06	3.412	3.417	3.424
0.14	0.14	0.14	1.05E-05	1.05E-05	1.05E-05	3.402	3.407	3.410
0.16	0.16	0.16	1.16E-05	1.16E-05	1.17E-05	3.275	3.294	3.307
0.2	0.2	0.2	1.48E-05	1.50E-05	1.50E-05	3.351	3.397	3.392
0.25	0.25	0.25	1.85E-05	1.84E-05	1.86E-05	3.351	3.326	3.360
0.3	0.3	0.3	2.22E-05	2.23E-05	2.23E-05	3.351	3.360	3.363
0.4	0.4	0.4	2.96E-05	2.97E-05	2.98E-05	3.351	3.361	3.372
	Average							3.330
	Average							_
			SD				0.093	

Table D5 The raw data of the determination of doped polypyrrole with 5-sulfosalicylic acid at 1:10 ratio, thickness = 0.036 cm, at 25 °C, R.H. 65%

......

Figure D4 Determine the ohmic regime of doped polypyrrole with 5-sulfosalicylic acid at 1:10 ratio, thickness = 0.036 cm, at 25 °C, R.H. 65%.

V	oltage (V)		Current (A)		Cond	luctivity (S	S/cm)	
1	2	3	1	2	3	1	2	3	
0.02	0.02	0.02	9.39E-06	9.35E-06	9.33E-06	50.348	50.125	50.002	
0.04	0.04	0.04	1.86E-05	1.87E-05	1.87E-05	49.921	50.073	50.158	
0.06	0.06	0.06	2.96E-05	2.96E-05	2.96E-05	52.893	52.923	52.923	
0.08	0.08	0.08	3.90E-05	3.90E-05	3.91E-05	52.238	52.303	52.338	
0.1	0.1	0.1	4.85E-05	4.85E-05	4.85E-05	51.943	51.976	52.014	
0.12	0.12	0.12	5.94E-05	5.95E-05	5.95E-05	53.087	53.127	53.161	
0.14	0.14	0.14	6.42E-05	6.43E-05	6.43E-05	49.162	49.193	49.214	
0.16	0.16	0.16	7.37E-05	7.37E-05	7.37E-05	49.366	49.377	49.392	
0.18	0.18	0.18	8.94E-05	8.94E-05	8.94E-05	53.257	53.253	53.260	
0.2	0.2	0.2	9.89E-05	9.90E-05	9.89E-05	53.001	53.032	53.025	
0.23	0.23	0.23	1.15E-04	1.15E-04	1.15E-04	53.420	53.444	53.439	
0.25	0.25	0.25	1.24E-04	1.24E-04	1.24E-04	53.227	53.235	53.243	
0.28	0.28	0.28	1.40E-04	1.40E-04	1.40E-04	53.581	53.605	53.632	
0.3	0.3	0.3	1.50E-04	1.50E-04	1.50E-04	53.450	53.448	53.469	
0.35	.0.35	0.35	1.75E-04	1.75E-04	1.75E-04	53.541	53.555	53.562	
0.4	0.4	0.4	2.00E-04	2.00E-04	2.00E-04	53.625	53.634	53.635	
0.5	0.5	0.5	2.51E-04	2.51E-04	2.51E-04	53.758	53.760	53.776	
0.6	0.6	0.6	3.01E-04	3.01E-04	3.01E-04	53.819	53.840	53.852	
0.8	0.8	0.8	4.02E-04	4.02E-04	4.02E-04	53.903	53.909	53.919	
1	1.	1	5.03E-04	5.04E-04	5.04E-04	53.962	53.971	53.980	
1.5	1.5	1.5	7.68E-04	7.72E-04	7.70E-04	54.883	55.191	55.020	
2	2.	2	1.01E-03	1.01E-03	1.01E-03	54.124	54.166	54.187	
 3	3	3	1.52E-03	1.52E-03	1.52E-03	54.362	54.390	54.430	
4	4	4	2.04E-03	2.04E-03	2.04E-03	54.632	54.688	54.739	
5	5	5	2.56E-03	2.57E-03	2.57E-03	54.951	55.044	55.137	
10	10	10	5.30E-03	5.36E-03	5.38E-03	56.854	57.424	57.703	
			Average			51.822	51.838	51.847	
			Average				51.836		
	-		SD			1.605			

 Table D6 The raw data of the determination of doped polypyrrole with 5

sulfosalicylic acid at 1:50 ratio, thickness = 0.015 cm, at 25 °C, R.H. 65%

Figure D5 Determine the ohmic regime of doped polypyrrole with 5-sulfosalicylic acid at 1:50 ratio, thickness = 0.015 cm, at 25 °C, R.H. 65%.

Appendix E UV-Visible Spectrum of Sulfosalicylic Acid Model Drug

A UV/Visible spectrophotometer (Shimadzu, UV-2550) was used to determine the maximum spectra of model drug. Model drug in aqueous solution was prepared for scanning the maximum absorption wavelength. The characteristic peak was observed at 298 nm. The absorbance value at the maximum wavelength of model drug was read and the correspondent model drug concentrations were calculated from the calibration curve with various model drug concentration. Figure E1 shows the characteristic peak at the wavelength of 298 nm.

Figure E1 UV-Visible spectrum of 5-sulfosalicylic acid.

Appendix F Identification of Characteristic Peaks of Undoped and Doped Polypyrrole with 5-sulfosalicylic acid from UV-Visible Spectroscopy

The UV-Visible spectra of undoped and doped polypyrrole with 5sulfosalicylic acid dehydrate by using a UV-Vis absorption spectrometer (Perkin-Elmer, Lambda 10). Scan speed was 240 mm/min, and a slit width of 2.0 nm using a deuterium lamp as the light source. Measurements were taken in the absorbance mode in the wavelength range of 250-500 nm. The samples were prepared by dissolving 0.01 g of each sample in 15 ml of dimethysulfoxide by ultrasonification at room temperature for 1 hour and the solution was carried out for 24 hours. The characteristic peak presented at 298 nm. The contrationation of sulfosalicylic increased with increasing the doping mole ratio.

Figure F1 The UV-Visible spectra of: undoped polypyrrole; and polypyrrole doped with 5-sulfosalicylic acid at various mole ratio.

Figure F2 Calibration curve of 5-sulfosalicylic acid in dimethysulfoxide.

The concentration of doped polypyrrole was calculated from the calibration curve of 5-sulfosalicylic acid in dimethysulfoxide.

Sample	Absorbance	Concentration (ppm)
	1.30	121.75
	1.30	121.28
Ppy+0.075SSA	1.30	121.93
	1.30	121.75
	1.31	122.31
Average	1.30	121.80
	1.70	159.50
	1.70	159.41
Ppy+0.15SSA	1.70	159.32.
	1.71	159.60
	1.71	159.60
Average	1.70	159.49
	. 2.97	278.01
	2.97	278.01
Ppy+0.225SSA	. 2.97	278.01
	2.96	276.89
	2.99	279.22
Average	2.97	278.03
	3.17	296.89
	3.19	298.76
Ppy+0.3SSA	3.19	298.76
	3.19	298.76
	3.19	298.76
Average	3.19	298.38

 Table F1 Assignment peaks of UV-Visible peaks of undoped and doped polypyrrole

Appendix G Determination of Degree of Swelling and Weight Loss of PAA Hydrogels

The degree of swelling and weight loss of PAA hydrogels were measured in an acetate buffer solution at 37 $^{\circ}C$ for 5 days according to the following equations (Taepaiboon et al., 2006):

Degree of swelling (%) =
$$\frac{M - M_d}{M_d} \ge 100$$
 (1)

and

Weight loss (%) =
$$\frac{M_i - M_d}{M_i} \ge 100$$
 (2)

where M = the weight of each sample after submersion in the buffer solution.

 M_d = the weight of sample after submersion in the buffer solution in its dry state.

 M_i = the initial weight of the sample in its dry state.

Figure G1 Degree of swelling (%) of poly(acrylic acid) hydrogels at various crosslinking at 37 0 C after 5 day of E = 0 and 1 V.

Figure G2 Weight loss (%) of poly(acrylic acid) hydrogels at various crosslinking at 37 0 C after 5 day of E = 0 and 1 V.

	Crosslinking				Degree of	Weight loss
Sample	ratios	M_i	М	M _d	swelling (%)	(%)
PAA_0	0	0.92	3.09	0.58	437.20	37.44
PAA_0.25	1.82E-03	0.50	1.50	0.35	333.25	31.49
PAA_0.5	3.64E-03	0.60	1.96	0.46	328.93	23.48
PAA_0.75	5.45E-03	0.84	2.78	0.65	326.46	22.70
PAA_1	7.27E-03	0.69	2.24	0.55	305.86	20.01
PAA_1.25	9.09E-03	0.60	1.78	0.49	260.00	17.44
PAA_1.5	1.09E-02	0.86	2.57	0.71	259.92	16.86
PAA_1.75	1.27E-02	0.62	1.85	0.54	242.87	12.84
PAA_2	1.45E-02	0.55	1.62	0.51	219.05	7.11
PAA_2.5	1.82E-02	0.73	2.05	0.68	201.76	6.75

Table G1 Values of the degree of swelling (%) and weight loss (%) of poly(acrylic acid) hydrogels at various crosslinking ratios of E = 0 V

Table G2 Values of the degree of swelling (%) and weight loss (%) of poly(acrylic acid) hydrogels at various crosslinking ratios of E = 1 V

4.6.9

	Crosslinking				Degree of	Weight
Sample	ratios	M_i	М	M_d	swelling (%)	loss (%)
PAA_0	0	0.91	3.93	0.54	625.54	40.78
PAA_0.25	1.82E-03	0.85	4.02	0.56	619.46	34.49
PAA_0.5	3.64E-03	0.88	4.07	0.61	562.71	30.07
PAA_0.75	5.45E-03	0.91	4.26	0.65	559.10	28.84
PAA_1	7.27E-03	0.77	3.70	0.59	527.94	23.75
PAA_1.25	9.09E-03	0.82	4.04	0.65	521.49	21.04
PAA_1.5	1.09E-02	0.72	3.45	0.58	495.10	19.85
PAA_1.75	1.27E-02	0.78	3.60	0.64	458.94	17.80
PAA_2	1.45E-02	0.63	3.06	0.56	447.14	11.25
PAA_2.5	1.82E-02	0.64	3.23	0.60	437.08	6.29

Appendix H Determinaion of The Molecular Weight between Crosslinks, Mesh Size and Crosslinking Density of Poly(acrylic acid) Hydrogel

To determine the molecular weight between crosslinks, \overline{M} c the mesh size, ξ , and the crosslinking density, ρ_x , a sample of PAA film was cut immediately after crosslinking (1 cm² square). This sample was weighted in air and heptane. The sample was then placed in distilled water at 37 °C for 5 days to allow it to swell to equilibrium, and weighted in air and heptane again. Finally, the sample was dried at 25 °C in vacuum oven for 5 days. Once again, it was weighted in air and heptane. These weights were used to calculate the polymer volume fraction in the relaxed and swellen states, $v_{2,r}$ and $v_{2,s}$, respectively (Peppas *et al.*, 1998):

$$\upsilon_{2,r} = \frac{V_d}{V_r}$$
(H.1)
$$\upsilon_{2,s} = \frac{V_d}{V_s}$$
(H.2)

where V_d = the volumes of the polymer sample in the dry states. V_r = the volumes of the polymer sample in the relaxed states. V_s = the volumes of the polymer sample in the swollen states.

The volumes of the polymer sample in the dry, relaxed, and swollen states are calculated using Eq. (H.3) - (H.4) respectively:

$$V_d = \frac{W_{a,d} - W_{h,d}}{\rho_h} \tag{H.3}$$

$$V_r = \frac{W_{a,r} - W_{h,r}}{\rho_h} \tag{H.4}$$

$$V_s = \frac{W_{a,s} - W_{h,s}}{\rho_h} \tag{H.5}$$

where W_d = the weights of the dry polymer in air and heptane. W_r = the weights of the relaxed polymer in air and heptane.

$$W_{\rm s}$$
 = the weights of the swollen polymer in air and heptane.

 $\rho_{\rm h}$ = the density of heptane.

and

The molecular weight between crosslinks, \overline{M}_c , was calculated from the swelling data using Eq (H.6) (Peppas *et al.*, 1998):

$$\frac{1}{\overline{M}_{c}} = \frac{2}{\overline{M}_{n}} - \frac{\frac{\overline{\nu}}{\nu_{1}} [\ln(1 - \nu_{2,S}) + \nu_{2,S} + \chi \nu_{2,S}^{2}]}{\nu_{2,r} [(\frac{\nu_{2,S}}{\nu_{2,r}})^{1/3} - \frac{1}{2}(\frac{\nu_{2,S}}{\nu_{2,r}})]}$$
(H.6)

where $\overline{M}_{n} \stackrel{\text{def}}{=} \cdot$ the number-average molecular weight of the polymer before cross-linking (75000)

 \bar{v} = the specific volume of PAA (0.951 cm³/g)

 \overline{V}_1 = the molar volume of water (18.1 cm³/mol)

 χ = the Flory interaction parameter of PAA (0.5)

and the dissociation constant is pKa = 4.7.

The hydrogel mesh size, ξ , defines the linear distance between consecutive crosslinks. It indicates the diffusional space available for solute transport and can be calculated using Eq (H.7) (Hickey *et al.*, 1995):

$$\xi = v_{2,s}^{-1/3} \left[C_n (2\bar{M}_c/\bar{M}_r) \right]^{1/2} l$$
 (H.7)

where C_n = the Flory characteristic ratio l = the carbon-carbon bond length \overline{M}_r = the molecular weight of the repeating unit of polymer and \overline{M}_c = the molecular weight between crosslinks.
The crosslinking density of the hydrogel was calculated using Eq (H.8) (Peppas *et al.*, 1996):

$$\rho_x = \frac{1}{v\overline{M}_c} \tag{H.8}$$

Table H1 shows the molecular weight between crosslinks, mesh size and crosslinking density of each PAA hydrogel at various crosslinking ratios in absence of electric filed. Table H2 show the raw data of the determination of the molecular weight between crosslinks, mesh size and crosslinking density of PAA hydrogels at various crosslinking ratios in absence of electric filed. Table H3 show the molecular weight between crosslinks, mesh size and crosslinking density of PAA hydrogels at various crosslinking ratios and electric filed 1 V and table M4 show the raw data of the determination of the molecular weight between crosslinking and electric filed 1 V and table M4 show the raw data of the determination of the molecular weight between crosslinking ratios and electric filed 1 V. The molecular weight between crosslinks and mesh size values of PAA hydrogels are larger at lower crosslinking ratio. The mesh sizes of hydrogels vary between 103.92 and 478.90 Å for absent of electric filed strength. For an electric filed strength 1 V, the mesh sizes vary between 126.17 and 490.73 Å.

Figure H1 Mesh size of poly(acrylic acid) hydrogels vs. crosslinking ratios at pH 5.5, E = 0 and 1 V and 37 ^{0}C .

Table H1 The molecular weight between crosslinks, mesh size and crosslinking density of PAA hydrogels at various crosslinking ratios and E = 0 V

	a			Crosslinking	
Sample	Crosslinking	Number-average molecular	Mesh size	density	
	ratio, X	(g/mol)	ξ (A ⁰)	$(mol/cm^{3}, x 10^{4})$	a/Ę
PAA_0	0	3.74E+04	478.90	503.58	1.93E-02
PAA_0.25	1.82E-03	3.72E+04	421.73	421.73	2.19E-02
PAA_0.5	3.64E-03	3.69E+04	395.05	395.05	2.34E-02
PAA_0.75	5.45E-03	3.47E+04	316.71	316.71	2.92E-02
PAA_1	7.27E-03	3.16E+04	276.80	291.07	3.34E-02
PAA_1.25	9.09E-03	2.68E+04	236.63	248.83	3.91E-02
PAA_1.5	1.09E-02	2.14E+04	. 197.21	207.37	4.69E-02
PAA_1.75	1.27E-02	1.63E+04	: 162.53	170.90	5.69E-02
PAA_2	1.45E-02	1.28E+04	137.85	144.95	6.71E-02
PAA_2.5	1.82E-02	7.83E+03	103.92	109.28	8.90E-02

·. .

4

	Crosslinking									
Sample	ratios, X	$W_{a,r}(mg)$	$W_{h,r}(mg)$	$W_{a,s}(mg)$	W _{h,s} (mg)	$W_{a,d}(mg)$	W _{h,d} (mg)	M _c (g/mol)	ξ(A°)	$\rho(\text{mol/cm}^3)$
PAA_0	0.00E+00	841.80	840.70	2785.00	1805.00	650.70	631.80	37399.34	478.90	5.04E-02
PAA_0.25	1.82E-03	919.40	919.20	3090.00	2990.00	575.20	572.40	37187.03	421.73	4.43E-02
PAA_0.5	3.64E-03	691.20	690.30	4544.00	4229.50	552.90	542.30	36924.49	395.05	4.15E-02
PAA_0.75	5.45E-03	504.00	503.32	1496.00	1380.20	345.30	338.40	34697.36	316.71	3.33E-02
PAA_1	7.27E-03	598.70	596.72	1779.50	1565.10	494.30	477.70	31561.03	276.80	2.91E-02
PAA_1.25	9.09E-03	598.50	597.85	1954.50	1909.00	458.00	453.60	26750.10	236.63	2.49E-02
PAA_1.5	1.09E-02	729.30	726.20	2242.30	2078.00	680.10	660.50	21371.04	197.21	2.07E-02
PAA_1.75	1.27E-02	857.40	856.92	2565.50	2545.78	712.80	710.00	16301.63	162.53	1.71E-02
PAA_2	1.45E-02	547.00	545.10	1621.10	1555.50	508.10	497.50	12782.27	137.85	1.45E-02
PAA_2.5	1.82E-02	618.50	617.50	1648.40	1629.60	539.10	535.70	7831.32	103.92	1.09E-02

Table H2 The raw data of the determination of the molecular weight between crosslinks, mesh size and crosslinking density of PAA hydrogels at various crosslinking ratios and E = 0 V

ъ. т

:...

Table H3 The molecular weight between crosslinks, mesh size and crosslinking density of PAA hydrogels at various crosslinking ratios and E = 1 V

Sample	Crosslinking	Number-average molecular	Mesh size	Crosslinking density	
Sampre	crobbinning	weight between crosslinks, M _c			
	ratio, X	(g/mol)	$\xi (A^0)$	(mol/cm ³)	a/ξ
PAA_0	0	3.74E+04	490.73	516.02	1.88E-02
PAA_0.25	1.82E-03	3.73E+04	443.85	466.72	2.08E-02
PAA_0.5	3.64E-03	3.72E+04	410.87	432.04	2.25E-02
PAA_0.75	5.45E-03	3.63E+04	354.19	372.44	2.61E-02
PAA_1	7.27E-03	3.40E+04	308.45	324.34	3.00E-02
PAA_1.25	9.09E-03	3.05E+04	269.02	282.88	3.44E-02
PAA_1.5	1.09E-02	2.63E+04	234.24	246.31	3.95E-02
PAA_1.75	1.27E-02	2.32E+04	212.82	223.79	4.35E-02
PAA_2	1.45E-02	1.30E+04	140.02	147.23	6.61E-02
PAA_2.5	1.82E-02	1.09E+04	126.17	132.67	7.33E-02

÷

••

,

Table H4 The raw data of the determination of the molecular weight between crosslinks, mesh size and crosslinking density of PAAhydrogels at various crosslinking ratios and E = 1 V

	Crosslinking									
Sample	ratios, X	W _{a,r} (mg)	W _{h,r} (mg)	$W_{a,s}(mg)$	$W_{h,s}(mg)$	$W_{a,d}(mg)$	W _{h,d} (mg)	M _c (g/mol)	ξ(A°)	ρ(mol/cm ³)
PAA_0	0.00E+00	1.83E+02	1.83E+02	5.37E+02	3.87E+02	1.46E+02	1.44E+02	37438.57	490.73	5.16E-02
PAA_0.25	1.82E-03	1.09E+02	1.09E+02	2.71E+02	1.84E+02	5.06E+01	4.85E+01	37338.95	443.85	4.67E-02
PAA_0.5	3.64E-03	1.73E+02	1.73E+02	3.40E+02	2.83E+02	9.09E+01	8.92E+01	37161.97	410.87	4.32E-02
PAA_0.75	5.45E-03	2.24E+02	2.24E+02	5.55E+02	5.00E+02	1.53E+02	1.51E+02	36274.39	354.19	3.72E-02
PAA_1	7.27E-03	2.09E+02	2.09E+02	6.81E+02	6.54E+02	1.49E+02	1.47E+02	33974.84	308.45	3.24E-02
PAA_1.25	9.09E-03	2.15E+02	2.14E+02	4.54E+02	4.27E+02	1.44E+02	1.41E+02	30541.81	269.02	2.83E-02
PAA_1.5	1.09E-02	1.23E+02	1.23E+02	2.53E+02	2.46E+02	7.98E+01	7.91E+01	26305.58	234.24	2.46E-02
PAA_1.75	1.27E-02	1.79E+02	1.79E+02	4.53E+02	4.24E+02	1.17E+02	1.14E+02	23239.57	212.82	2.24E-02
PAA_2	1.45E-02	1.03E+02	1.03E+02	1.96E+02	1.80E+02	5.11E+01	4.85E+01	12968.95	140.02	1.47E-02
PAA_2.5	I.82E-02	1.44E+02	1.43E+02	3.58E+02	3.26E+02	1.07E+02	1.02E+02	10886.31	126.17	1.33E-02

.....

Appendix I Determination of Actual Drug Content

•

The actual amount of drug in the drug-loaded PAA hydrogel (circular disc about 2.5 cm in diameter) was measured by dissolving the sample in 5 ml of dimethylsulfoxide (DMSO) and then 0.1 ml of the solution was added into 0.4 ml of DMSO. The drug solution was measured for the amount of drug by using the UV/Visible spectrophotometer at a wavelength of 298 nm.

The actual amount of drug present in the sample is reported as the percentage of the initial content of drug loaded in PAA solution.

Table I1 The raw data of the determination of actual amount of sulfosalicylic acid in

 the samples

	Crosslinking	Absorbance	Concentration	Actual amount
Sample	ratio, X	intensity	(mg/l)	of drug (%)
PAA_0.25	1.82E-03	2.08	188.13	60.95
PAA_0.5	3.64E-03	2.15	194.25	62.94
PAA_0.75	5.45E-03	2.19	198.51	64.32
PAA_1	7.27E-03	2.26	204.71	66.33
PAA_1.25	9.09E-03	2.27	205.67	66.64
PAA_1.5	1.09E-02	2.29	207.40	67.20
PAA_2	1.45E-02	2.38	215.61	69.86
PAA_2.5	1.82E-02	2.66	240.37	77.88

....

Appendix J Determination of Amounts and Diffusion Coefficient of Sulfosalicylic Acid Released from Sulfosalicylic Acid-Loaded Poly(acrylic acid) Hydrogel at Various Crosslinking Ratios in an Absence of Electric filed

The diffusion studies were carried out using the modified franz diffusion cells for in vivo studies. The modified franz diffusion cell is a vertical diffusion cell, consisting of two half-cells. The first half-cell is the donor half which is exposed to room temperature (25 °C). Another half-cell is the receptor half which is exposed to acetate buffer (pH 5.5) and maintained at 37 °C by a circulating water bath. The drug-loaded PAA hydrogel with various crosslinking ratios was placed over the net mounted on the receptor compartment and pressing the drug with the electric potential into the acetate buffer. 0.3 ml of sample was withdrawn at various time intervals simultaneously replaced with equal volume of fresh buffer solution. An ultraviolet-visible light spectrophotometer is used to measure the absorbance of the samples at 298 nm.

The amounts of sulfosalicylic acid released from sulfosalicylic acid-loaded poly(acrylic acid) hydrogel at time t vs. t at various crosslinking ratios in an absence of electric field during 48 hours is illustrated in Figure J1. The amount of released drug gradually increases with time and then reaches an equilibrium value. But the amount of released drug decreased with increase of crosslinking ratio.

Figure J1 Amount of sulfosalicylic acid released from sulfosalicylic acid-loaded poly(acrylic acid) hydrogel vs. time at various crosslink ratios, E = 0 V, pH 5.5, 37 0 C, n = # samples =2.

Time	Absorbanc	e intensity		Drug Accun	nulation (mg))
Hour	1	2	1	2	Average	SD
0	0.000	0.000	0.000	0.000	0.000	0.000
0.25	0.246	0.581	0.592	1.407	0.999	0.576
0.5	0.372	0.615	0.912	1.523	1.217	0.432
0.75	0.387	0.708	0.969	1.781	1.375	0.574
1	0.395	0.741	1.010	1.903	1.456	0.631
1.5	0.425	0.884	1.106	2.292	1.699	0.838
2	0.494	0.901	1.296	2.382	1.839	0.768
2.5	0.523	0.905	1.395	2.443	1.919	0.741
3	.0.647	1.058	1.726	2.864	2.295	0.805
4	0.821	1.248	2.185	3.388	2.787	0.850
5	0.857	1.446	2.319	3.939	3.129	1.145
6	0.905	1.458	2.484	4.049	3.266	1.106
8	1.018	1.462	2.809	4.139	3.474	0.940
10	1.035	1.490	2.907	4.290	3.599	0.978
12	1.045	1.519	2.989	4.445	3.717	1.029
14	1.056	1.522	3.074	4.537	3.806	1.035
16	1.153	1.523	3.370	4.625	3.997	0.888
18	1.248	1.546	3.667	4.766	4.216	0.777
20	1.317	1.549	3.903	4.859	4.381	0.676
22	1.435	1.592	4.263	5.050	4.657	0.556
24	1.452	1.596	4.386	5.149	4.767	0.540
28	1.567	1.612	4.747	5.277	5.012	0.375
32	1.725	1.625	5.218	5.399	5.308	0.128
36	1.793	1.624	5.481	5.488	5.484	0.005
40	1.762	1.634	5.505	5.603	5.554	0.069
44	1.783	1.669	5.656	5.781	5.719	0.088
48	1.794	1.677	5.782	5.893	5.838	0.079

Table J1 The raw data of the determination of amounts of sulfosalicylic acid released from PAA_0 at time t, pH 5.5 at 37 0 C, in an absence of electric field

Time	Absorban	ce intensity		Drug Acc	umulation (m	ng)
Hour	1	2	1	2	Average	SD
0	0.000	0.000	0.000	0.000	0.000	0.000
0.25	0.115	0.175	0.274	0.420	0.347	0.103
0.5	0.162	0.197	0.394	0.483	0.438	0.063
0.75	0.166	0.211	0.413	0.528	0.470	0.082
1	0.310	0.288	0.772	0.725	0.749	0.033
1.5	0.350	0.447	0.886	1.130	1.008	0.172
2	0.421	0.534	1.078	1.367	1.222	0.204
· 2.5	0.506	0.595	1.308	1.543	1.425	0.166
3	0.536	0.633	1.411	1.669	1.540	0.182
. 4	0.565	0.667	1.511	1.788	1.649	0.196
5	0.716	0.738	1.910	1.999	1.954	0.063
. 6	0.733	0.792	1.990	2.171	2.081	0.128
8	1.022	0.925	2.735	2.538	2.637	0.139
. 10	1.055	1.000	2.872	2.771	2.821	0.071
12	- 1.090	1.003	3.016	2.836	2.926	0.127
14	1.220	1.006	3.394	2.899	3.146	0.350
16	1.230	1.028	3.487	3.009	3.248	0.338
18	1.424	1.199	4.027	3.483	3.755	0.385
20	1.443	1.243	4.152	3.656	3.904	0.350
22	1.451	1.249	4.254	3.741	3.997	0.363
24	1.461	1.300	4.359	3.935	4.147	0.300
28	1.485	1.532	4.500	4.571	4.536	0.050
32	1.504	1.626	4.629	4.886	4.757	0.182
36	1.515	1.647	4.739	5.028	4.883	0.205
40	1.526	1.659	4.852	5.149	5.001	0.210
44	1.526	1.672	4.938	5.275	5.107	0.239
48	1.532	1.707	5.036	5.452	5.244	0.294

Table J2 The raw data of the determination of amounts of sulfosalicylic acid released from PAA_0.25 at time t, pH 5.5 at 37 0 C, in an absence of electric field

Time	Absorband	e intensity		Drug Acc	umulation (mg)	
Hour	1	2	1	2	Average	SD
0	0.000	0.000	0.000	0.000	0.000	0.000
0.25	0.053	0.053	0.123	0.123	0.123	0.000
0.5	0.105	0.121	0.251	0.290	0.271	0.028
0.75	0.144	0.253	0.352	0.619	0.485	0.189
1	0.244	0.268	0.604	0.668	0.636	0.045
1.5	0.287	0.342	0.723	0.864	0.794	0.100
2	0.344	0.384	0.876	0.986	0.931	0.078
2.5	0.424	0.527	1.089	1.355	1.222	0.188
3	0.479	0.646	1.246	1.673	1.460	0.302
4	0.495	0.682	1.312	1.797	1.555	0.343
5	. 0.609	0.748	1.618	1.995	1.806	0.267
6	0.708	0.814	1.892	2.198	2.045	0.216
8	0.910	0.886	2.423	2.419	2.421	0.003
10	0.909	0.889	2.472	2.476	2.474	0.003
12	1.010	· 1.023	2.768	2.852	2.810	0.059
14	1.044	1.113	2.909	3.127	3.018	0.154
16	1.059	1.441	3.002	3.988	3.495	0.697
18	1.056	1.461	3.055	4.117	3.586	0.751
20	1.063	1.484	3.131	4.255	3.693	0.795
22	1.174	1.609	3.461	4.641	4.051	0.835
24	1.177	1.610	3.534	4.734	4.134	0.849
28	1.259	1.619	3.799	4.847	4.323	0.741
32	1.537	1.629	4.545	4.962	4.754	0.295
36	1.595	1.635	4.773	5.067	4.920	0.208
40	1.637	1.643	4.965	5.179	5.072	0.151
44	1.640	1.642	5.064	5.268	5.166	0.144
48	1.642	1.642	5.160	5.360	5.260	0.142

Table J3 The raw data of the determination of amounts of sulfosalicylic acid released from PAA_0.5 at time t, pH 5.5 at 37 0 C, in an absence of electric field

Time	Absorbanc	e intensity	~ ~ ~ ~	Drug Accum	nulation (mg)	
Hour	1	2	1	2	Average	SD
0	0.000	0.000	0.000	0.000	0.000	0.000
0.25	0.073	0.052	0.171	0.119	0.145	0.037
0.5	0.173	0.068	0.419	0.161	0.290	0.182
0.75	0.218	0.174	0.538	0.423	0.481	0.081
1	0.284	0.206	0.710	0.510	0.610	0.141
1.5	0.327	0.356	0.830	0.886	0.858	0.040
2	0.432	0.457	1.105	1.152	1.128	0.034
2.5	0.493	0.557	1.276	1.421	1.349	0.103
3	0.610	0.564	1.589	1.469	1.529	0.085
4	0.613	· 0.570	1.630	1.515	1.573	0.081
5	0.665	0.675	1.790	1.802	1.796	0.008
6	0.813	0.775	2.189	2.084	2.136	0.075
8	0.924	0.876	2.502	2.373	2.437	0.092
10	0.896	0.895	2.487	2.467 _.	2.477	0.014
12	0.997	0.926	2.784	2.592	2.688	0.136
14	1.075	0.987	3.029	2.793	2.911	0.167
16	1.086	1.000	3.114	2.881	2.998	0.165
18	1.106	1.151	3.225	3.303	3.264	0.055
20	1.121	1.161	3.323	3.393	3.358	0.050
22	1.167	1.164	3.496	3.464	3.480	0.023
24	1.258	1.289	3.785	3.834	3.810	0.035
28	1.531	1.544	4.519	4.525	4.522	0.005
32	1.578	1.548	4.718	4.623	4.670	0.067
36	1.595	1.550	4.849	4.715	4.782	0.095
40	1.608	1.565	4.971	4.837	4.904	0.095
44	1.609	1.566	5.061	4.927	4.994	0.095
48	1.617	1.566	5.173	5.016	5.094	0.111

Table J4 The raw data of the determination of amounts of sulfosalicylic acid released from PAA_0.75 at time t, pH 5.5 at 37^{0} C, in an absence of electric field

Time	Absorbanc	e intensity	Drug Accumulation (mg)				
Hour	1	2	1	2	Average	SD	
0	0.000	0.000	0.000	0.000	0.000	0.000	
0.25	0.000	0.000	0.651	0.000	0.000	0.000	
0.25	0.270	0.206	0.031	0.493	0.372	0.111	
0.5	0.343	0.343	0.843	0.839	0.841	0.003	
0.75	0.417	0.391	1.042	0.976	1.009	0.047	
1	0.440	0.436	1.120	1.106	1.113	0.010	
1.5	0.445	0.471	1.157	1.216	1.186	0.042	
2	0.460	0.498	1.220	1.307	1.264	0.062	
2.5	0.466	0.787	1.259	2.039	1.649	0.552	
3	0.477	0.795	1.311	2.101	1,706.	0.559	
4	0.494	1.150	· 1.379	3.010	2.195	1.153	
5	0.500	1.241	1.423	3.296	2.360.	1.325	
6	0.560	1.258	1.595	3.406	2.501 [.]	1.281	
8	0.606	1.303	1.740	3.586	2.663 [°]	1.306	
10	0.644	1.327	1.866	3.718	2.792 _.	1.310	
12	0.670	1.357	1.964	3.865	2.915	1.344	
14	0.700	1.375	2.076	3.985	3.030	1.350	
16	0.799	1.436	2.355	4.211	3.283	1.312	
18	0.804	1.457	2.412	4.341	3.377	1.364	
20	0.858	1.525	2.588	4.589	3.589	1.415	
22	0.950	1.584	2.860	4.817	3.838	1.384	
24	1.004	1.585	3.044	4.909	3.976	1.318	
28	1.087	1.672	3.302	5.210	4.256	1.349	
32	1.155	1.701	3.529	5.374	4.452	1.305	
36	1.217	1.731	3.745	5.542	4.644	1.271	
40	1.240	1.737	3.869	5.655	4.762	1.263	
44	1.498	1.747	4.566	5.775	5.171	0.855	
48	1.548	1.751	4.771	5.882	5.327	0.786	

Table J5 The raw data of the determination of amounts of sulfosalicylic acid released from PAA_1 at time t, pH 5.5 at 37 °C, in an absence of electric field

Time	Absorbanc	e intensity	Drug Accumulation (mg)				
Hour	1	2	1	2	Average	SD	
0	0.000	0.000	0.000	0.000	0.000	0.000	
0.25	0.124	0.070	0.295	0.165	0.230	0.092	
0.5	0.340	0.174	0.826	0.421	0.624	0.286	
0.75	0.350	0.251	0.870	0.618	0.744	0.179	
1	0.387	0.292	0.980	0.732	0.856	0.175	
1.5	0.532	0.502	1.353	1.258	1.306	0.068	
2	0.557	0.550	1.446	1.403	1.424	0.030	
2.5	0.582	0.624	1.536	1.613	1.575	0.055	
3	0.610	0.678	1.636	1.779	1.708	0.101.	
4	0.627	0.753	1.714	·2.000	1.857	0.203	
5	0.769	0.809	2.093	2 <i>.</i> 179	2.136	0.061.	
6	0.788	0.946	2.182	2.556	2.369	0.264 ·	
8	0.853	0.990	2.384	2.717	2.551	0.236	
10	0.904	1.058	2.557	2.937	2.747	0.269	
12	0.911	1.123	2.625	3.154	2.889	0.374	
14	0.953	1.197	2.777	3.397	3.087	0.438	
16	0.990	1.264	2.921	3.627	3.274	0.500	
18	0.995	1.268	2.988	3.708	3.348	0.509	
20	1.132	1.316	3.377	3.897	3.637	0.367	
22	1.137	1.378	3.452	4.121	3.787	0.473	
24	1.150	1.417	3.547	4.293	3.920	0.528	
28	1.169	1.483	3.658	4.533	4.096	0.619	
32	1.456	1.492	4.422	4.639	4.530	0.153	
36	1.546	1.495	4.723	4.729	4.726	0.004	
40	1.599	1.507	4.939	4.842	4.890	0.069	
44	1.615	1.557	5.066	5.047	5.056	0.014	
48	1.653	1.558	5.249	5.137	5.193	0.079	

..

Table J6 The raw data of the determination of amounts of sulfosalicylic acid released from PAA_1.25 at time t, pH 5.5 at 37 0 C, in an absence of electric field

					•	
Time	Absorbanc	e intensity		Drug Accun	ulation (mg)	
Hour	1	2	1	2	Average	SD
0	0.000	0.000	0.000	0.000	0.000	0.000
0.25	0.108	0.109	0.257	0.258	0.257	0.000
0.5	0.148	0.150	0.359	0.364	0.362	0.003
0.75	0.224	0.231	0.553	0.568	0.561	0.011
1	0.285	0.305	0.712	0.762	0.737	0.035
1.5	0.422	0.402	1.061	1.014	1.038	0.033
2	0.434	0.404	1.115	1.043	1.079	0.051
2.5	0.530	0.505	1.372	1.312	1.342	0.043
3	0.630	0.564	1.646	1.483	1.564	0.115
4	0.755	0.615	1.985	1.638	·1.812	0.246
5	0.906	0.733	2.393	1.959	2.176	0.307
6	0.908	0.741	2.449	2.020	2.234	0.304
8	1.055	0.933	2.859	2.527	2.693	0.235
10	1.102	0.940	3.030	2.598	2.814	0.306
12	1.111	1.014	3.115	2.830	2.972	0.202
14	1.150	1.087	3.271	3.064	3.168	0.146
16	1.225	1.204	3.519	3.409	3.464	0.078
18	1.250	1.301	3.648	3.713	3.680	0.046
20	1.282	1.313	3.797	3.815	3.806	0.013
22	1.308	1.348	3.930	3.974	3.952	0.031
24	1.322	1.432	4.040	4.254	4.147	0.152
28	1.367	1.514	4.221	4.533	4.377	0.221
32	1.380	1.592	4.331	4.808	4.569	0.337
36	1.382	1.608	4.413	4.935	4.674	0.369
40	1.383	1.611	4.493	5.033	4.763	0.381
44	1.384	1.614	4.572	5.130	4.851	0.395
48	1.403	1.660	4.695	5.332	5.014	0.450

.....

Table J7 The raw data of the determination of amounts of sulfosalicylic acid released from $PAA_1.5$ at time t, pH 5.5 at 37 0 C, in an absence of electric field

Time	Absorband	e intensity		Drug Accun	nulation (mg))			
Hour	1	2	1	2	Average	SD			
0	0.000	0.000	0.000	0.000	0.000	0.000			
0.25	0.207	0.244	0.496	0.587	0.542	0.064			
0.5	0.212	0.259	0.520	0.637	0.579	0.083			
0.75	0.222	0.276	0.557	0.693	0.625	0.096			
1	0.296	0.296	0.748	0.757	0.752	0.006			
1.5	0.302	0.305	0.780	0.795	0.788	0.010			
2	0.318	0.315	0.835	0.836	0.835	0.001			
2.5	0.421	0.411	1.103	1.088	1.095	0.011			
3	0.451	0.381	1.199	1.037	1.118	0.115			
4	0.612	0.690	1.616	1.811	1.714	0.138			
5	0.702	0.791	1.871	2.095	1.983	0.158			
· 6	0.728	0.794	1.973	2.146	2.059	0.123			
8	0.832	0.857	2.267	2.344	2.306	0.054			
10	0.885	0.872	2.441	2.428	2.435	0.009			
12	0.899	0.907	2.527	2.563	2.545	0.026			
14	0.973	0.909	2.755	2.618	2.686	0.097			
16	0.989	0.910	2.850	2.671	2.760	0.126			
18	1.016	0.911	2.969	2.723	2.846	0.174			
20	1.020	0.928	3.037	2.817	2.927	0.155			
22	1.023	0.940	3.102	2.898	3.000	0.144			
24	1.024	0.961	3.160	3.001	3.080	0.113			
28	1.059	1.028	3.303	3.219	3.261	0.059			
32	1.164	1.141	3.619	3.552	3.585	0.047			
36	1.166	1.162	3.687	3.666	3.677	0.014			
40	1.247	1.206	3.951	3.839	3.895	0.080			
44	1.257	1.217	4.044	3.931	3.988	0.080			
48	1.289	1.234	4.194	4.043	4.118	0.107			

141

Table J8 The raw data of the determination of amounts of sulfosalicylic acid released from PAA_2 at time t, pH 5.5 at 37 ⁰C, in an absence of electric field

Time	Absorbanc	e intensity		Drug Accum	ulation (mg)	
Hour	1	2]	2	Average	SD
0	0.000	0.000	0.000	0.000	0.000	0.000
0.25	0.036	0.036	0.081	0.081	0.081	0.000
0.5	0.047	0.044	0.109	0.102	0.105	0.005
0.75	0.080	0.059	0.191	0.140	0.166	0.036
1	0.105	0.071	0.257	0.174	0.215	0.059
1.5	0.160	0.087	0.397	0.215	0.306	0.128
2	0.174	0.108	0.439	0.271	0.355	0.119
2.5	0.208	0.139	0.533	0.354	0.443	0.127
3	0.238	0.186	0.617	0.476	0.546	0.100
4	0.265	0.323	0.694	0.818	0.756	0.088
5	0.299	0.360	0.792	0.926	0.859	0.095
6	0.308	0.398	0.832	1.040	0.936	0.147
8	0.336	0.439	0.917	1.162	1.039	0.174
10	0.379	0.474	1.040	1.271	1.156	0.163
12	0.396	0.507	1.103	1.378	1.240	0.194
14	0.408	0.542	1.154	1.491	1.322	0.238
16	0.419	0.570	1.204	1.589	1.396	0.272
18	0.448	0.599	1.298	1.691	1.494	0.278
20	0.474	0.622	1.385	1.782	1.584	0.281
22	0.471	0.643	1.404	1.866	1.635	0.327
24	0.514	0.668	1.536	1.963	1.750	0.302
28	0.630	0.694	1.845	2.065	1.955	0.155
32	0.643	0.753	1.912	2.246	2.079	0.236
36	0.682	0.801	2.044	2.406	2.225	0.256
40	0.733	0.880	2.207	2.643	2.425	0.308
44	0.723	0.903	2.224	2.747	2.485	0.370
48	0.740	0.940	2.304	2.888	2.596	0.413

Table J9 The raw data of the determination of amounts of sulfosalicylic acid released from PAA_2.5 at time t, pH 5.5 at 37 ^oC, in an absence of electric field

125

Release Kinetics of Model Drug from Drug-Loaded PAA Hydrogel

The study of sulfosalicylic acid transport mechanism from the PAA hydrogels, Fickian diffusion models are considered to fit the experimental data.

The power law model is described by the Ritger-Peppas equation (Venkatesh *et al.*, 1992):

$$\frac{M_t}{M_{\infty}} = k_1 t^n \tag{J.1}$$

where M_t/M_{∞} = the fractional drug release k = a kinetic constant t = the release time and n = the scaling exponent that can be related to the drug transport mechanism.

For a thin hydrogel film, when n = 0.5, the drug release mechanism is observed by the Fickian diffusion:

$$\frac{M_{t}}{M_{\infty}} = k_{H} t^{1/2}$$
(J.2)

where

 k_H

t

= a kinetic constant

= the release time.

 M_t/M_{∞} = the fractional drug release

and

The diffusion coefficients of sulfosalicylic acid from the PAA hydrogels are calculated from the slopes of plots of drug accumulation *vs.* square root of time according to Higuchi's equation (A-sasutjarit *et al.*, 2005):

$$Q = 2C_0 \left(Dt \,/\, \pi \right)^{1/2} \tag{J.3}$$

Q = the amount of material flowing through a unit cross-section of barrier in unit time

 C_0 = the initial drug concentration in the hydrogel

and

where

D =the diffusion coefficient of a drug.

The diffusion coefficients of each system were calculated from the slopes of the plot of the amounts of sulfosalicylic acid released from sulfosalicylic acid-loaded poly(acrylic acid) hydrogel at time t vs. $t^{1/2}$ at various crosslinking ratios in an absence of electric field during 48 hours using the Higuchi's equation (see figure J2).

Figure J2 Amount of sulfosalicylic acid released from sulfosalicylic acid-loaded poly(acrylic acid) hydrogel vs. $t^{1/2}$ at various crosslink ratios, E = 0 V, pH 5.5, 37 0 C, n = # samples = 2.

Figure J3 shows the diffusion coefficients of sulfosalicylic acid from poly(acrylic acid) hydrogels vs. crosslinking ratios without electric field at 37 ⁰C.

Figure J3 Diffusion coefficient of sulfosalicylic acid from poly(acrylic acid) hydrogels vs. crosslinking ratios without electric field, pH 5.5, 37 0 C, n = # samples = 2.

Figure J4 shows the diffusion coefficients of sulfosalicylic acid from poly(acrylic aid) hydrogels vs. mesh size without electric field at 37 ⁰C.

Figure J4 Diffusion coefficient of sulfosalicylic acid from poly(acrylic acid) hydrogels vs. mesh size without electric field, pH 5.5, $37 \, {}^{0}$ C, n = # samples = 2.

hydrogel, pH 5.5 at 37 [°]	C, without electric f	ield	
Crosslinking	Sland of first in it is 1		

Table J10 Raw data of the determination of the diffusion coefficient of sulfosalicylic acid released from various crosslinked PAA

	Crosslinking	Slope of f	first initial	Slope of sec	Slope of second initial Diffusion Coefficient of first initial(cm ² /s) I			Diffusion	Diffusion Coefficient of second initial(cm ² /s)				
Sample	ratio, X	1	2	1	2	1	2	Average	SD	1	2	Average	SD
PAA_0	0.00	0.841	1.141	-	0.449	1.42E-08	2.62E-08	2.02E-08	8.48E-09	-	4.06E-09	2.03E-09	2.87E-09
PAA_0.25	1.82E-03	0.864	0.823	0.558	0.472	1.51E-08	1.37E-08	1.44E-08	9.86E-10	6.27E-09	4.49E-09	5.38E-09	1.26E-09
PAA_0.5	3.64E-03	0.776	0.892	0.330	0.554	1.21E-08	1.60E-08	1.41E-08	2.76E-09	2.20E-09	6.18E-09	4.19E-09	2.81E-09
PAA_0.75	5.45E-03	0.786	0.793	0.452	0.473	1.25E-08	1.27E-08	1.26E-08	1.49E-10	4.12E-09	4.52E-09	4.32E-09	2.82E-10
PAA_1	7.27E-03	0.930	0.580	-	-	1.74E-08	6.79E-09	1.21E-08	7.52E-09	-	-	-	-
PAA_1.25	9.09E-03	0.702	0.769	-	-	9.92E-09	1.19E-08	1.09E-08	1.42E-09	-	-	-	-
PAA_1.5	1.09E-02	0.696	0.713	-	-	9.75E-09	1.03E-08	1.00E-08	3.55E-10	-	-	-	-
PAA_2	1.45E-02	0.657	0.640	-	-	8.70E-09	8.25E-09	8.47E-09	3.18E-10	-	-	-	-
PAA_2.5	1.82E-02	0.329	0.400	-	-	2.18E-09	3.22E-09	2.70E-09	7.38E-10	-	-	-	-

:.

•.

129

Appendix K Determination of Amounts and Diffusion Coefficient of Sulfosalicylic Acid Released from Sulfosalicylic Acid-Loaded Poly(acrylic acid) Hydrogel at Various Crosslinking Ratios with Electric Field (E = 1 V)

The amounts of sulfosalicylic acid released from sulfosalicylic acid-loaded poly(acrylic acid) hydrogel at time t vs. time at various crosslinking ratios at electric field strength 1 V during 48 hours is illustrated in Figure K1. The amount of released drug gradually increases with time and then reaches an equilibrium value. But the amount of released drug decreased with increase of crosslinking ratio.

Figure K1 Amounts of sulfosalicylic acid release from sulfosalicylic acid-loaded poly(acrylic acid) hydrogel vs. time at various crosslink ratios, E = 1 V, pH 5.5, 37 0 C, n = # samples = 2.

Time	Absort	ance	Ē	Prug Accum	ulation (mg)
Hour	1	2	1	2	Average	SD
0	0.000	0.000	0.000	0.000	0.000	0.000
0.25	0.181	0.182	0.434	0.437	0.435	0.002
0.5	0.198	0.205	0.485	0.502	0.494	0.012
0.75	0.321	0.307	0.794	0.763	0.778	0.022
1	0.424	0.469	1.064	1.174	1.119	0.078
1.5	0.529	0.530	1.344	1.347	1.345	0.002
2	0.633	0.630	1.625	1.620	1.622	0.004
2.5	0.743	0.763	1.929	1.979	1.954	0.035
3	0.858	0.832	2.249	2.189	2.219	0.043
4	0.941	0.933	2.498	2.482	2.490	0.011
5	1.175	1.094	3.121	2.924	3.023	0.139
6	1.256	1.236	3.385	3.332	3.359	0.037
8	1.311	1.396	3.589	3.790	3.689	0.142
10	1.420	1.440	3.926	3.977	3.952	0.035
12	1.524	1.595	4.260	4.434	4.347	0.124
14	1.537	1.647	4.376	4.648	4.512	0.193
16	1.644	1.656	4.722	4.763	4.743	0.030
18	1.657	1.704	4.847	4.973	4.910	0.089
20	1.717	1.741	5.085	5.159	5.122	0.053
22	1.765	1.772	5.299	5.333	5.316	0.024
24	1.804	1.786	5.493	5.465	5.479	0.020
28	1.836	1.795	5.670	5.588	5.629	0.058
32	1.914	1.826	5.964	5.763	5.864	0.142
36	1.922	1.855	6.090	5.936	6.013	0.109
40	1.946	1.918	6.258	6.194	6.226	0.045
44	1.979	1.977	6.445	6.443	6.444	0.001
48	1.987	1.961	6.576	6.516	6.546	0.042

Table K1 The raw data of the determination of amounts of sulfosalicylic acid released from PAA_0+E at time t, pH 5.5 at 37 0 C, with the electric field 1 V

....

131

Time	Abso	rbance	Dr	ug Accumula	tion (mg)	
Hour	1	2	1	2	Average	SD
0	0.000	0.000	0.000	0.000	0.000	0.000
0.25	0.127	0.122	0.302	0.290	0.296	0.009
0.5	0.132	0.127	0.322	0.309	0.315	0.009
0.75	0.142	0.135	0.352	0.335	0.344	0.012
1	0.149	0.149	0.377	0.377	0.377	0.001
1.5	0.153	0.164	0.397	0.422	0.409	0.018
2	0.265	0.199	0.677	0.517	0.597	0.113
2.5	0.307	0.218	0.793	0.573	0.683	0.156
3	0.407	0.289	1.055	0.757	0.906	0.211
4	0.509	0.395	1.325	1.032	1.179	0.207
5	0.609	0.496	1.597	1.300	1.448	0.211
6	0.710	0.612	1.875	1.610	1.743	0.187
8	0.830	0.719	2.208	1.904	2.056	0.215
10	0.914	0.863	2.458	2.295	2.376	0.116
12	1.082	0.922	2.919	2.486	2.703	0.307
14	1.184	1.144	3.227	3.078	3.152	0.106
16	1.195	1.171	3.321	3.208	3.264	0.080
18	1.227	1.523	3.464	4.129	3.796	0.471
20	1.323	1.530	3.768	4.232	4.000	0.328
22	1.324	1.575	3.843	4.428	4.136	0.413
24	1.374	1.666	4.039	4.736	4.387	0.493
28	1.400	1.820	4.178	5.204	4.691	0.725
32	1.499	1.848	4.499	5.375	4.937	0.620
36	1.560	1.920	4.731	5.654	5.193	0.652
40	1.677	1.924	5.103	5.770	5.436	0.472
44	1.779	1.925	5.446	5.882	5.664	0.308
48	1.800	1.940	5.596	6.025	5.810	0.303

Table K2 The raw data of the determination of amounts of sulfosalicylic acid released from PAA_0.25+E at time t, pH 5.5 at 37^{0} C, with the electric field 1 V

....

.

	Time	Abso	rbance	Γ)rug Accum	ulation (mg)
	Hour	1	2	1	2	Average	SD
	0	0.000	0.000	0.000	0.000	0.000	0.000
	0.25	0.052	0.053	0.120	0.122	0.121	0.001
	0.5	0.053	0.056	0.125	0.132	0.128	0.005
	0.75	0.055	0.077	0.132	0.187	0.160	0.039
	1	0.064	0.106	0.157	0.262	0.210	0.074
	1.5	0.094	0.153	0.234	0.382	0.308	0.104
	2	0.118	0.214	0.298	0.537	0.418	0.169
	2.5	0.153	0.319	0.389	0.806	0.597	0.294
	3	0.186	0.413	0.479	1.051	0.765	0.405
	4	0.309	0.554	0.786	1.419	1.103	0.447
	5	0.592	0.629	1.493	1.632	1.562	0.098
	6	0.795	0.733	2.020	1.920	1.970	0.070
1	8	0.961	0.840	2.467	2.220	2.344	0.174
	10	1.296	0.943	3.338	2.519	2.928	0.579
	12	1.405	1.047	3.675	2.823	3.249	0.602
	14	1.526	1.150	4.047	3.134	3.591	0.646
	16	1.565	1.182	4.227	3.274	3.751	0.674
	18	1.581	1.285	4.354	3.592	3.973	0.539
	20	1.585	1.290	4.453	3.675	4.064	0.550
	22	1.614	1.316	4.613	3.812	4.212	0.566
	24	1.654	1.325	4.800	3.907	4.353	0.631
	28	1.731	1.436	5.081	4.252	4.667	0.586
	32	1.751	1.545	5.225	4.596	4.911	0.445
	36	1.828	1.570	5.511	4.745	5.128	0.541
	40	1.884	1.578	5.750	4.852	5.301	0.635
	44	1.890	1.596	5.869	4.983	5.426	0.627
	48	1.900	1.600	6.000	5.083	5.541	0.648

.

. .

Table K3 The raw data of the determination of amounts of sulfosalicylic acid released from PAA_0.5+E at time t, pH 5.5 at 37 0 C, with the electric field 1 V

Time	Absor	bance]	Drug Accun	nulation (mg	A.
Hour	1	2	1	2	Average	SD
0	0.000	0.000	0.000	0.000	0.000	0.000
0.25	0.378	0.464	0.912	1.122	1.017	0.149
0.5	0.419	0.496	1.033	1.227	1.130	0.137
0.75	0.477	0.502	1.198	1.269	1.233	0.050
1	0.524	0.533	1.339	1.371	1.355	0.022
1.5	0.548	0.547	1.427	1.434	1.430	0.005
2	0.611	0.557	1.610	1.489	1.549	0.086
2.5.	0.638	0.576	1.710	1.567	1.638	0.101
3.	0.657	0.623	1.793	1.715	1.754	0.055
4	0.669	0.630	1.858	1.767	1.812	0.065
5	0.681	0.740	1.925	2.068	1.997	0.101
6 ·	0.699	0.783	2.007	2.215	2.111	0.147
8.	0.708	0.833	2.068	2.380	2.224	0.221
10	0.759	1.069	2.232	3.000	2.616	0.543
12	0.789	1.069	2.348	3.060	2.704	0.503
14	0.887	1.169	2.630	3.363	2.997	0.518
16	0.915	1.169	2.747	3.430	3.089	0.482
18	0.977	1.271	2.949	3.743	3.346	0.561
20	1.011	1.278	3.085	3.831	3.458	0.528
22	1.116	1.378	3.399	4.147	3.773	0.529
24	1.157	1.380	3.561	4.227	3.894	0.471
28	1.263	1.406	3.882	4.368	4.125	0.344
32	1.271	1.442	3.974	4.536	4.255	0.397
36	1.297	1.442	4.108	4.617	4.362	0.360
40	1.310	1.509	4.212	4.859	4.535	0.457
44	1.340	1.524	4.359	4.979	4.669	0.439
48	1.370	1.553	4.506	5.135	4.821	0.445

(21)

24

.....

Table K4 The raw data of the determination of amounts of sulfosalicylic acid released from PAA_0.75+E at time t, pH 5.5 at 37 ^oC, with the electric field 1 V

.

Time	Absor	bance		Drug Accumulation (mg)					
Hour	1	2	1	2	Average	SD			
0	0.000	0.000	0.000	0.000	0.000	0.000			
0.25	0.105	0.105	0.249	0.248	0.249	0.105			
0.5	0.152	0.154	0.370	0.373	0.372	0.152			
0.75	0.278	0.274	0.684	0.675	0.679	0.278			
1	0.306	0.300	0.767	0.753	0.760	0.306			
1.5	0.326	0.325	0.833	0.830	0.831	0.326			
2	0.369	0.567	0.956	1.436	1.196	0.369			
2.5	0.525.	0.567	1.356	1.468	1.412	0.525			
3	0.553 .	0.541	1.452	1.437	1.445	0.553			
4	0.565	0.682	1.513	1.394	1.453	0.565			
5	0.596	0.511	1.621	1.837	1.729	0.596			
6	0.621 ·	0.701	1.714	1.924	1.819	0.621			
8	0.751	0.839	2.065	2.297	2.181	0.751			
10	0.858 .	1.083	2.367	2.937	2.652	0.858			
12	0.968	1.185	2.684	3.247	2.965	0.968			
14	0.985	1.199	2.780	3.349	3.064	0.985			
16	1.051	1.268	2.994	3.583	3.289	1.051			
18	1.102	1.311	3.177	3.757	3.467	1.102			
20	1.117	1.317	3.276	3.846	3.561	1.117			
22	1.130	1.327	3.369	3.945	3.657	1.130			
24	1.133	1.350	3.440	4.074	3.757	1.133			
28	1.224	1.337	3.725	4.118	3.922	1.224			
32	1.274	1.312	3.915	4.134	4.024	1.274			
36	1.308	1.400	4.070	4.420	4.245	1.308			
40	1.437	1.531	4.456	4.818	4.637	1.437			
44	1.446	1.560	4.559	4.974	4.767	1.446			
48	1.449	1.571	4.646	5.087	4.867	1.449			

Table K5 The raw data of the determination of amounts of sulfosalicylic acid released from PAA_1+E at time t, pH 5.5 at 37 $^{\circ}$ C, with the electric field 1 V

Time	Absor	bance	Drug Accumulation (mg)					
Hour	1	2	1	2	Average	SD		
0	0.000	0.000	0.000	0.000	0.000	0.000		
0.25	0.042	0.071	0.096	0.165	0.131	0.049		
0.5	0.055	0.113	0.129	0.273	0.201	0.101		
0.75	0.071	0.123	0.171	0.302	0.236	0.093		
1	0.176	0.152	0.431	0.380	0.406	0.036		
1.5	0.198	0.255	0.493	0.640	0.566	0.103		
2	0.246	0.389	0.623	0.978	0.800	0.251		
2.5	0.352	0.437.	0.894	1.117	1.005	0.158		
3	0.462	0.543 .	1.181	1.399	1.290	0.154		
-4	0.512	0.625	1.328	1.630	1.479	0.213		
5.	0.624	0.727	1.629	1.914	1.771	0.201		
6	0.728	0.829 ·	1.916	2.200	2.058	0.201		
8	0.832	0.932 [.]	2.211	2.499	2.355	0.203		
10	0.985	1.102	2.628	2.964	2.796	0.237		
12	1.044	1.157	2.828	3.160	2.994	0.234		
14	1.049	1.169	2.899	3.253	3.076	0.250		
16	1.158	1.180	3.222	3.345	3.283	0.087		
18	1.168	1.251	3.312	3.584	3.448	0.192		
20	1.175	1.287	3.393	3.741	3.567	0.246		
22	1.188	1.337	3.491	3.935	3.713	0.314		
24	1.223	1.315	3.642	3.958	3.800	0.223		
28	1.298	1.351	3.894	4.119	4.006	0.160		
32	1.361	1.394	4.120	4.299	4.210	0.127		
36	1.423	1.402	4.346	4.397	4.371	0.036		
40	1.444	1.407	4.478	4.487	4.482	0.007		
44	1.475	1.454	4.633	4.680	4.656	0.034		
48	1.478	1.489	4.724	4.847	4.785	0.087		

Table K6 The raw data of the determination of amounts of sulfosalicylic acid released from PAA_1.25+E at time t, pH 5.5 at 37 0 C, with the electric field 1 V

Time	Absorbance		Drug Accumulation (mg)					
Hour	1	2	1	2	Average	SD		
0	0.000	0.000	0.000	0.412	0.206	0.292		
0.25	0.119	0.172	0.282	0.412	0.347	0.092		
0.5	0.147	0.300	0.359	0.732	0.545	0.264		
0.75	0.150	0.301	0.373 -	0.752	0.562	0.268		
1	0.205	0.322	0.516	0.820	0.668	0.215		
1.5	0.255	0.357	0.649	0.922	0.785	0.193		
2	0.356	0.391	0.908	1.024	0.966	0.082		
2.5	0.477	0.409	1.221.	1.090	1.156	0.092		
3	0.576	0.439	1.490	1.186	1.338	0.215		
4	0.677	0.670	1.767	1.772	1.769	0.004		
5	0.681	0.736	1.814	1.971	1.892	0.111		
6	0.726	0.886	1.962	2.377	2.170	0.293		
8	0.732	0.893	2.017	2.445	2.231	0.302		
10	0.740	0.943	2.078	2.615	2.347	0.380		
12	0.758	0.935	2.162	2.696	2.429	0.378		
14	0.760	0.961	2.211	2.766	2.488	0.392		
16	0.827	0.971	2.416	2.844	2.630	0.303		
18	0.851	1.000	2.520	2.969	2.744	0.317		
20	0.864	1.021	2.600	3.075	2.837	0.336		
22	0.898	1.027	2.730	3.148	2.939	0.296		
24	0.990	1.161	3.004	3.531	3.267	0.373		
28	1.091	1.185	3.306	3.654	3.480	0.246		
32	1.094	1.195	3.375	3.745	3.560	0.261		
36	1.146	1.211	3.561	3.851	3.706	0.205		
40	1.172	1.227	3.689	3.957	3.823	0.190		
44	1.158	1.229	3.722	4.030	3.876	0.218		
48	1.201	1.230	3.892	4.103	3.997	0.150		

Table K7 The raw data of the determination of amounts of sulfosalicylic acid released from PAA_1.5+E at time t, pH 5.5 at 37 0 C, with the electric field 1 V

Time	Absor	bance	Drug Accumulation (mg)					
Hour	1	2	1	2	Average	SD		
0	0.000	0.000	0.000	0.000	0.000	0.000		
0.25	0.207	0.244	0.496	0.587	0.542	0.064		
0.5	0.212	0.259	0.520	0.637	0.579	0.083		
0.75	0.222	0.276	0.557	0.693	0.625	0.096		
1	0.296	0.296	0.748	0.757	0.752	0.006		
1.5	0.302	0.305	0.780	0.795	0.788	0.010		
2	0.318	0.315	0.835	0.836	0.835	0.001		
2.5	0.421	0.411	1.103	1.088 -	1.095	0.011		
3	0.451	0.381	1.199	1.037	. 1.118	0.115		
4	0.612	0.690	1.616	1.811	1.714	0.138		
5	0.702	0.791	1.871	2.095	. 1.983	0.158		
6	0.728	0.794	1.973	2.146	· 2.059	0.123		
8	0.832	0.857	2.267	2.344	· 2.306	0.054		
10	0.885	0.872	2.441	2.428	2.435	0.009		
12	0.899	0.907	2.527	2.563	2.545	0.026		
14	0.973	0.909	2.755	2.618	2.686	0.097		
16	0.989	0.910	2.850	2.671	2.760	0.126		
18	1.016	0.911	2.969	2.723	2.846	0.174		
20	1.020	0.928	3.037	2.817	2.927	0.155		
22	1.023	0.940	3.102	2.898	3.000	0.144		
24	1.024	0.961	3.160	3.001	3.080	0.113		
28	1.059	1.028	3.303	3.219	3.261	0.059		
32	1.164	1.141	3.619	3.552	3.585	0.047		
36	1.166	1.162	3.687	3.666	3.677	0.014		
40	1.247	1.206	3.951	3.839	3.895	0.080		
44	1.257	1.217	4.044	3.931	3.988	0.080		
48	1.289	1.234	4.194	4.043	4.118	0.107		

Table K8 The raw data of the determination of amounts of sulfosalicylic acid released from PAA_2+E at time t, pH 5.5 at 37^{0} C, with the electric field 1 V

Time	Absorbance		Drug Accumulation (mg)			
Hour	1	2	1	2	Average	SD
0	0.000	0.000	0.000	0.000	0.000	0.000
0.25	0.345	0.137	0.832	0.327	0.579	0.358
0.5	0.346	0.143	0.854	0.349	0.601	0.357
0.75	0.352	0.159	0.889	0.395	0.642	0.349
1	0.367	0.228	0.944	0.571	0.758	0.264
1.5	0.417	0.228	1.086	0.584	0.835	0.354
2	0.438	0.417	1.160	1.056	1.108	0.073
2.5	0.444	0.480	1.201	1.235	1.218 .	0.024
3	0.487	0.672	1.328	1.728	1.528	0.283
4	0.532	0.683	1.466	1.793	1.629	0.231
5	0.559	0.731	1.560	1.946	1.753	0.273
6	0.589	0.738	1.665	2.004	1.834	0.239
8	0.592	0.742	1.706	2.055	1.881	0.247
10	0.691	0.762	1.979	2.147	2.063	0.118
12	0.695	0.767	2.028	2.201	2.114	0.123
14	0.707	0.770	2.095	2.250	2.172	0.110
16	0.713	0.774	2.149	2.304	2.226	0.109
18	0.757	0.775	2.296	2.350	2.323	0.038
20	0.769	0.787	2.369	2.423	2.396	0.038
22	0.785	0.796	2.449	2.489	2.469	0.028
24	0.799	0.799	2.529	2.540	2.534	0.008
28	0.804	0.799	2.584	2.585	2.584	0.000
32	0.816	0.813	2.660	2.662	2.661	0.002
36	0.825	0.813	2.727	2.710	2.718	0.012
40	0.833	0.815	2.793	2.759	2.776	0.024
44	0.908	0.847	3.020	2.883	2.952	0.097
48	0.918	0.881	3.097	3.014	3.055	0.059

Table K9 The raw data of the determination of amounts of sulfosalicylic acid released from PAA_2.5+E at time t, pH 5.5 at 37 ^oC, with the electric field 1 V

Release Kinetics of Model Drug from Drug-Loaded PAA Hydrogel

The study of sulfosalicylic acid transport mechanism from the PAA hydrogels, Fickian diffusion models are considered to fit the experimental data.

The power law model is described by the Ritger-Peppas equation (Venkatesh et al., 1992):

$$\frac{M_{t}}{M_{\infty}} = k_{1}t^{n} \tag{K.1}$$

where M_t/M_{∞} = the fractional drug release k = a kinetic constant t = the release time and n = the scaling exponent that can be related to the drug transport mechanism.

For a thin hydrogel film, when n = 0.5, the drug release mechanism is observed by the Fickian diffusion:

$$\frac{M_t}{M_{\infty}} = k_H t^{1/2}$$

(K.2)

where

..

 k_H = a kinetic constant

 $M_{\rm t}/M_{\infty}$ = the fractional drug release

= the release time.

and

t

The diffusion coefficients of sulfosalicylic acid from the drug-loaded PAA hydrogels are calculated from the slopes of plots of drug accumulation *vs.* square root of time according to Higuchi's equation (A-sasutjarit *et al.*, 2005):

$$Q = 2C_0 (Dt / \pi)^{1/2}$$
 (K.3)

where Q = the amount of material flowing through a unit cross-section of barrier in unit time

 C_0 = the initial drug concentration in the hydrogel

and D = the diffusion coefficient of a drug.

The diffusion coefficients of each system are calculated from the slopes of the plot of the amounts of sulfosalicylic acid released from sulfosalicylic acid-loaded poly(acrylic acid) hydrogel at time t vs. $t^{1/2}$ at various crosslinking ratios (with the electric field 1 V during 48 hours using the Higuchi's equation (see figure K2).

Figure K2 Amounts of sulfosalicylic acid release from sulfosalicylic acid-loaded poly(crylic acid) hydrogel vs. $t^{1/2}$ at various crosslink ratios, E = 1 V, pH 5.5, 37 °C, n = # samples = 2.

The diffusion coefficients of each system were calculated from the slopes of these plots using the Higuchi's equation (see figure K2). Figure K3 shows the diffusion coefficients of sulfosalicylic acid from poly(acrylic acid) hydrogels vs. crosslinking ratios and mesh size at electric field strength 1 V at 37 0 C. Figure K4 present the diffusion coefficients of sulfosalicylic acid from poly(acrylic acid) hydrogels vs. crosslinking ratios and mesh size at electric field strength 1 V at 37 0 C. Figure K4 present the diffusion coefficients of sulfosalicylic acid from poly(acrylic acid) hydrogels vs. crosslinking ratios and mesh size at electric field strength of 0 and 1 V at 37 0 C.

Figure K3 Diffusion coefficient of sulfosalicylic acid from poly(acrylic acid) hydrogels vs. crosslinking ratios and Mesh size at electric field strength 1 V, pH 5.5, $37 \,{}^{0}$ C, n = # samples = 2.

Figure K4 Diffusion coefficient of sulfosalicylic acid from poly(acrylic acid) hydrogels vs. crosslinking ratios and Mesh size at electric field strength of 0 and 1 V, pH 5.5, 37 0 C, n = # samples = 2.
Table K10 The raw data of the determination of the diffusion coefficient of sulfosalicylic acid released from various crosslinked PAA hydrogel, pH 5.5, at 37^{0} C, E = 1 V

	Crosslinking	Slope of fi	rst initial	Slope of sec	cond initial	Diffusio	n Coefficien	t of first initi	al (cm²/s)	Diffusion (Coefficient o	f second init	ial (cm ² /s)
Sample	ratio, X	1	2	1	2	1	2	Average	SD	1	2	Average	SD
PAA_0	0.00	1.584	1.541	0.735	0.628	1.584	1.541	4.92E-08	1.94E-09	1.09E-08	7.94E-09	9.41E-09	2.09E-09
PAA_0.25	1.82E-03	0.799	0.875	-	-	1.069	1.130	2.44E-08	1.89E-09	-	-	-	-
PAA_0.5	3.64E-03	0.915	0.777	-		1.059	0.849	1.86E-08	5.71E-09	-	-	-	-
PAA_0.75	5.45E-03	0.709	0.876	-	-	0.824	0.939	1.57E-08	2.88E-09	-	-	-	-
PAA_1	7.27E-03	0.708	0.796	-	-	0.819	0.913	1.51E-08	2.32E-09	-	-	-	-
PAA_1.25	9.09E-03	0.728	0.774	-	-	0.810	0.802	1.31E-08	1.98E-10	-	-	-	-
PAA_1.5	1.09E-02	0.604	0.745	-	-	0.762	0.745	1.14E-08	3.65E-10	-	-	-	-
PAA_2	1.45E-02	0.657	0.640	-	-	0.784	0.749	1.18E-08	7.69E-10	-	-	-	-
PAA_2.5	1.82E-02	0.329	0.400	-	-	0.483	0.518	5.06E-09	5.07E-10	-	-	-	-

Figure K5 shows the log-log plot of diffusion coefficients of sulfosalicylic acid from poly(acrylic) hydrogels vs. drug size/mesh size of hydrogel at electric field strength of 0 and 1 V at 37 $^{\circ}$ C. From these results, the scaling exponents m were determined from the following equation:

$$D = D_0 \left(a \,/\, \xi \right)^{-m} \tag{K.4}$$

where D = the diffusion coefficient of a drug $D_0 =$ the initial diffusion coefficient a = the size of drug $\xi =$ the mesh size of hydrogel

and

m = the scaling exponent.

The scaling exponent m value of the system for the sulfosalicylic acid to diffuse through the poly(acrylic acid) matrix skin under electric field strength of 0 and 1 V are 0.48 and 0.49, respectively. D_0 values are 2.33 x 10⁻⁹ and 2.09 x 10⁻⁹ cm²/s, respectively.

Drug size/mesh size of hydrogel

Figure K5 Diffusion coefficient of sulfosalicylic acid from poly(acrylic acid) hydrogels vs. drug size/mesh size of hydrogel at electric field strength of 0 and 1 V, pH 5.5, 37 0 C, n = # samples = 2.

Appendix L Determination of Amounts and Diffusion Coefficient of Sulfosalicylic Acid Released from Sulfosalicylic Acid-Loaded Polypyrrole/Poly(acrylic acid) Blend Film at Various Crosslinking Ratios with Electric Field Strength (E = 1 V)

The amounts of sulfosalicylic acid released from sulfosalicylic acid-loaded polypyrrole/poly(acrylic acid) blend film at time t vs. time at various crosslinking ratios with electric field strength 1 V during 48 hours is illustrated in Figure L1. The amount of released drug was increases with time and then reaches an equilibrium value. Moreover the amount of released drug decreased with increase of crosslinking ratio.

Figure L1 Amounts of sulfosalicylic acid release from sulfosalicylic acid-loaded polypyrrole/poly(acrylic acid) hydrogel vs. time at various crosslink ratios, E = 1 V, pH 5.5, 37 ^oC, n = # samples = 2.

Time	Absorbanc	e intensity	1	Drug Accum	ulation (mg)
Hour	1	2	1 2 Average		SD	
0	0.000	0.000	0.000	0.000	0.000	0.000
0.25	0.000	0.000	0.000	0.000	0.000	0.000
0.5	0.042	0.000	0.095	0.000	0.047	0.067
0.75	0.090	0.017	0.214	0.034	0.124	0.127
1	0.297	0.095	0.723	0.225	0.474	0.352
1.5	0.502	0.480	1.238	1.167	1.202	0.051
2	0.952	1.022	2.360	2.512	2.436	0.107
2.5	1.567	1.457	3.911	3.627	3.769	0.201
3	1.894	1.845	4.793	4.653	4.723	0.099
4	1.896	1.867	4.904	4.810	4.857	0.067
5	1.986	1.913	5.230	5.025	5.127	0.145
6	2.074	2.013	5.555	5.375	5.465	0.127
8	2.240	2.234	6.075	6.028	6.051	0.033
10	2.369	2.360	6.513	6.459	6.486	0.039
12	2.374	2.478	6.659	6.877	6.768	0.154
14	2.425	2.508	6.915	7.090	7.002	0.123
16	2.440	2.555	7.088	7.344	7.216	0.181
18	2.466	2.593	7.289	7.582	7.435	0.207
20	2.546	2.650	7.621	7.866	7.743	0.173
22	2.568	2.713	7.819	8.166	7.993	0.246
24	2.577	2.726	7.983	8.350	8.167	0.260
28	2.582	2.754	8.140	8.571	8.355	0.305
32	2.606	2.771	8.344	8.767	8.555	0.299
36	2.633	2.774	8.555	8.929	8.742	0.265
40	2.646	2.800	8.735	9.149	8.942	0.292
44	2.659	2.820	8.916	9.354	9.135	0.310
48	2.792	2.861	9.386	9.613	9.499	0.160

Table L1 The raw data of the determination of amounts of sulfosalicylic acid released from PAA_0+PPy+E at time t, pH 5.5 at 37 $^{\circ}$ C, with the electric field 1 V

Time	Absorban	ce intensity	Dr	ug Accumula	tion (mg)	
Hour	1	2	1	2	Average	SD
0	0.000	0.000	0.000	0.000	0.000	0.000
0.25	0.000	0.000	0.000	0.000	0.000	0.000
0.5	0.087	0.198	0.205	0.474	0.340	0.190
0.75	0.323	0.228	0.785	0.558	0.671	0.160
1	0.744	0.744	1.826	1.828	1.827	0.001
1.5	0.803	0.770	2.010	1.932	1.971	0.055
2	1.275	1.284	3.203	3.225	3.214	0.015
2.5	1.366	1.351	3.497	3.460	3.479	0.026
3	1.467	1.393	3.819	3.63.8	3.728	0.128
4	1.500	1.609	3.982	4.240	4.111	0.182
5	1.717	1.692	4.592	4.532	4.562	0.042
6	1.943	1.903	5.240	5.141	5.190	0.070
8	2.099	1.959	5.728	5.383	5.556	0.244
10	2.248	2.145	6.207	5.946	6.077	0.185
12	2.287	2.281	6.428	6.398	6.413	0.021
14	2.342	2.382	6.690	6.771	6.731	0.057
16	2.347	2.395	6.833	6.936	6.885	0.073
18	2.375	2.415	7.035	7.119	7.077	0.059
20	2.381	2.432	7.181	7.296	7.238	0.082
22	2.490	2.463	7.579	7.508	7.543	0.051
24	2.494	2.543	7.728	7.839	7.784	0.078
28	2.503	2.640	7.892	8.218	8.055	0.230
32	2.558	2.656	8.164	8.406	8.285	0.171
36	2.634	2.681	8.493	8.616	8.554	0.087
40	2.651	2.780	8.683	9.006	8.845	0.228
44	2.705	2.811	8.964	9.237	9.100	0.193
48	2.838	2.891	9.437	9.590	9.513	0.108

Table L2 The raw data of the determination of amounts of sulfosalicylic acid released from PAA_0.25+PPy+E at time t, pH 5.5 at 37 $^{\circ}$ C, with the electric field 1 V

Time	Absorbanc	e intensity		Drug Accur	nulation (mg	.)
Hour	1	2	1	2	Average	SD
0	0.000	0.000	0.000	0.000	0.000	0.000
0.25	0.000	0.000	0.000	0.000	0.000	0.000
0.5	0.000	0.000	0.000	0.000	0.000	0.000
0.75	0.000	0.029	0.000	0.063	0.031	0.044
1	0.052	0.041	0.118	0.094	0.106	0.017
1.5	0.104	0.139	0.250	0.334	0.292	0.060
2	0.697	0.427	1.696	1.043	1.369	0.462
2.5	0.967	0.987	2.392	2.428	2.410	0.025
3	1.599	1.334	3.985	3.327	3.656	0.465
4	1.731	1.665	4.395	4.208	4.301	0.132
5	1.877	1.725	4.847	4.448	4.648	0.282
6	1.883	1.828	4.967	4.796	4.881	0.121
8	1.921	1.835	5.164	4.913	5.038	0.177
10	1.936	1.853	5.309	5.061	5.185	0.176
12	1.950	1.886	5.452	5.245	5.348	0.147
14	1.952	1.887	5.565	5.352	5.459	0.151
16	1.989	1.834	5.765	5.329	5.547	0.308
18	1.996	1.872	5.895	5.525	5.710	0.261
20	2.017	1.882	6.056	5.655	5.856	0.283
22	2.146	1.973	6.482	5.982	6.232	0.354
24	2.354	2.058	7.109	6.298	6.703	0.573
28	2.384	2.138	7.314	6.609	6.961	0.499
32	2.406	2.245	7.502	6.988	7.245	0.363
36	2.432	2.315	7.700	7.284	7.492	0.295
40	2.480	2.468	7.953	7.786	7.870	0.118
44	2.501	2.453	8.143	7.889	8.016	0.179
48	2.482	2.482	8.237	8.096	8.167	0.099

Table L3 The raw data of the determination of amounts of sulfosalicylic acid released from PAA_0.5+PPy+E at time t, pH 5.5 at 37 0 C, with the electric field 1 V

Time	Absorbance intensity			Drug Accun	ulation (mg)		
Hour	1	2	1	2 Average		SD	
0	0.000	0.000	0.000	0.000	0.000	0.000	
0.25	0.177	0.200	0.425	0.479	0.452	0.039	
0.5	0.202	0.223	0.494	0.547	0.520	0.038	
0.75	0.216	0.255	0.539	0.637	0.588	0.069	
1	0.229	0.269	0.584	0.685	0.634	0.072	
1.5	0.284	0.333	0.730	0.857	0.794	0.090	
2	0.381	0.353	0.983	0.922	0.953	0.043	
2.5	0.480	0.679	1.245	1.735	1.490	0.347	
3	0.645	0.894	1.672	2.296	1.984	0.441	
4	1.028	1.047	2.639	2.718	2.679	0.056	
5	1.336	1.385	3.446	3.600	3.523	0.109	
6	1.608	1.718	4.183	4.487	4.335	0.215	
8	1.846	1.872	4.852	4.957	4.905	0.074	
10	1.927	1.971	5.151	5.303	5.227	0.108	
12	1.963	2.013	5.347	5.516	5.432	0.120	
14	1.992	2.022	5.528	5.651	5.589	0.087	
16	2.004	2.113	5.670	5.985	5.828	0.223	
18	2.003	2.174	5.779	6.252	6.016	0.334	
20	2.056	2.231	6.019	6.513	6.266	0.349	
22	2.111	2.242	6.269	6.666	6.467	0.281	
24	2.117	2.313	6.403	6.963	6.683	0.396	
28	2.122	2.347	6.533	7.176	6.854	0.455	
32	2.126	2.359	6.662	7.338	7.000	0.478	
36	2.159	2.362	6.862	7.477	7.170	0.435	
40	2.160	2.424	6.984	7.760	7.372	0.549	
44	2.189	2.431	7.177	7.913	7.545	0.521	
48	2.204	2.462	7.336	8.125	7.731	0.558	

Table L4 The raw data of the determination of amounts of sulfosalicylic acid released from PAA_0.75+PPy+E at time t, pH 5.5 at 37 0 C, with the electric field 1 V

Time	Absorban	ce intensity]	Drug Accun	nulation (mg)
Hour	1	2	1	2	Average	
0	0.000	0.000	0.000	0.000	0.000	0.000
0.25	0.095	0.076	0.226	0.177	0.202	0.034
0.5	0.218	0.109	0.529	0.263	0.396	0.188
0.75	0.320	0.185	0.789	0.454	0.621	0.237
1	0.452	0.101	1.129	0.258	0.693	0.615
1.5	0.558	0.409	1.411	1.013	1.212	0.281
2	0.775	0.677	1.970	1.688	1.829	0.199
2.5	0.904	0.880	2.326	2.220	2.273	0.075
3	1.044	0.990	2.719	2.538	2.629	0.128
4	1.159	1.002	3.058	2.621	2.839	0.309
5	1.580	1.210	4.145	3.185	3.665	0.679
6	1.689	1.321	4.500	3.521	4.011	0.692
8	1.840	1.572	4.962	4.206	4.584	0.535
10	1.959	1.572	5.355	4.294	4.824	0.750
12	1.966	1.579	5.480	4.398	4.939	0.765
14	1.984	1.603	5.635	4.547	5.091	0.769
16	2.093	1.787	6.010	5.084	5.547	0.655
18	2.160	1.907	6.291	5.475	5.883	0.577
20	2.200	1.928	6.510	5.633	6.072	0.620
22	2.254	1.978	6.763	5.863	6.313	0.637
24	2.281	2.008	6.957	6.046	6.502	0.644
28	2.293	2.062	7.114	6.290	6.702	0.583
32	2.398	2.070	7.498	6.425	6.962	0.759
36	2.417	2.021	7.677	6.422	7.049	0.888
40	2.440	2.088	7.8 70	6.698	7.284	0.829
44	2.442	2.092	8.012	6.826	7.419	0.839
48	2.442	2.105	8.147	6.974	7.560	0.830

Table L5 The raw data of the determination of amounts of sulfosalicylic acid released from $PAA_1+PPy+E$ at time t, pH 5.5 at 37 ^{0}C , with the electric field 1 V

.....

Time	Absorban	ce intensity	I	Drug Accun	nulation (mg	
Hour	1	2	1	2	Average	SD
0	0.000	0.000	0.000	0.000	0.000	0.000
0.25	0.000	0.000	0.000	0.000	0.000	0.000
0.5	0.000	0.152	0.000	0.362	0.181	0.256
0.75	0.112	0.486	0.266	1.184	0.725	0.649
1	0.342	0.597	0.832	1.481	1.156	0.459
1.5	0.448	0.660	1.108	1.668	1.388	0.396
2	0.633	0.691	1.583	1.779	1.681	0.138
2.5	0.764	0.828	1.936	2.152	2.044	0.153
3	0.824	0.948	2.126	2.490	2.308	0.257
4	1.160	1.165	2.988	3.072	3.030	0.059
5	1.319	1.270	3.440	3.392	3.416	0.034
6	1.462	1.412	3.863	3.808	3.836	0.039
8	1.776	1.481	4.708	4.056	4.382	0.461
10	1.786	1.652	4.831	4.554	4.692	0.196
12	1.990	1.853	5.429	5.135	5.282	0.207
14	1.990	1.861	5.540	5.258	5.399	0.200
16	1.994	1.866	5.661	5.375	5.518	0.203
18	1.995	1.894	5.774	5.548	5.661	0.160
20	1.999	1.947	5.896	5.783	5.840	0.080
22	2.013	2.066	6.043	6.180	6.112	0.097
24	2.114	2.106	6.402	6.394	6.398	0.006
28	2.218	2.174	6.774	6.679	6.726	0.067
32	2.222	2.090	6.907	6.596	6.752	0.220
36	2.228	2.091	7.047	6.714	6.881	0.235
40	2.231	2.099	7.178	6.851	7.015	0.231
44	2.233	2.134	7.308	7.056	7.182	0.179
48	2.230	2.162	7.426	7.243	7.335	0.130

Table L6 The raw data of the determination of amounts of sulfosalicylic acid released from PAA_1.25+PPy+E at time t, pH 5.5 at 37 ⁰C, with the electric field 1 V

Time	Absorban	ce intensity	tensity Drug Accumulation (mg			
Hour	1	2	1	2	Average	SD
0	0.000	0.000	0.000	0.000	0.000	0.000
0.25	0.371	0.254	0.897	0.612	0.755	0.201
0.5	0.446	0.445	1.100	1.089	1.094	0.008
0.75	0.662	0.656	1.650	1.628	1.639	0.016
1	0.798	0.742	2.017	1.873	1.945	0.102
1.5	0.839	0.851	2.162	2.180	2.171	0.013
2	0.870	0.866	2.285	2.266	2.275	0.014
. 2.5	0.910	0.898	2.429	2.390	2.410	0.028
. 3	0.946	0.982	2.568	2.646	2.607	0.055
4	0.996	1.051	2.744	2.869	2.806	0.089
. 5	1.041	1.097	2.909	3.038	2.974	0.091
· 6	1.171	1.127	3.282	3.174	3.228	0.076
· 8	1.286	1.206	3.628	3.430	3.529	0.141
. 10	1.298	1.309	3.729	3.748	3.738	0.013
12	1.496	1.453	4.284	4.170	4.227	0.080
14	1.584	1.492	4.582	4.346	4.464	0.167
16	1.690	1.646	4.928	4.804	4.866	0.088
18	1.798	1.800	5.286	5.271	5.278	0.010
20	1.987	1.823	5.845	5.429	5.637	0.294
22	2.099	1.985	6.229	5.926	6.077	0.215
24	2.099	2.054	6.347	6.203	6.275	0.102
28	2.100	2.095	6.467	6.418	6.442	0.035
32	2.102	2.195	6.589	6.779	6.684	0.134
36	2.106	2.232	6.718	6.992	6.855	0.194
40	2.099	2.352	6.819	7.410	7.115	0.418
44	2.053	2.241	6.824	7.271	7.048	0.316
48	2.095	2.248	7.042	7.414	7.228	0.263

. .

Table L7 The raw data of the determination of amounts of sulfosalicylic acid released from PAA_1.5+PPy+E at time t, pH 5.5 at 37^{0} C, with the electric field 1 V

Time	Absorban	ce intensity	Drug Accumulation (mg)						
Hour	1	2	1	2 Average		SD			
0	0.000	0.000	0.000	0.000	0.000	0.000			
0.25	0.070	0.069	0.163	0.160	0.162	0.002			
0.5	0.099	0.080	0.238	0.193	0.215	0.032			
0.75	0.164	0.139	0.402	0.340	0.371	0.043			
1	0.201	0.194	0.500	0.481	0.490	0.014			
1.5	0.335	0.325	0.838	0.811	0.825	0.019			
2	0.567	0.561	1.419	1.404	1.412	0.011			
2.5	·. 0.667	0.742	1.694	1.873	1.784	0.127			
3.	· 0.891	0.971	2.277	2.473	2.375	0.139			
4	1.144	1.173	2.944	3.019	2.981	0.053			
5	. 1.281	1.219	3.341	3.195	3.268	0.103			
6	1.490	1.451	3.921	3.828	3.875	0.066			
8	[.] 1.516	1.790	4.067	4.735	4.401	0.473			
10	.1.629	1.801	4.427	4.861	4.644	0.307			
12	1.753	1.865	4.820	5.117	4.969	0.210			
14	1.759	1.913	4.933	5.339	5.136	0.287			
16	1.873	2.009	5.308	5.679	5.494	0.263			
18	1.927	2.106	5.546	6.030	5.788	0.342			
20	1.949	2.131	5.705	6.208	5.956	0.355			
22	1.985	2.136	5.904	6.339	6.121	0.308			
24	1.992	2.174	6.030	6.551	6.291	0.368			
28	2.006	2.181	6.178	6.689	6.434	0.361			
32	2.008	2.182	6.293	6.815	6.554	0.369			
36	2.016	2.186	6.424	6.946	6.685	0.369			
40	2.035	2.189	6.586	7.077	6.832	0.347			
44	2.049	2.192	6.734	7.207	6.971	0.334			
48	2.091	2.196	6.951	7.339	7.145	0.274			

Table L8 The raw data of the determination of amounts of sulfosalicylic acid released from PAA_2+PPy+E at time t, pH 5.5 at 37 0 C, with the electric field 1 V

Time	Absorban	ce intensity		Drug Accun	nulation (mg)
Hour	1	2	1	2	Average	SD
0	0.000	0.000	0.000	0.000	0.000	0.000
0.25	0.012	0.024	0.023	0.053	0.038	0.021
0.5	0.032	0.063	0.071	0.148	0.110	0.054
0.75	0.090	0.124	0.215	0.301	0.258	0.061
1	0.122	0.319	0.296	0.781	0.539	0.343
1.5	0.336	0.486	0.825	1.204	1.015	0.268
2	0.572	0.558	1.417	1.406	1.412	0.008
2.5	0.701	• 0.773	1.764	1.961	1.862	0.139
3	0.760	. 0.876	1.947	2.254	2.100	0.217
4	0.795	0.959	2.074	2.506	2.290	0.305
5	1.118	1.194	2.903	3.131	3.017	0.161
6	1.140	· 1.229	3.019	3.283	3.151	0.187
8	1.147	[.] 1.261	3.101	3.429	3.265	0.232
10	1.327	1.299	3.602	3.594	3.598	0.006
12	1.442	1.344	3.957	3.775	3.866	0.128
14	1.583	1.349	4.380	3.863	4.121	0.366
16	1.592	1.378	4.491	4.009	4.250	0.340
18	1.617	1.394	4.641	4.126	4.384	0.365
20	1.624	1.411	4.749	4.245	4.497	0.356
22	1.668	1.457	4.947	4.436	4.692	0.362
24	1.692	1.576	5.099	4.806	4.953	0.207
28	1.708	1.753	5.231	5.326	5.278	0.067
32	1.711	1.766	5.336	5.456	5.396	0.084
36	1.766	1.779	5.565	5.584	5.575	0.014
40	1.834	1.798	5.831	5.732	5.781	0.070
44	1.915	1.833	6.130	5.917	6.024	0.151
48	2.111	1.844	6.712	6.047	6.380	0.470

Table L9 The raw data of the determination of amounts of sulfosalicylic acid released from PAA_2.5+PPy+E at time t, pH 5.5 at 37 0 C, with the electric field 1 V

Release Kinetics of Model Drug from Drug-Loaded PPy/PAA Blend Film

The study of sulfosalicylic acid transport mechanism from the PPy/PAA blend films, Fickian diffusion models are considered to fit the experimental data.

The power law model is described by the Ritger-Peppas equation (Venkatesh et al., 1992):

$$\frac{M_{t}}{M_{\infty}} = k_{1}t^{n} \tag{L.1}$$

where

k

t

= a kinetic constant

 M_1/M_{∞} = the fractional drug release

= the release time

and . n = the scaling exponent that can be related to the drug transport mechanism.

For a thin hydrogel film, when n = 0.5, the drug release mechanism is observed by the Fickian diffusion:

$$\frac{M_{t}}{M_{\infty}} = k_{H} t^{1/2}$$
(L.2)

where

 $M_{\rm t}/M_{\infty}$ = the fractional drug release k_H = a kinetic constant

and

 k_H = a kinetic constan t = the release time.

The diffusion coefficients of sulfosalicylic acid from the PPy/PAA blend films are calculated from the slopes of plots of drug accumulation *vs.* square root of time according to Higuchi's equation (A-sasutjarit *et al.*, 2005):

$$Q = 2C_0 (Dt / \pi)^{1/2}$$
(L.3)

where Q = the amount of material flowing through a unit cross-section of barrier in unit time

 C_0 = the initial drug concentration in the hydrogel

D = the diffusion coefficient of a drug.

and

The diffusion coefficients of each system are calculated from the slopes of the plot of the amounts of sulfosalicylic acid released from sulfosalicylic acid-loaded polypyrrole/poly(acrylic acid) blend film at time t vs. $t^{1/2}$ at various crosslinking ratios with the electric field 1 V during 48 hours using the Higuchi's equation (see figure L2).

Figure L2 Amounts of sulfosalicylic acid release from sulfosalicylic acid-loaded polypyrrole/poly(acrylic acid) blend films vs. $t^{1/2}$ at various crosslink ratios, E = 1 V, pH 5.5, 37 ^oC, n = # samples = 2.

Figure L3 shows the amounts of sulfosalicylic acid released from sulfosalicylic acid- loaded poly(acrylic acid) and polypyrrole/poly(acrylic acid) blend film at time t vs. $t^{1/2}$ at crosslinking ratios 9.09 x 10⁻³ with the electric field 1 V during 48 hours.

Figure L3 The amounts of sulfosalicylic acid released from sulfosalicylic acid-loaded poly(acrylic acid) and polypyrrole/poly(acrylic acid) blend film at time t vs. $t^{1/2}$ at crosslinking ratios 9.09 x 10⁻³ with the electric field 1 V during 48 hours.

The diffusion coefficients were calculated from the slopes of these plots using the Higuchi's equation (see figure L2). Figure L4 shows the diffusion coefficients of sulfosalicylic acid from polypyrrole/poly(acrylic acid) blend films of first and second initial period vs. crosslinking ratios and mesh size at electric field strength 1 V at 37 0 C.

Figure L4 Diffusion coefficient of sulfosalicylic acid from polypyrrole/poly(acrylic acid) blend films vs. crosslinking ratios and Mesh size at electric field strength 1 V, pH 5.5, 37 0 C, n = # samples = 2.

Figure L5 (a) and (b) show the diffusion coefficients of sulfosalicylic acid from poly(acrylic acid) hydrogel and polypyrrole/poly(acrylic acid) blend films vs. crosslinking ratios and mesh size at electric field strength of 0 and 1 V at 37 0 C, respectively.

(a)

Figure L5 Diffusion coefficient of sulfosalicylic acid from poly(acrylic acid) hydrogels and polypyrrole/poly(acrylic acid) blend films vs. (a) crosslinking ratios and (b) mesh size (Å), at electric field strength of 0 and 1 V, pH 5.5, 37 0 C, n = # samples = 2.

Table L10 Raw data of the determination of the diffusion coefficient of sulfosalicylic acid released from various crosslinked PPy/PAAblend films, pH 5.5, at 37 0 C, E = 1 V

	Crosslinking	Slope of fi	rst initial	Slope of see	cond initial	Diffusio	n Coefficient	t of first initi	al(cm ² /s)	Diffusion	Coefficient	of second init	tial(cm ² /s)
Sample	ratio, X	1	2	1	2	1	2	Average	SD	1	2	Average	SD
PAA_0+Ppy+E	0.00	5.853	6.176	0.841	0.963	6.91E-07	7.69E-07	7.30E-07	5.53E-08	1.42E-08	1.87E-08	1.65E-08	3.14E-09
PAA_0.25+Ppy+E	1.82E-03	3.798	3.850	1.000	1.105	2.91E-07	2.99E-07	2.95E-07	5.75E-09	2.02E-08	2.46E-08	2.24E-08	3.16E-09
PAA_0.5+Ppy+E	3.64E-03	3.702	3.763	0.803	0.780	2.76E-07	2.85E-07	2.81E-07	6.44E-09	1.30E-08	1.23E-08	1.26E-08	5.14E-10
PAA_0.75+Ppy+E	5.45E-03	2.604	3.195	0.653	0.863	1.37E-07	2.06E-07	1.71E-07	4.88E-08	8.60E-09	1.50E-08	1.18E-08	4.54E-09
PAA_1Ppy+E	7.27E-03	2.090	2.009	0.783	0.730	8.81E-08	8.13E-08	8.47E-08	4.75E-09	1.24E-08	1.07E-08	1.15E-08	1.16E-09
PAA_1.25+Ppy+E	9.09E-03	2.072	1.651	0.631	0.617	8.66E-08	5.50E-08	7.08E-08	2.23E-08	8.02E-09	7.67E-09	7.84E-09	2.53E-10
PAA_1.5Ppy+E	1.09E-02	1.181	1.194	-	-	2.81E-08	2.88E-08	2.84E-08	4.64E-10	-	-	-	-
PAA_2+Ppy+E	1.45E-02	1.124	1.222	-	-	2.55E-08	3.01E-08	2.78E-08	3.28E-09	-	-	-	-
PAA_2.5+Ppy+E	1.82E-02	1.005	0.971	-	-	2.03E-08	1.90E-08	1.97E-08	9.38E-10	-	-	-	-

Table L11 Raw data of the determination of the diffusion coefficient of sulfosalicylic acid released from various crosslinked poly(acrylic acid) hydrogels and polypyrrole/poly(acrylic acid) blend films, pH 5.5, at 37^{0} C, E = 0 and 1 V.

	Crosslinking	Electric	Current	Slope		Diff	usion $nt (cm^2/s)$
	Crossinking	strength	Current			Coefficie	nt (cm /s)
Sample	ratio, X	(V)	(µA)	1	2	Average	SD
PAA 0	0	0		0.841	1.141	2.02E-08	8.48E-09
PAA 0.25	1.82E-03	0		0.864	0.823	1.44E-08	9.86E-10
PAA 0.5	3.64E-03	0	-	0.776	0.892	1.41E-08	2.76E-09
PAA 0.75	5.45E-03	0	-	0.786	0.793	1.26E-08	1.49E-10
PAA 1	7.27E-03	0	-	0.93	0.58	1.21E-08	7.52E-09
PAA 1.25	9.09E-03	0	-	0.702	0.769	1.09E-08	1.42E-09
PAA 1.5	1.09E-02	0	-	0.696	0.713	1.00E-08	3.55E-10
PAA 2	1.45E-02	0	-	0.657	0.64	8.47E-09	3.18E-10
PAA 2.5	1.82E-02	0	-	0.329	0.4	2.70E-09	7.38E-10
PAA_0+E	* 0	1	I	1.584	1.541	4.92E-08	1.94E-09
PAA 0.25+E	1.82E-03	1	2	1.069	1.130	2.44E-08	1.89E-09
PAA_0.5+E	3.64E-03	1	2	1.059	0.849	1.86E-08	5.71E-09
PAA 0.75+E	5.45E-03	1	2.5	0.824	0.939	1.57E-08	2.88E-09
PAA 1+E	7.27E-03	1	3.5	0.819	0.913	1.51E-08	2.32E-09
PAA_1.25+E	9.09E-03	1	2.5	0.810	0.802	1.31E-08	1.98E-10
PAA 1.5+E	1.09E-02	1	1	0.762	0.745	1.14E-08	3.65E-10
PAA_2+E	1.45E-02	1	3	0.784	0.749	1.18E-08	7.69E-10
PAA_2.5+E	1.82E-02	1	3.5	0.483	0.518	5.06E-09	5.07E-10
PAA_0+Ppy+E	0	1	3.5	5.853	6.176	7.30E-07	5.53E-08
PAA_0.25+Ppy+E	1.82E-03	1	3.5	3.798	3.85	2.95E-07	5.75E-09
PAA_0.5+Ppy+E	3.64E-03	1	2.5	3.702	3.763	2.81E-07	6.44E-09
PAA_0.75+Ppy+E	5.45E-03	1	2.5	2.604	3.195	1.71E-07	4.88E-08
PAA_1Ppy+E	7.27E-03	1	3.5	2.09	2.009	8.47E-08	4.75E-09
PAA 1.25+Ppy+E	9.09E-03	1	2.5	2.072	1.651	7.08E-08	2.23E-08
PAA 1.5Ppy+E	1.09E-02	1	1	1.181	1.194	2.84E-08	4.64E-10
PAA_2+Ppy+E	1.45E-02	1	1	1.124	1.222	2.78E-08	3.28E-09
PAA 2.5+Ppy+E	1.82E-02	1	1	1.005	0.971	1.97E-08	9.38E-10

Figure L6 (a) and (b) show the log-log plot between the diffusion coefficients of SSA from PAA hydrogels and PPy/PAA blend films of first and second initial period vs. drug size/mesh size of hydrogel at electric field strengths of 0 and 1 V at 37 0 C, respectively.

From these results, the scaling exponents' m was determined from the following equation:

$$D = D_0 \left(a \,/\, \xi \right)^{-m} \tag{4}$$

where D = the diffusion coefficient of a drug $D_0 =$ the initial diffusion coefficient a = the size of drug $\xi =$ the mesh size of hydrogel and m = the scaling exponent.

The scaling exponent *m* value for the SSA to diffuse through the PAA hydrogel under electric field strength of 0 and 1 V and the SSA to diffuse through the PPy/PAA blend film under electric field strength of 1 V are 0.48, 0.49 and 3.61, respectively. D_0 values are 2.33 x 10⁻⁹, 2.09 x 10⁻⁹ and 2.97 x 10⁻¹³ cm²/s, respectively.

.

(a)

Figure L6 The log-log plot between the diffusion coefficients of SSA from PAA hydrogels and PPy/PAA blend films of (a) first and (b) second initial period vs. drug size/mesh size of hydrogel at electric field strengths of 0 and 1 V at 37 0 C, n = # samples = 2.

From a plot of $\ln(M_t/M_{\infty})$ versus $\ln(t)$, the scaling exponents n were determined from equation L1 as shown in table L12. The n value of uncrosslinked PAA hydrogel without electric field is near the Fickian exponent value of n = 0.5. Thus, sulfosalicylic acid release is controlled by Fickian diffusion mechanism and the change in their structure had effect on the mechanism of release.

	Crosslinking	Electric field	Current	Diffusional	Kinetic constant	
Sample	ratio, X	strength (V)	(μA)	exponent (n)	(K)(hr ⁻ⁿ)	r ²
PAA 0	0.00	0		0.352	0.311	0.989
PAA 0.25	1.82E-03	0	-	0.539	0.150	0.984
PAA 0.5	3.64E-03	0	-	0.644	0.109	0.966
PAA 0.75	5.45E-03	0	-	0.609	0.117	0.962
PAA 1	7.27E-03	0	-	0.408	0.218	0.991
PAA_1.25	9.09E-03	0	-	0.495	0.170	0.957
PAA 1.5	1.09E-02	0	-	0.568	0.137	0.943
PAA_2	1.45E-02	0	-	0.438	0.159	0.969
PAA_2.5	1.82E-02	0	-	0.662	0.045	0.982
PAA_0+E	0.00	1	1.00	0.505	0.226	0.969
PAA 0.25+E	1.82E-03	1	2.00	0.613	0.140	0.987
PAA 0.5+E	3.64E-03		· 2.00	0.775	0.076	0.967
PAA_0.75+E	5.45E-03	1	2.50	0.369	0.240	0.978
PAA_1+E	7.27E-03	1	3.50	0.543	0.145	0.970
PAA 1.25+E	9.09E-03	1	2.50	0.708	0.088	0.961
PAA 1.5+E	1.09E-02	1	1.00	0.477	0.154	0.971
PAA 2+E	1.45E-02	1	3.00	0.598	0.118	0.960
PAA_2.5+E	1.82E-02	1	3.50	0.557	0.089	0.937
PAA_0+Ppy+E	0.00	1	3.50	0.412	0.316	0.804
PAA_0.25+Ppy+E	1.82E-03	1	3.50	0.393	0.320	0.952
PAA_0.5+Ppy+E	3.64E-03	1	2.50	0.308	0.355	0.901
PAA_0.75+Ppy+E	5.45E-03	1	2.50	0.615	0.134	0.925
PAA_1Ppy+E	7.27E-03	1	3.50	0.644	0.124	0.928
PAA_1.25+Ppy+E	9.09E-03	1	2.50	0.511	0.178	0.948
PAA_1.5Ppy+E	1.09E-02	1	1.00	0.383	0.244	0.986
PAA_2+Ppy+E	1.45E-02	1	1.00	0.710	0.099	0.917
PAA_2.5+Ppy+E	1.82E-02	1	1.00	0.801	0.064	0.855

Table L12 Release kinetic parameters and linear regression values obtained from

 fitting drug release experimental data to the Ritger-Peppas model

Appendix M The Thermogravimetric Thermogram of Polypyrrole, doped Polypyrrole, Sulfosalicylic, Poly(acrylic acid) Hydrogel, Sulfosalicylic Acid-Loaded Poly(acrylic acid) Hydrogels and Polypyrrole/Poly(acrylic acid) Blend Films

The thermogravimetric analyzer (DuPont, model TGA 2950) was used to determine the thermal behavior of polymers. The experiment was carried out by weighting powder sample of 7-13 mg and placed it in a platinum pan, and then heated it under nitrogen flow with the heating rate 10 °C/min from room temperature to 600 °C.

There are three transitions for undoped and doped polypyrrole. The first transition (45-65°C) refers to the losses of organic solvent and water. The second transition (100-130°C) refers to the PPy side chain degradation, and the third transition (215-235°C) refers to the PPy backbone degradation. The TGA results of PPy and doped PPy showed that doped PPy has higher thermal stability, because after doping the degradation temperature of sulfuric acid doped PPy is higher than that of undoped PPy.

For pure PAA, pure SSA, drug-load PAA hydrogel and drug-load PPy/PAA blend film, there are three transitions. The first transition is occurred in the temperature range of about 50-90 °C corresponding to the evaporation of water, while the second transitions cover the temperature range of 150-290 °C was due to the decomposition of sulfonic functional groups of SSA, and the dehydration and decarboxylation of PAA which lead to the formation of inter- and intra-molecular anhydride (Tanodekaew S. et al., 2004). The third decomposition stage in range of 240-370 °C has been described to the degradation of residual polymer. The TGA results demonstrated that new structure were from in drug-load PAA hydrogel and doped PPy.

Figure M1 TGA thermogram of PPy and doped PPy at various doping level.

Figure M2 The TGA thermograms of pure PAA hydrogel, drug-loaded PAA hydrogel, drug-loaded PPy/PAA blend film, pure model drug, PPy and drug-loaded PPy.

 Table M1 The summary of the degradation temperature, percent weight loss and

 percent resdidue in the TGA thermogram of PPy and doped PPy at various doping

 level

Sample	T _d (°C)	% Weigth loss	% Residue	
Рру	50.71	5.73		
	101.47 7.34		65.94	
	219.87	21.02		
Ppy+0.075SSA	45.92	3.92		
	121.45	4.85	28.42	
	216.57	59.2		
Ppy+0.015SSA	64.22	16.67		
	127.75	5.71	33.53	
	235.93	50.33		
Ppy+0.225SSA	55.73	4.61		
	118.86	6.60	31.67	
	238.61	52.61		
Ppy+0.3SSA	55.18	4.88	··· ·	
	124.72	3.89	35.97	
	235.00	50.72		

Table M2 The summary of the degradation temperature, percent weight loss and percent resdidue in the TGA thermogram of SSA, PAA, drug-load PAA hydrogel, drug-load PPy/PAA blend films, PPy and doped PPy at various doping level

Sample	T _d (°C)	% Weigth loss	% Residue	
PAA	52.10	8.33		
	269.22	23.30	12.85	
	367.87	48.90		
PPy	30.81	6.62		
	134.66	6.69	33.56	
	256.36	19.90		
SSA	80.52	9.17		
	150.11	4.85	6.16	
	241.31	27.44		
PAA+SSA	64.22	13.53		
	127.75	20.44	11.17	
	235.93	47.10		
PPy+SSA	32.04	4.43		
	146.41	8.41	34.77	
	274.92	25.28		
PAA+Ppy	73.41	11.04		
	265.27	24.00	11.32	
	365.86	40.19		

area 🧯

Appendix N DSC Thermograms of Polypyrrole, doped Polypyrrole, Sulfosalicylic, Poly(acrylic acid) Hydrogel, Sulfosalicylic Acid-Loaded Poly(acrylic acid) Hydrogels and Polypyrrole/Poly(acrylic acid) Blend Films

The thermal behavior of the PAA hydrogel, PPy powder, the drug, drugloaded PAA hydrogel and the drug-loaded PPy/PAA blend film were determined by a differential scanning calorimeter (DSC; Mettler Toledo 822e/400). The DSC thermogram (equilibrated with an indium standard; each sample weighed 3–5 mg) was obtained during heating from 25 to 350 °C at a heating rate of 10 °C/min under nitrogen purge (60 ml/min).

Figure N1 shows DSC thermograms for pure PAA, pure PPy, the drug, dopped PPy,drug-loaded PAA hydrogel and the drug-loaded PPy/PAA blend film. Endothermic ransitions at 151.5, 138.3, 156.0, 142.1 and 153.2 $^{\circ}$ C can be related to the evaporation of the water trapped inside the polymer or bonded to the polymer backbone for pure PAA, pure PPy, dopped PPy, drug-loaded PAA hydrogel and the drug-loaded PPy/PAA blend film, respectively (Nateghi and Borhani, 2008). The DSC thermogram for pure PAA and drug exhibit a melting temperature at 312.1 and 165.5 $^{\circ}$ C, respectively. For pure PPy exhibited a board transition around 286.3 $^{\circ}$ C. The melting temperatures (T_m) of dopped PPy, drug-loaded PAA hydrogel and the drug-loaded PPy/PAA blend film shift to about 274.3, 306.5 and 294 $^{\circ}$ C, respectively. The possible reason for the peak shift is the interaction between polymer and drug molecule since SSA had a potential to form H-bonding with the hydroxyl group of SSA and amine group PPy (Xue and Yin, 2006).

. . . .

•;

Figure N1 The DSC thermograms of (a) pure PAA hydrogel, (b) pure PPy, (c) model drug, (d) drug-loaded PPy, (e) drug-loaded PAA hydrogel and (f) drug-loaded PPy/PAA blend film.

Appendix O Determination of Particle Sizes of Doped and Undoped Polypyrrole

Table O1 Summarized the particles diameter of PPy and doped PPy with 5-sulfosalicylic acid at 1:10 ratio

.

•

...

	Particle diameter (µm)					
Samples	1	2	3	Avg.	STD	
Undoped PPy	18.83	18.25	18.63	18.57	0.29	
Doped PPy						
(PPy:SSA=1:10)	19.76	19.68	19.70	19.71	0.04	

Particle size		undoped Ppy					
diameter (µm)		1		2		3	
Size low	Size high	In %	Under %	In %	Under %	In %	Under %
0.2	0.48	0.05	0.05	0.06	0.06	0.06	0.06
0.48	0.59	0.26	0.31	0.33	0.38	0.33	0.39
0.59	0.71	0.44	0.75	0.55	0.93	0.55	0.94
0.71	0.86	0.56	1.31	0.71	1.63	0.71	1.65
0.86	1.04	0.65	1.96	0.83	2.46	0.84	2.48
1.04	1.26	0.78	2.73	0.98	3.44	0.98	3.47
1.26	1.52	0.99	3.73	1.22	4.66	1.22	4.69
1.52	1.84	1.36	5.09	1.61	6.27	1.62	6.31
1.84	2.23	1.90	6.99	2.17	8.44	2.17	8.47
2.23	2.70	2.51	9.50	2.77	11.21	2.75	11.23
2.7	3.27	3.08	12.58	3.28	14.48	3.25	14.48
3.27	3.95	3.63	16.21	3.74	18.22	3.69	18.17
3.95	4.79	4.12	20.34	4.11	22.33	4.05	22.23
4.79	5.79 ·	4.52	24.86	4.40	26.72	4.33	26.55
5.79	7.01	4.83	29.70	4.62	31.35	3.56	31.11
7.01	8.48 .	5.10	34.80	4.85	36.20	4.79	35.90
8.48	10.27 ·	5.46	40.26	5.23	41.43	5.19	41.09
10.27	12.43 ·	5.96	46.22	5.79	47.22	5.76	46.85
12.43	15.05 .	6.56	52.78	6.49	53.71	6.45	53.30
15.05	18.21	7.13	59.91	7.16	60.87	7.09	60.39
18.21	22.04 .	7.51	67.41	7.58	68.45	7.49	67.87
22.04	26.68	7.53	74.94	7.57	76.01	7.46	75.33
26.68	32.29	7.08	82.02	7.00	83.01	6.95	82.27
32.29	39.08	6.11	88.13	5.91	88.92	5.95	88.23
39.08	47.30	4.76	92.88	4.50	93.42	4.64	92.86
47.3	57.25	3.32	96.21	3.09	96.51	3.26	96.12
57.25	69.30	2.08	98.29	1.92	98.43	2.06	98.18
69.3	83.87	1.14	99.43	1.07	99.50	1.17	99.35
83.87	101.52	0.50	99.42	0.47	99.97	0.54	99.89
101.52	122.87	0.08	100.00	0.03	100.00	0.11	100.00
122.87	148.72	0.00	100.00	0.00	100.00	0.00	100.00
148.72	180.00	0.00	100.00	0.00	100.00	0.00	100.00

Table O2 The raw data from particle size analysis of undoped PPy

2

1.1

•

Particle size		doped Ppy (PPy:SSA=1:10)					
diame	ter (µm)	1		2		3	
Size low	Size high	In %	Under %	In %	Under %	In %	Under %
0.2	0.48	0.00	0.00	0.00	0.00	0.00	0.00
0.48	0.59	0.00	0.00	0.00	0.00	0.00	0.00
0.59	0.71	0.00	0.00	0.00	0.00	0.00	0.00
0.71	0.86	0.00	0.00	0.00	0.00	0.00	0.00
0.86	1.04	0.21	0.21	0.34	0.34	0.38	0.38
1.04	1.26	0.54	0.75	0.64	0.98	0.67	1.05
1.26	1.52	0.72	1.47	0.81	1.79	0.83	1.88
1.52	1.84	0.86	2.33	0.96	2.75	0.96	2.84
1.84	2.23	1.16	3.50	1.28	4.03	1.29	4.13
2.23	2.70	1.64	5.14	1.76	5.79	1.78	5.91
2.7	3.27	2.05	7.18	2.16	7.95	2.17	8.08
3.27	3.95	2.68	9.86	2.76	10.71	2.77	10.85
3.95	4.79	3.27.	13.13	3.31	14.02	3.32	14.17
4.79	5.79	3.92	17.05	3.91	17.93	3.92	18.09
5.79	7.01	4.55.	21.60	4.50	22.44	4.50	22.59
7.01 ·	8.48	5.23 .	26.83	5.15	27.59	5.14	27.73
8.48	10.27	6.06 .	32.89	5.98	33.57	5.96	33.70
10.27	12.43	7.07	39.96	7.00	40.58	6.99	40.69
12.43	15.05	8.15	48.11	8.09	48.67	8.09	48.77
15.05	18.21	9.03	57.15	8.96	57.62	8.97	57.74
18.21	22:04	9.38	66.53	9.27	66.89	9.30	67.04
22.04	26.68	8.94	75.46	8.79	75.69	8.81	75.85
26.68	32.29	7.74	83.20	7.59	83.27	7.57	83.41
32.29	39.08	6.08	89.28	5.95	89.23	5.89	89.31
39.08	47.30	4.36	93.64	4.28	93.50	4.21	93.52
47.3	57.25	2.84	96.48	2.80	96.30	2.74	96.26
57.25	69.30	1.72	98.21	1.74	98.05	1.70	97.96
69.3	83.87	0.98	99.18	1.04	99.09	1.02	98.98
83.87	101.52	0.50	99.68	0.57	99.66	0.57	99.55
101.52	122.87	0.23	99.91	0.27	99.93	0.30	99.85
122.87	148.72	0.09	100.00	0.07	100.00	0.15	100.00
148.72	180.00	0.00	100.00	0.00	100.00	0.00	100.00

 Table O3 The raw data from particle size analysis of doped PPy with 5-sulfosalicylic

 acid at 1:10 ratio

CURRICULUM VITAE

Name:Ms. Phithupha ChansaiDate of Birth:September 27, 1983Nationality:Thai

University Education:

2002-2005 Bachelor Degree of Science in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla, Thailand

Presentation:

- Chansai P., Sirivat A., Chotpattananont D., and Viravaidya K., (2008 April) Controlled Transdermal iontophoresis of Sulfosalicylic Acid from Polypyrrole/Poly(acrylic acid) Hydrogel. Poster Presentation at <u>The 14th PPC</u> <u>Symposium on Petroleum, Petrochemicals, and Polymers, Bangkok, Thailand.</u>
- 2. Chansai P., Sirivat A., Chotpattananont D., and Viravaidya K., (2008 April) Controlled Transdermal iontophoresis of Sulfosalicylic Acid from Polypyrrole/Poly(acrylic acid) Hydrogel. Poster Presentation at <u>Smart</u> <u>materials Smart/Intelligent Materials and Nanotechnology international</u> <u>Conference</u>, Chiang Mai, Thailand.

