# ELECTROSPUN POLY (1,4-BUTYLENE SUCCINATE) EXTENDED WITH 1,6-DIISOCYANATOHEXANE FIBER MATS AND THEIR POTENTIAL USE AS BONE SCAFFOLDS



Sasipim Sutthiphong

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2008

512029

| Thesis Title:   | Electrospun Poly (1,4-butylene succinate) extended with 1,6-  |
|-----------------|---------------------------------------------------------------|
|                 | diisocyanatohexane Fiber mats and their Potential Use as Bone |
|                 | Scaffolds                                                     |
| By:             | Sasipim Sutthiphong                                           |
| Program:        | Polymer Science                                               |
| Thesis Advisor: | Assoc. Prof. Pitt Supaphol                                    |

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Nantayor Innumet College Director

٠,

(Assoc. Prof. Nantaya Yanumet)

**Thesis Committee:** 

(Assoc. Prof. Pitt Supaphol)

Freet Prot

(Assoc. Prof. Prasit Pavasant)

p. Pur

(Dr. Damrong Damrongsri)

C. Mi-

(Asst. Prof. Chidchanok Meechaisue)

#### ABSTRACT

4972029063: Polymer Science Program
Sasipim Sutthiphong: Electrospun Poly(1,4-butylene succinate)
extended with 1,6-diisocyanatohexane Fiber mats and their Potential
Use as Bone Scaffolds.
Thesis Advisor: Assoc. Prof. Pitt Supaphol 60 pp.
Keywords: Electrospinning/ Poly(butylene succinate)/ Scaffold/ Osteoblast

....

Ultrafine Poly(butylene succinate) extended with 1,6-diisocyanatohexane (PBSu-DCH) fibers were successfully fabricated by electrospinning from 22% PBSu-DCH dissolved in 90:10 dichloromethane / trifluoroacetic acid co-solvent system. The effects of processing parameters including, solution concentration, applied electric field, and collecting distance on morphological appearance and size of as-spun fibers were evaluated. Indirect cytotoxicity evaluation of the electrospun fiber mats of PBS based on human osteoblasts (SaOS-2) and mouse fibroblasts (L929) revealed that the as-spun mats did not release substances detrimental to the cells. The potential use of the as-spun PBS fiber mats as bone scaffolding materials was evaluated in vitro with human osteoblasts (SaOS-2) in terms of biocompatibility, cell attachment, cell proliferation, and alkaline phosphatase (ALP) activity of the cells that were cultured directly on the scaffolds. The results were compared with those on solvent-cast film scaffolds and tissue-culture polystyrene plate (TCPS). It was found that the as-spun PBSu-DCH scaffolds promoted much better adhesion and proliferation of the cells than the solvent-cast film scaffolds and TCPS. Scanning electron microscopy (SEM) images confirm that the phenotype of SaOS-2 was maintained during the cell culture. Interestingly, the cells that were cultured on the fibrous scaffolds exhibited the expanded shape with discrete branches on their surface after only about 1 hr in culture, while those cultured on the film scaffolds and glass substrate were still round. This evidence implies the possibility of using the as-spun PBSu-DCH fiber mats as bone scaffolds.

ศศิพิมพ์ สุทธิพงษ์ : เส้นใยพอลิบิวทีลีนซัคซิเนตจากกระบวนการปั่นเส้นใยด้วยไฟฟ้า สถิตและการประยุกต์เพื่อใช้เป็นวัสดุโครงร่างสำหรับกระดูก (Electrospun Poly(1,4-butylene succinate)extended with 1,6-diisocyanatohexane Fiber mats and their Potential Use as Bone Scaffolds) อ. ที่ปรึกษา: รศ. ดร. พิชญ์ ศุภผล 60 หน้า

แผ่นเส้นใยพอลิบิวทีลีนซัคซิเนตสามารถเตรียมได้จากกระบวนการปั่นเส้นใยค้วยไฟฟ้า สถิต โดยใช้พอลิบิวทีลีนซัคซิเนตความเข้มข้น 22 เปอร์เซ็นต์โดยน้ำหนัก ละลายในสารละลาย ผสมระหว่างไคคลอโรมีเทนและไตรฟลูออโรอะซิติกแอซิก ในอัตราส่วน 90:10 โดยงานวิจัยจะ ทำการศึกษาถึงผลของตัวแปรต่างๆที่มีอิทธิพลต่อสัณฐานวิทยาและขนาดของเส้นใย ผลจากการ ทคสอบความเป็นพิษแบบอ้อมต่อเซลล์ออสที่โอบลาสจากกระดูกของมนุษย์ (SaOS-2) และเซลล์ พบว่าแผ่นเส้นใยพอลิบิวที่ลืนซักซิเนตไม่มีการ ไฟโบรบลาสจากผิวหนังของหนู (L929) ปลดปล่อยสารพิษที่เป็นอันตรายต่อเซลล์ นอกจากนี้งานวิจัยได้ศึกษาถึงคุณสมบัติในการใช้เป็น ้วัสดุโครงร่างสำหรับกระดูกในสภาวะนอกร่างกายด้วยเซลล์ออสที่โอบลาสจากกระดูกของมนุษย์ (SaOS2) โดยได้ทำการศึกษาการยึดเกาะ การเจริญเติบโต และอัลคาไลน์ฟอสฟาเตสแอคติวิตีของ เซลล์ที่เพาะเลี้ยงบนแผ่นเส้นใย เปรียบเทียบกับแผ่นฟิล์มจากการหล่อและจานเพาะเลี้ยงเซลล์พอ ถิสไตรีน (TCPS) พบว่าเซลล์ยึดเกาะและเจริญเติบโตบนแผ่นเส้นใยได้ดีกว่าบนแผ่นฟิล์มและ ้งานเพาะเลี้ยงเซลล์พอลิสไตรีน ส่วนในกรณีของอัลกาไลน์ฟอสฟาเตสแอกติวิตี พบว่าเซลล์ที่ เพาะเลี้ยงบนแผ่นเส้นใยอิเล็คโทรสปัน ให้ค่าอัลคาไลน์ฟอสฟาเตสแอคติวิตีมากกว่าเซลล์ที่ เพาะเลี้ยงบนแผ่นฟิล์มแต่น้อยกว่าเซลล์ที่เพาะเลี้ยงบนจานเพาะเลี้ยงเซลล์พอลิสไตรีน รูปจาก กล้องจุลทรรศน์แบบส่องกราคบ่งชี้ว่าเซลล์ออสที่โอบลาสจากกระดูกของมนุษย์ (SaOS-2) ยังคง รูปร่างและลักษณะของเซลล์ตลอดการเพาะเลี้ยง อีกทั้งยังพบว่าเพียง 1 ชั่วโมงของการเพาะเลี้ยง ้ตัวเซลล์บนแผ่นเส้นใยมีการยืดขยายออก ในขณะที่ตัวเซลล์บนแผ่นฟิล์มและจานเพาะเลี้ยงเซลล์ พอลิส ใตรีนยังคงมีรูปร่างกลมนูน ซึ่งแสคงให้เห็นถึงความเป็นไปได้ในการนำแผ่นเส้นใยอิเล็กโท รสปันของพอลิบิวทีลีนซัคซิเนตมาใช้เป็นวัสคุโครงร่างสำหรับกระดูกต่อไป

#### **ACKNOWLEDGEMENTS**

The author would like to express her sincere gratefulness to her advisor, Assoc. Prof. Pitt Supaphol, for his guidance, useful advices, kind and constructive criticism, inspiration and great encouragement throughout this thesis.

The author would like to give her thankfulness to Assoc. Prof. Prasit Pavasant, Asst. Prof. Chidchanok Meechaisue, and Dr. Damrong Damrongsri for being as her thesis committees and giving her the useful comments and suggestions. Highly gratitude goes to Assoc. Prof. Prasit Pavasant for his kindness in giving her valuable theoretical and technical knowledge in cell culture and providing her the instruments and the convenient laboratory room.

This thesis work is partially funded by the National Excellence center. The author would like to thank the Petroleum and Petrochemical College (PPC), Chulalongkorn University where the author have gained the precious knowledge in the Polymer Science program and the author greatly appreciates all faculty and staff members who have tendered knowledge and favourableness for her. The author also appreciates for the support and suggestions from all of her friends at the PPC and at Department of Anatomy, Faculty of Dentistry, Chulalongkorn University.

Last and most of all, the author would like to express her deep grateful to her parents, and brother for their love, understanding, caring and supporting her at all times.

. .

#### TABLE OF CONTENTS

|                       | PAGE |
|-----------------------|------|
| Title Page            | i    |
| Abstract (in English) | iii  |
| Abstract (in Thai)    | iv   |
| Acknowledgements      | v    |
| Table of Contents     | vi   |
| List of Tables        | viii |
| List of Figures       | ix   |

•

| CHAPTER |                                                              |    |                |
|---------|--------------------------------------------------------------|----|----------------|
| Ι       | INTRODUCTION                                                 | 1  | 1              |
| II      | LITERATURE REVIEW                                            | 4  | • <sup>.</sup> |
| III     | EXPERIMENTAL                                                 | 13 | •              |
|         | 3.1 Electrospinning of PBSu-DCH Fiber Mats                   |    |                |
|         | 3.1.1 Materials and Preparation and Characterization of      |    |                |
|         | Spinning Solutions                                           | 13 |                |
|         | 3.1.2 Electrospinning and Characterization of as-spun        |    |                |
|         | Fiber Mats                                                   | 13 |                |
|         | 3.2 Cell Culture Studies                                     | 16 |                |
|         | 3.2.1 Cell Culture and Cell Seeding                          | 16 |                |
|         | 3.2.2 Indirect Cytotoxicity Evaluation                       | 16 |                |
|         | 3.2.3 Cell Attachment and Proliferation                      | 17 |                |
|         | 3.2.4 Quantification of viable cells (MTT assay)             | 17 |                |
|         | 3.2.5 Morphological Observation of Cultured Cells            | 18 |                |
|         | 3.2.6 Production of Characteristic Protein of Cultured Cells | 18 |                |

PAGE

|    | 3.3 Statistic A | Analysis                                                        | 19 |
|----|-----------------|-----------------------------------------------------------------|----|
| IV | RESULTS A       | ND DISCUSSION                                                   | 20 |
|    | 4.1 Preparation | 4.1 Preparation and Characterization of as-spun PBSu-DCH fibers |    |
|    | 4.1.1 Effe      | ect of polymer concentration on the morphology                  |    |
|    | of a            | as-spun fibers                                                  | 20 |
|    | 4.1.2 Eff       | ect of collection distance and applied electrical               |    |
|    | pot             | ential on the morphology of as-spun fibers                      | 21 |
|    | 4.2 Mechanic    | al and Physical Characteristics of the as-spun                  |    |
|    | PBSu-DC         | H fibers                                                        | 23 |
|    | 4.3 Thermal C   | Characteristics of the as-spun PBSu-DCH fibers                  | 25 |
|    | 4.4 Cell Study  |                                                                 | 27 |
|    | 4.4.1 Indi      | rect Cytotoxicity Evaluation                                    | 27 |
|    | 4.4.2 Cell      | Attachment and Proliferation                                    | 28 |
|    | 4.4.3 Alk       | aline phosphatase (ALP) activity                                | 31 |
| V  | CONCLUSIC       | DNS                                                             | 36 |
|    | REFERENCE       | ES                                                              | 38 |
|    | APPENDICE       | S                                                               | 44 |
|    | Appendix A      | Polymer Solution Properties                                     | 44 |
|    | Appendix B      | Average Fiber Diameter of Electrospun                           |    |
|    | ]               | PBSu-DCH Fibers                                                 | 45 |
|    | Appendix C      | Mechanical and Physical Characteristics                         | 46 |
|    | Appendix D      | Thermal Characteristics                                         | 51 |
|    | Appendix E      | Cell Studies                                                    | 54 |
|    |                 |                                                                 |    |

## **CURRICULUM VITAE**

60

### LIST OF TABLES

| TABLE |                                                                   | PAGE |
|-------|-------------------------------------------------------------------|------|
| 4.1   | SEM images of the as-spun PBSu-DCH fibers from 22% w/v            |      |
|       | PBSu-DCH in dichloromethane/trifluoroacetic acid (90/10)          |      |
|       | at various applied electrical potential (kV) and collection       |      |
|       | distance (cm)                                                     | 23   |
| 4.2   | Mechanical characteristic of the as-spun PBSu-DCH fiber           |      |
|       | mats of about 120 $\mu$ m thick as well as those of solution-cast |      |
|       | films of PBSu-DCH                                                 | 24   |
| 4.3   | Thermal characteristics of the electrospun fiber mats and         |      |
|       | solution-cast film of PBSu-DCH as well as those of the as-        |      |
|       | received pellets of PBSu-DCH                                      | 26   |
| 4.4   | Selected SEM images of SaOS-2 cultured on fibrous                 |      |
|       | scaffolds of PBSu-DCH as a function of time in culture            | 32   |
| 4.5   | Selected SEM images of SaOS-2 cultured on film scaffolds          |      |
|       | of PBSu-DCH as a function of time in culture                      | 33   |
| 4.6   | Selected SEM images of SaOS-2 cultured on glass substrates        |      |
|       | as a function of time in culture                                  | 34   |

#### LIST OF FIGURES

| FIGU | FIGURE                                                                    |    |
|------|---------------------------------------------------------------------------|----|
| 2.1  | A schematic drawing of the electrospinning apparatus                      | 4  |
| 2.2  | Electrospinning jet in electrospinning process                            | 5  |
| 3.1  | The electrospinning apparatus utilized in the production of               |    |
|      | ultrafine fibers                                                          | 14 |
| 4.1  | Selected SEM images (scale bar = $1 \mu m$ and magnification =            |    |
|      | 2000x) illustrating the effect of solution concentration on               |    |
|      | morphology of PBSu-DCH fibers that were electrospun from                  |    |
|      | PBSu-DCH solutions in dichloromethane/trifluoroacetic acid                |    |
|      | (90/10) at various concentrations.                                        | 21 |
| 4.2  | Selected SEM images of PBSu-DCH fibers electrospun from                   |    |
|      | 22% PBSu-DCH solution in dichloromethane/trifluoroacetic                  |    |
|      | acid (90/10) at the applied electrical potential of $17 \text{ kV}$ and a |    |
|      | collection distance of 20 cm                                              | 22 |
| 4.3  | Indirect cytotoxicity evaluation of film and fibrous PBSu-                |    |
|      | DCH scaffolds based on viability of human osteoblasts                     |    |
|      | (SaOS-2) and mouse fibroblasts (L929)                                     | 27 |
| 4.4  | Attachment and proliferation of SaOS-2 on TCPS, and film                  |    |
|      | and fibrous PBSu-DCH scaffolds as a function of time in                   |    |
|      | culture                                                                   | 28 |
| 4.5  | Attachment of SaOS-2 on TCPS, and film and fibrous PBSu-                  |    |
|      | DCH scaffolds as a function of time in culture                            | 29 |
| 4.6  | Proliferation of SaOS-2 on TCPS, and film and fibrous                     |    |
|      | PBSu-DCH scaffolds as a function of time in culture                       | 30 |
| 4.7  | ALP activity of SaOS-2 cultured on TCPS and film and                      |    |
|      | fibrous PBSu-DCH scaffolds after 3, 5, and 10 days in                     |    |
|      | culture                                                                   | 35 |