HYDROGEN PRODUCTION FROM THE STEAM REFORMING OF METHANE OVER NICKEL SUPPORTED ON ZSM-5 ZEOLITE CATALYSTS

Wanwanat Noisra

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole

2008

512022

Thesis Title:	Hydrogen Production from the Steam Reforming of Methane	
	over Ni Supported on ZSM-5 Zeolite Catalysts	
By:	Wanwanat Noisra	
Program:	Petrochemical Technology	
Thesis Advisors:	Asst. Prof. Apanee Luengnaruemitchai	
	Asst. Prof. Sirirat Jitkarnka	

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Narty Janumt College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

apan L

(Asst. Prof. Apanee Luengnaruemitchai)

+ Mang

(Asst. Prof. Sirirat Jitkarnka)

Fremech &___

(Assoc. Prof. Pramoch Rangsunvigit)

.....

(Assoc. Prof. Tawan Sooknoi)

ABSTRACT

4971027063: Petrochemical Technology Program Wanwanat Noisra: Hydrogen Production from the Steam Reforming of Methane over Ni Supported on ZSM-5 Zeolite Catalysts Thesis Advisors: Asst. Prof. Apanee Luengnaruemitchai and Asst. Prof. Sirirat Jitkarnka, 113 pp.
Keywords: Methane Reforming/ Nickel/ ZSM-5 Zeolite/ Ceria

The catalytic reforming of methane with steam is the most widely used process for syngas production. Nevertheless, development of the reforming catalyst is required to reduce the risks of catalytic deactivation caused by carbon deposition and/or sintering of the metal crystallites. In this research, the catalytic performance of Ni/ZSM-5 zeolite catalysts prepared by impregnation was investigated at 700°C under atmospheric pressure with various steam/carbon ratios of 0.8, 1, and 2. The effects of metal loading and CeO₂ addition were studied in terms of catalytic activity, selectivity, and carbon deposition. Both fresh and spent catalysts were characterized by using ICP, XRD, TGA, TEM, and TPO techniques, which revealed that the 11%Ni/5%Ce/ZSM-5 catalyst at a steam/carbon ratio of 0.8 showed the highest catalytic activity and carbon resistance with an initial methane conversion of 99.45%, and a hydrogen selectivity of 52.93%. It was found that the addition of a CeO₂ promoter decreased the deactivation rate of the catalyst; however, at a high loading of CeO₂, high coke formation was clearly observed by XRD, TGA, TEM, and TPO. The 11%Ni/5%Ce/ZSM-5 catalyst exhibited high catalytic stability for 12 hours time-onstream.

บทคัดย่อ

วรรณวนัช น้อยสระ : การผลิตก๊าซไฮโดรเจนด้วยปฏิกิริยาการเปลี่ยนรูปก๊าซมีเทน ด้วยไอน้ำโดยใช้ตัวเร่งปฏิกิริยาโลหะนิกเกิลบนซีเอสเอ็ม-ไฟต์ซีโอไลต์ (Hydrogen Production from the Steam Reforming of Methane over Ni Supported on ZSM-5 Zeolite Catalysts) อ. ที่ปรึกษา : ผศ. ดร. อาภาณี เหลืองนฤมิตชัย และ ผศ. ดร. ศิริรัตน์ จิตการค้า 113 หน้า

การผลิตก๊าซไฮโครเจนด้วยวิธีการเปลี่ยนรูปก๊าซมีเทนด้วยไอน้ำ เป็นวิธีการหนึ่งที่ใช้ ้กันอย่างแพร่หลาย อย่างไรก็ตามการเสื่อมสภาพของตัวเร่งปฏิกิริยาอันเนื่องมาจากการเกาะตัวของ คาร์บอนและการรวมตัวของโลหะนิกเกิลบนตัวเร่งปฏิกิริยายังคงเป็นปัญหาหลักสำหรับตัวเร่ง ปฏิกิริยาชนิดนี้ ดังนั้นการพัฒนาตัวเร่งปฏิกิริยาที่ลดปริมาณการเกิดคาร์บอนและมีการกระจายตัว ของโลหะนิกเกิลที่คีจึงถือเป็นสิ่งที่จำเป็นสำหรับการนำมาใช้ในระดับอุตสาหกรรม งานวิจัยนี้จึง ใด้ทำการศึกษาประสิทธิภาพในการเร่งปฏิกิริยาของตัวเร่งปฏิกิริยาที่เป็นโลหะนิกเกิลบนตัวรอง รับคือซีเอสเอ็ม-ไฟต์ ซีโอไลต์ (ZSM-5 Zeolite) ในสภาวะที่มีอัตราส่วนระหว่างก๊าซมีเทนและ ไอน้ำซึ่งใช้เป็นสารตั้งต้นเท่ากับ 0.8, 1 และ 2 ตามลำดับ ร่วมด้วยการศึกษาถึงผลกระทบของ ปริมาณโลหะนิกเกิลที่เติมลงไปและการนำซีเรีย (CeO2) มาใช้เป็นตัวปรับปรุงคุณภาพของดัวเร่ง ปฏิกิริยานิเกิลบนซีเอสเอ็ม-ไฟต์ ซีโอไลต์ ทั้งนี้ตัวเร่งปฏิกิริยาทั้งก่อนและหลังการทำปฏิกิริยาจะ ถูกนำมาวิเคราะห์ด้วยวิธีการต่างๆ เช่น ไอซีพี (ICP), เอ็กซ์อาร์ดี (XRD), ทีอีเอ็ม (TEM), ที่จีเอ (TGA) และ ทีพีโอ (TPO) ซึ่งจากผลการทดลองสามารถสรุปได้ว่า ตัวเร่งปฏิกิริยาโลหะนิกเกิล บนซีเอสเอ็ม-ไฟต์ ซีโอไลต์ ที่ประกอบด้วยปริมาณโลหะนิกเกิล 11% โดยน้ำหนัก และปริมาณ ซีเรีย 5% โดยน้ำหนัก ซึ่งทำปฏิกิริยา ณ สภาวะที่มีอัตราส่วนของสารตั้งต้นระหว่างก๊าซมีเทน และไอน้ำเท่ากับ 0.8 ถือเป็นตัวเร่งปฏิกิริยาที่ให้ประสิทธิภาพในการเร่งปฏิกิริยาและการด้านการ ้เกิดการ์บอนมากที่สุด โดยให้อัตราการเปลี่ยนแปลงของสารตั้งด้นไปเป็นผลิตภัณฑ์ในช่วงเริ่มด้น สูงถึง 99.45% และค่าความสามารถในการเลือกผลิตไฮโครเจนประมาณ 52.93% ถึงแม้จะพบว่า การเดิมซีเรียลงไปสามารถช่วยลดอัตราการการเสื่อมสภาพของตัวเร่งปฏิกิริยาได้ แต่หากปริมาณ ของซีเรียที่สูงเกินไปจะทำให้มีปริมาณการเกิดคาร์บอนสูงขึ้นอย่างชัดเจนตังที่ปรากฏจากผลการ ้วิเคราะห์ด้วยวิธี เอ็กซ์อาร์ดี, ทีอีเอ็ม, ที่จีเอ และ ที่พีโอ นอกจากนี้ตัวเร่งปฏิกิริยาดังกล่าวยัง สามารถนำมาใช้ทำปฏิกิริยาต่อเนื่องได้ยาวนานถึงประมาณ ชั่วโมงโดยปราศจากการ 12 เสื่อมสภาพของตัวเร่งปฏิกิริยา

ACKNOWLEDGEMENTS

This thesis work is partially funded by the Energy Policy and Planning Office, Ministry of Energy and the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University.

This work would not have been succeeded without the assistance of the following individuals and organization.

First of all, I would like to appreciatively give my sincere thanks to my advisors, Asst. Prof. Apanee Luengnaruemitchai and my lovely co-advisor, Asst. Prof. Sirirat Jitkarnka, for giving me the useful recommendations, suggestions, invaluable guidance, and constant encouragement throughout this research work.

I would like to enlarge my grateful thanks to Assoc. Prof. Pramoch Rangsunvigit and Dr. Tawan Sooknoi for serving on my committee. And also, I am grateful to all of the Professors who guided me through their course, establishing the needs in this thesis.

Unforgettably, the appreciation is forwarded to all staff of The Petroleum and Petrochemical College and my friends for their friendly assistance, good comments and discussions, cheerful smiles and encouragement, and being with me when I had to stay overnight at the college.

Finally, I would like to give the most important thank to my family who provides me their love, understanding, unlimited support, and very kindly encouragement.

TABLE OF CONTENTS

			PAGE
Titl	e Page		i
Abs	stract (in English)		iii
Abs	stract (in Thai)		iv
Ack	nowledgements		V
Tab	le of Contents		vi
List	of Tables		ix
List	of Figures		x
CHAPTI	ER		
I	INTRODUCTION		1
II	LITERATURE REVIEW		• 3
		•	
Ш	EXPERIMENTAL		• 22
	3.1 Materials		.22
	3.1.1 Catalyst Preparation Ma	terials	22
	3.1.2 Gases		22
	3.2 Experimental Apparatus and R	eaction	22
	3.2.1 Gas Mixing Zone		23
	3.2.2 Catalytic Reactor		23
	3.2.3 Analysis Instrument		23
	3.3 Methodology		26
	3.3.1 Catalyst Preparation Pro	ocedure	26
	3.3.2 Experimental Procedure	- 2	26
	3.4 Catalyst Characterization		27
	3.4.1 Thermogravimetric Anal	lysis (TGA)	28
	3.4.2 X-Ray Diffraction (XRD))	28
	3.4.3 Inductively coupled plass	ma (ICP)	28

а С. А.

•

*

• • • •

.

CHAPT	ER	PAGE
	3.4.4 Transmission Electron Microscopy (TEM)	29
	3.4.5 Temperature Programmed Oxidation (TPO)) 29
	3.5 Calculations	30
	3.5.1 CH ₄ conversion	30
	3.5.2 H ₂ selectivity	30
	3.5.3 CO selectivity	31
	3.5.4 H ₂ yield	31
IV	RESULTS AND DISCUSSION	32
	4.1 Effect of Ni Loading	32
	4.1.1 Activity Test	32
	4.1.2 Catalyst Characterizations	35
	4.2 Effect of Steam-to-Methane Ratio	47
	4.2.1 Activity Test	47
	4.2.2 Catalyst Characterizations	53
	4.3 Effect of Ceria Content	57
	4.3.1 Activity Test	57
	4 3.2 Catalyst Characterizations	62
V	CONCLUSIONS AND RECOMMENDATIONS	69
	REFERENCES	71
	APPENDICES	75
	Appendix A Calculations	75
	Appendix B Effect of Ni loading on reduced catalysts	for XRD 78
	Appendix C Particle size distribution from TEM	79
	Appendix D Stability test of the 11%Ni/5%Ce/ZSM-5	catalyst 81
	Appendix E CO_2 selectivity of the catalysts in all effective of the catalysts in all effective of the catalysts in all effective of the catalysts in a selective of the catalysts in a sel	t studies 84
	Appendix F Experimental data	86

.....

Appendix G	Calibration curves	11	1

CURRICULUM VITAE 113

. .

LIST OF TABLES

TABLE		PAGE	
4.1	ICP results of the Ni/ZSM-5 and Ni/Ce/ZSM-5 catalysts	36	
4.2	Metal crystallite sizes of calcined Ni/ZSM-5 catalysts with		
	various amounts of Ni loading	39	
4.3	Metal crystallite sizes of both reduced and spent Ni/ZSM-5		
	catalysts with various amounts of Ni loading	40	
4.4	Amounts of carbon deposited on Ni/ZSM-5 catalysts with		
	various Ni loadings after 5 hours of reaction, which were		
	characterized by using TPO and TGA techniques	42 .	
4.5	Metal crystallite sizes of spent 11%Ni/ZSM-5 catalysts with		
	various H ₂ O/CH ₄ ratios	55	
4.6	Amounts of carbon deposited on 11%Ni/ZSM-5 catalysts		
	with various H_2O/CH_4 ratios after 5 hours of reaction, which	•	
	were characterized by using TPO and TGA techniques	56	
4.7	Ni crystallite sizes of spent CeO2 promoted-11%Ni/ZSM-5		
	catalysts with various amounts of CeO2 loadings	64	
4.8	Comparison of the carbon deposited quantities between		
	11%Ni/ZSM-5 catalyst and CeO ₂ promoted-11%Ni/ZSM-5		
	catalysts with several CeO ₂ contents after 5 hours of reaction	66	

...

LIST OF FIGURES

FIGURE

2.1 Hydrogen's economy in the world 4 2.2 Representation of model structure of ZSM-5 19 20 2.3 Schematic representation of the intracrystalline pore structure 3.1 Scheme of experimental apparatus in methane steam 25 reforming 4.1 CH₄ conversion as a function of time-on-stream over Ni/ZSM-5 catalysts with different Ni loadings for steam reforming reaction at 700°C and H₂O/CH₄ ratio of 0.8 33 H₂ yield as a function of time-on-stream over Ni/ZSM-5 4.2 catalysts with different Ni loadings for steam reforming 34 reaction at 700°C and H₂O/CH₄ ratio of 0.8 4.3 H₂ selectivity as a function of time-on-stream over Ni/ZSM-5 catalysts with different Ni loadings for steam reforming reaction at 700°C and H₂O/CH₄ ratio of 0.8 34 4.4 CO selectivity as a function of time-on-stream over Ni/ZSM-5 catalysts with different Ni loadings for steam reforming 35 reaction at 700°C and H₂O/CH₄ ratio of 0.8 4.5 XRD patterns of ZSM-5 zeolite and various amounts of Ni supported on ZSM-5 zeolite catalysts calcined at 700°C for 4 hours; (\blacktriangle), NiO phase 38 4.6 XRD patterns of spent Ni/ZSM-5 catalysts with various loadings of Ni, which operated on steam reforming reaction at 700°C and atmospheric pressure for 5 hours; (\bullet) , Ni metal phase 39

PAGE

FIGURE

4.7	TPO profiles of the Ni/ZSM-5 catalysts with various amounts	
	of Ni loading after 5 hours of reaction at 700°C and	
	atmospheric pressure	42
4.8	TEM images of the catalysts after H_2 reduction at 700°C; (a)	
	3%Ni/ZSM-5, (b) 11%Ni/ZSM-5, (c) 15%Ni/ZSM-5	44
4.9	TEM images of the catalysts after reforming reaction at	
	700°C; (a) 3%Ni/ZSM-5, (b) 11%Ni/ZSM-5, (c)	
	15%Ni/ZSM-5	46
4.10	CH ₄ conversion as a function of time-on-stream over	
	Ni/ZSM-5 catalysts with different H_2O/CH_4 ratios for steam	
	reforming reaction at 700°C	48
4.11	H ₂ yield as a function of time-on-stream over Ni/ZSM-5	
	catalysts with different H_2O/CH_4 ratios for steam reforming	
	reaction at 700°C	49
4.12	H_2 selectivity as a function of time-on-stream over Ni/ZSM-5	
	catalysts with different H_2O/CH_4 ratios for steam reforming	
	reaction at 700°C	51
4.13	CO selectivity as a function of time-on-stream over Ni/ZSM-	
	5 catalysts with different H_2O/CH_4 ratios for steam reforming	
	reaction at 700°C	52
4.14	CO2 yield as a function of time-on-stream over Ni/ZSM-5	
	catalysts with different H_2O/CH_4 ratios for steam reforming	
	reaction at 700°C	52
4.15	XRD patterns of ZSM-5 zeolite and spent 11%Ni/ZSM-5	
	catalysts with various H_2O/CH_4 ratios operated on steam	
	reforming reaction at 700°C and atmospheric pressure for 5	
	hours; (▲), NiO phase; (●), Ni metal phase	54

4

FIGURE

4.16	TPO profiles of the Ni/ZSM-5 catalysts after 5 hours of	
	reaction at 700°C and atmospheric pressure with various	
	ratios of H ₂ O/CH ₄	55
4.17	CH ₄ conversion as a function of time-on-stream over	
	11%Ni/ZSM-5 catalysts with different CeO ₂ contents for	
	steam reforming reaction at 700° C and a H_2O/CH_4 ratio of	
	0.8	58
4.18	H ₂ yield as a function of time-on-stream over 11%Ni/ZSM-5	
	catalysts with different CeO2 contents for steam reforming	
	reaction at 700°C and a H ₂ O/CH ₄ ratio of 0.8	59
4.19	H ₂ selectivity as a function of time-on-stream over	
	11%Ni/ZSM-5 catalysts with different CeO ₂ contents for	
	steam reforming reaction at 700°C and a H_2O/CH_4 ratio of	
	0.8	60
4.20	CO selectivity as a function of time-on-stream over	
	11%Ni/ZSM-5 catalysts with different CeO ₂ contents for	
	steam reforming reaction at 700°C and a H_2O/CH_4 ratio of	
	0.8	60
4.21	Product Distribution of the 11%Ni/ZSM-5 catalysts with	
	different CeO2 contents operated on steam reforming	
	reaction at 700°C and a H_2O/CH_4 ratio of 0.8 for 2 hours	61
4.22	XRD patterns of spent 11% Ni/ZSM-5 catalyst and CeO ₂	
	promoted-11%Ni/ZSM-5 catalysts which operated on steam	
	reforming reaction at 700°C and atmospheric pressure for 5	
	hours; (•), C phase; (•), Ni metal phase	64
4.23	TPO profiles of the Ni/ZSM-5 catalysts with several CeO_2	
	contents after 5 hours of reaction under 700°C, atmospheric	
	pressure, and a H_2O/CH_4 ratio of 0.8	66

~

FIGU	FIGURE	
4.24	TEM images of the catalysts after reforming reaction at	
	700°C; (a) 11%Ni/5%Ce/ZSM-5, (b) 11%Ni/7%Ce/ZSM-5	68

ي. اور دانهم