TRANSFORMATION OF BIOETHANOL TO AROMATIC HYDROCARBONS USING TWO CONSECUTIVE BEDS OF MgHPO4-DOPED γ-Al2O3/MODIFIED HZSM-5 CATALYSTS

Sak Saewong

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2012

551752

A STOLE

Transformation of Bioethanol to Aromatic Hydrocarbons
Using Two Consecutive Beds of MgHPO ₄ -Doped γ -Al ₂ O ₃
/Modified HZSM-5 Catalysts
Sak Saewong
Petrochemical Technology
Assoc. Prof. Sirirat Jitkarnka
Mr. Chatapong Wungtanagorn

Accepted by the Petroleum and Petrochemical College, Chulalongkom University, in partial fulfilment of the requirements for the Degree of Master of Science.

College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Assoc. Prof. Shrirat Jitkarnka)

Chatagour Waytongen

(Mr. Chatapong Wungtanagorn)

hannoch 2

(Assoc. Prof. Pramoch Rangsunvigit)

..... /.....

(Dr. Vorakan Burapatana)

ABSTRACT

5371019063: Petrochemical Technology Program Sak Saewong: Transformation of Bioethanol to Aromatic Hydrocarbons Using Two Consecutive Beds of MgHPO₄-Doped γ-Al₂O₃/Modified HZSM-5 Catalysts. Thesis Advisor: Assoc. Prof. Sirirat Jitkarnka and Mr. Chatapong Wungtanagorn 80 pp.
Keywords: Ethanol dehydration / Ethylene aromatization / Single-bed catalytic system/ Dual-bed catalytic system / Pre-feasibility

Currently, bioethanol produced from biomass can be used as a petrochemical feedstock to produce hydrocarbon compounds. Aromatics are one of the most interesting products. Consequently, the transformation of bioethanol to aromatic hydrocarbons was studied in the system of two consecutive catalytic beds that were independently controlled at two different temperatures. A 0.5 wt% MgHPO₄-added alumina was the only catalyst packed on the first catalytic bed, aiming to convert ethanol to ethylene, whereas various HZSM-5 based catalysts (ZnO-, Ga₂O₃-supported H-ZSM-5, and ZnO-Al₂O₃ mixed with HZSM-5) were packed in the second bed, aiming to further convert ethylene to aromatics. It was found that the gallium oxide-loaded HZSM-5 in the second bed was the best catalyst that gave the highest amount of liquid hydrocarbons and also aromatic yields. Approximately 23 % total oil yield was obtained, which was composed of 96.3 wt% aromatics. In addition, the economic pre-feasibility evaluation of bioethanol-based aromatic manufacturing plant based on the aromatic production using the best pair of catalysts was also investigated. However, the results revealed that all profitability indicators (NPV, Payback period, and profitability index) were a negative value. IRR cannot be evaluated (no IRR). It can be suggested that the bioethanol-based aromatic production plant using a dual-bed reactor was not commercially feasible due to the negative revenue.

บทคัดย่อ

ศักย์ แซ่ว่อง: การเปลี่ยนเอทานอลชีวภาพเป็นสารประกอบอะโรมาติกส์
 ไฮโดรคาร์บอนโดยใช้ตัวเร่งปฏิกิริยาแมกนีเซียมบนแกรมมาอลูมินาและตัวเร่งปฏิกิริยา
 เอชซีเอสเอ็มไฟว์ (Transformation of Bioethanol to Aromatic Hydrocarbons Using
 Two Consecutive Beds of MgHPO4-Doped γ-Al2O3/Modified HZSM-5 Catalysts.) อ. ที่ปรึกษา รศ. ดร. ศิริรัตน์ จิตการค้า และ นายฉัตรฐาพงศ์ วังธนากร 80 หน้า

ปัจจุบัน เอทานอลที่ผลิตได้จากชีวมวลสามารถใช้เป็นสารตั้งต้นของการผลิต ้สารประกอบไฮโครคาร์บอนในอุตสาหกรรมปีโตรเคมีได้ ผลิตภัณฑ์อะโรมาติกส์จัดเป็นหนึ่งใน ้ผลิตภัณฑ์ที่น่าสนใจมาก ดังนั้น การเปลี่ยนเอทานอลชีวภาพเป็นสารประกอบอะโรมาติกส์ ้ไฮโครคาร์บอนจึงถูกนำมาศึกษาในระบบตัวเร่งปฏิกิริยาในปฏิกรณ์ที่ต่อเนื่องกัน ที่อุณหภูมิที่ถูก ควบคุมให้แตกต่างกันอย่างเป็นอิสระ ตัวเร่งปฏิกิริยาแมกนีเซียมไฮโครฟอสเฟสปริมาณร้อยละ 0.5 บนอลูมินานั้นถูกบรรจุลงในปฏิกรณ์ตัวที่หนึ่งในทุกการทคลอง ด้วยจุดประสงค์ในการเปลี่ยน เอทานอลไปเป็นเอทิลีน ส่วนตัวเร่งปฏิกิริยาเอชซีเอสเอ็มไฟว์ชนิคต่างๆ (ซิงค์ออกไซค์ แกลเลี่ยม ้ออกไซค์บนเอชซีเอสเอ็มไฟว์ และซิงค์ออกไซค์-อลูมินัมที่ถูกผสมกับเอชซีเอสเอ็มไฟว์) นั้นถูก บรรจุลงในปฏิกรณ์ตัวที่สองเพื่อจุดประสงค์ในการเปลี่ยนเป็นเอทิลีนที่ผลิตได้จากปฏิกรณ์แรกไป เป็นอะโรมาติกส์ จากระบบข้างด้น พบว่า การใช้แกลเลี่ยมออกไซด์บนเอชซีเอสเอ็มไฟว์ใน ปฏิกรณ์ที่สองนั้น สามารถผลิตสารประกอบไฮโครคาร์บอนเหลวและผลิตผลที่เป็นอะโรมาติกส์ ได้มากที่สุดในเชิงปริมาณ นั่นคือได้น้ำมันร้อยละ 23 ของเอทานอลที่ใช้ และน้ำมันที่ได้มี ้องค์ประกอบของสารอะ โรมาติกส์ถึงร้อยละ 96.3 นอกจากนี้ ยังได้ทำการประเมินความเป็นไปได้ เบื้องต้นทางเศรษฐศาสตร์ของโรงงานผลิตสารอะโรมาติกส์จากเอทานอลชีวภาพในการศึกษานี้ ด้วย ซึ่งได้นำเอาผลการทคลองที่ดีที่สุดที่ได้จากการทคลองการผลิตอะ โรมาติกส์จากเอทานอล ชีวภาพดังที่ได้กล่าวรายงานไปแล้วข้างต้นมาเป็นฐานในการประเมิน เป้าหมายของอัตราตอบแทน ภายในของการประเมินครั้งนี้อยู่ที่ร้อยละ 15 แต่อย่างไรก็ตาม ผลที่ได้จากการประเมินแสดงให้ เห็นว่าค่าต่างๆ ของตัวชี้วัดที่เกี่ยวข้องกับผลกำไรทุกตัว (กล่าวคือ ค่ามูลค่าปัจจุบันสุทธิ ค่าระยะ ้คืนทุน และคัชนีชี้วัดผลกำไร) นั้นมีค่าเป็นลบทั้งหมด และการคำนวณค่าอัตราตอบแทนภายในไม่ สามารถทำได้ (ไม่มีค่าอัตราตอบแทนที่แสดงผลได้) ทั้งหมดนี้ชี้ให้เห็นว่าการผลิตสารอะโร ้มาติกส์จากเอทานอลชีวภาพที่ใช้ระบบเครื่องปฏิกรณ์คู่ต่อเนื่องสองตัวตามตัวแปรที่กำหนดไว้นั้น ยังคงไม่มีความเป็นไปได้ในเชิงพาณิชย์

ACKNOWLEDGEMENTS

This thesis has not been possible to complete without the support of following individuals.

Firstly, I would like to thank my advisor, Associate Professor Sirirat Jitkarnka who had always cared and paid attention to my work since the beginning, giving valuable suggestions and recommendations which all are important to reach to this success of work through.

Secondly, I also would like to thank my co-advisor, Mr. Chatapong Wungtanagorn from "Thaioil Public Company Limited" for kind suggestions and useful help.

Thank is also extended to Thaioil Public Company Limited for supporting research fund and oil sample analysis, and Sapthip Company Limited for providing ethanol used as the feed in this research.

The suggestions and recommendations from Associate Professor Pramoch Rungsunvigit, and Dr. Vorakan Burapatana who served as my committee-members are highly appreciated.

Special appreciation is given to all The Petroleum and Petrochemical College's staffs, who kindly helped with the analytical instruments and gave the good suggestion in this work. Also, the center of excellence on petrochemical and materials technology, Thailand, who support student research's fund.

I greatly appreciate all my friends, who shared good discussion and gave recommendations throughout the study period at PPC.

Finally, I am deeply indebted to my family for their love, understanding all supports to me all the time.

TABLE OF CONTENTS

PAGE

	Title Page			i	
	Abstract (in English)				iii
	Abstract (in Thai)			iv	
	Acknowledgements				v
	Table of Contents				vi
	List of	Tables			ix
	List of	Figure	S		xii
CHA	PTER				
	I INTRODUCTION			1	
	II	BACK	GROUND .	AND LITERATURE REVIEW	3
	III	EXPE	RIMENTA	L	14
		3.1 M	faterials		14
		3.2 C	hemicals and	l Solvents	14
	3.3 Equipment3.4 Experimental Procedures			15	
				15	
		3.4	4.1 Catalyst	Preparation	15
			3.4.1.1	Catalyst for Catalytic Reaction in Bed #1	15
			3.4.1.2	Catalysts for Catalytic Reaction in Bed #2	16

3.4.2Catalyst Characterization173.4.3Catalytic Activity Testing172.4.4Deduct Acaleria10

3.4.4 Product Analysis 19

PAGE

CHAPTER

VI	RESULTS AND DISCUSSION	20
	4.1 Characterization of Catalysts	20
	4.2 Activity of Single-Bed Catalytic Systems on Aromatic	
	Production from Bioethanol	22
	4.2.1 Effect of Metal Oxide Loaded on HZSM-5	23
	4.2.2 Effect of Hybrid Catalyst	25
	4.3 Influence of Dual-Bed Catalytic Systems	27
	4.3.1 Catalytic Performance of MgHPO ₄ /Al ₂ O ₃ on	
	Ethylene Formation	27
	4.3.2 Activity of Dual-Bed Catalytic Systems	28
	4.4 Plant Design for Economic Pre-feasibility Study	34
	4.4.1 Process Description	35
	4.4.2 Description of Each Unit	39
	4.5 Economic Assessment and Pre-feasibility	45
	4.5.1 Total Capital Investment Cost (± 50%)	46
	4.5.2 Annual Operating Cost Estimation	46
	4.5.3 Annual Revenue Estimation	47
	4.5.4 Economic Evaluation	48
	4.5.5 Economic Sensitivity Analysis	49
V	CONCLUSIONS AND RECOMMENDATIONS	51
	5.1 Conclusions	51
	5.2 Recommendations	52
	REFERENCES	53

APPENDICES		56	
Appendix A	ppendix A Product Distribution and Product Yield		
	Calculation	56	
Appendix B	Chemical Composition in Gas Products	58	
Appendix C	Chemical Composition in Oil Products	63	
Appendix D	True Boiling Point Curves	65	
Appendix E	Economic Evaluation Data	69	

CURRICURUM VITAE

80

LIST OF TABLES

TABLE		PAGE
2.1	Ethylene conversion and product selectivity over	
	Ga-containing H-ZSM-5	11
4.1	Catalysts and experimental design for the investigation of	
	bioethanol-based aromatic production	21
4.2	Physical properties of HZSM-5 based catalysts	22
4.3	Product distribution over modified catalysts in the single-	
	bed systems	24
4.4	Product distribution over the hybrid catalyst in the single-	
	bed systems	26
4.5	Product distribution from using dual-bed catalytic	
	systems	29
4.6	Aromatic production from dual-bed catalytic systems	31
4.7	Boiling point range of petroleum fractions (Dững et al.,	
	2009)	32
4.8	Summary of the bioethanol-based aromatic plant design	
	parameters	35
4.9	Basis assumptions of the economic evaluation for	
	naphtha production plant	45
4.10	Annual operating cost of naphtha production plant	46
4.11	Annual revenue of bioethanol-based naphtha production	
	plant	47
4.12	Estimated economic indexes of naphtha production plant	48

TABLE

PAGE

A1	Product distribution and product yields from the single-	
	bed catalytic systems	56
A2	Product distribution and product yields in the dual-bed	
	catalytic systems	57
B1	Gas composition as a function of time on stream in the	
	single-bed catalytic system of HZSM-5 catalyst	58
B2	Gas composition as a function of time on stream in the	
	single-bed catalytic system of Ga ₂ O ₃ /HZSM-5 catalyst	58
B3	Gas composition as a function of time on stream in the	
	single-bed catalytic system of ZnO/HZSM-5 catalyst	59
B4	Gas composition as a function of time on stream in the	
	single-bed catalytic system of ZnO-Al ₂ O ₃ co-catalyst	
	combined with HZSM-5 catalyst	59
B5	Gas composition as a function of time on stream in the	
	dual-bed catalytic system of HZSM-5 catalyst	60
B6	Gas composition as a function of time on stream in the	
	dual-bed catalytic system of Ga_2O_3 /HZSM-5 catalyst	60
B7	Gas composition as a function of time on stream in the	
	dual-bed catalytic system of ZnO/HZSM-5 catalyst	61
B8	Gas composition as a function of time on stream in the	
	dual-bed catalytic system of $ZnO-Al_2O_3$ co-catalyst	
	combined with HZSM-5 catalyst	61
B9	Gas composition as a function of time on stream in the	
	case of only $MgHPO_4/Al_2O_3$ catalyst packed in the first	
	catalytic bed	62
C1	Oil composition from the single-bed catalytic systems	
	(After 5 hours time on stream)	63
C2	Oil composition from the dual-bed catalytic systems	
	(After 5 hours time on stream)	64

TABLE

Dl	True boiling point curves: Single-bed catalytic systems	65
D2	Petroleum cuts (Type 1) obtained from single-bed catalytic	
	systems	66
D3	Petroleum cuts (Type 2) obtained from single-bed catalytic	
	systems	66
D4	True boiling point curves: Dual-bed catalytic systems	67
D5	Petroleum cuts (Type 1) obtained from dual-bed catalytic	
	systems	68
D6	Petroleum cuts (Type 2) obtained from dual-bed catalytic	
	systems	68
E1	Product distribution for economic evaluation (172.2 ton	
	per day of ethanol feed)	69
E2	Basic Assumption of Economic Evaluation	69
E3	Summary of plant information	70
E4	Product prices	71
E5	Heating value and revenues of gaseous products	71
E6	Revenues of liquid hydrocarbon products (based on	
	naphtha price)	72
E7	Summary of project economic evaluation	72
E8	Economic evaluation: Ethanol price sensitivity	72
E9	Economic evaluation: Product prices sensitivity	73
E10	Economic evaluation: Product prices sensitivity (Cont.)	73
E11	Economic evaluation: Investment cost	74

LIST OF FIGURES

FIGURE PAGE 2.1 Several reaction pathways of ethanol transformation to hydrocarbons (Inaba et al., 2005). 4 2.2 Simple mechanism of ethanol conversion to ethylene over an acid catalyst. 6 3.1 Schematic of experimental set-up using two catalytic beds reactor. 1 = Flow meter, 2 = Pressure gauge, 3 =Syringe pump, 4 = Upper electric furnace, 5 = Lower electric furnace, 6 = U-tube reactor, 7 = Catalytic Bed#1, 8= Catalytic Bed #2, 9 = Thermocouple, 10 =Temperature programed controller, 11 = Cooling unit, 12 = Gas chromatograph.18 4.1 Bioethanol conversion and product selectivity over the catalytic Bed #1 of 0.5 %wt MgHPO₄-added alumina. 28 4.2 Comparison of product yields obtained from (a) singlebed catalytic systems, and (b) dual-bed catalytic 30 systems. 4.3 Petroleum fractions in oils obtained from using the single-bed catalytic systems, and the dual-bed catalytic systems. 33 4.4 Block diagram of process configuration for ethanolbased aromatic production plant. 36 4.5 Process flow diagram of the bioethanol-based aromatic production plant. 37 4.6 Process flow diagram of reaction system (A-100 Region). 42 4.7 Process flow diagram of product separation plant (A-200 Region). 43

FIGURE

PAGE

4.8	Operating cost distribution.	47
4.9	Sensitivity of internal rate of return and payback period	
	toward ethanol price.	49
4.10	Sensitivity of internal rate of return and payback period	
	toward the product price change of the oil production	
	plant.	50
E1	Cost estimation of ethanol to aromatic plant.	75
E2	Cost estimation of ethanol to aromatic plant (Cont.).	76
E3	Cost estimation of ethanol to light olefin plant.	77
E4	Cost estimation of ethanol to light olefin plant (Cont.).	78
E5	Cost estimation of ethanol to light olefin plant (Cont.).	79