

REFERENCES

- Aguayo, A., T., Gayubo, A., G., Tarrı'o, A., M., Atutxa, A., and Bilbao, J. (2002).
 Study of operating variables in the transformation of aqueous ethanol into hydrocarbons on an HZSM-5 zeolite. <u>Journal of Chemical Technology</u> and Biotechnology, 77, 211-216.
- Aramendia, M.A., Borau, V., Jimenez, C., Marinas, J.M., Roldon, R., Romero, F.J., and Urbano, F.J. (2002). Catalytic application of zeolites in the methanol conversion to hydrocarbons. <u>Chemistry Letters</u>, 672-673.
- Arenamnart, S., and Trakarnpruk, W. (2006). Ethanol conversion to ethylene using metal-mordenite catalysts. <u>International Journal of Applied Science and</u> <u>Engineering</u>, 4, 21-32.
- Barthos, R., Sze'chenyi, A., and Solymosi, F. (2006). Decomposition and aromatiza tion of ethanol on ZSM-Based catalysts. <u>Jour of Physical Chemistry B</u>, 110(43), 21816–21825.
- Canizares, P., Lucas, A., Dorado, F., Duran, A., and Asencio, I. (1998). Characterization of Ni and Pd supported on H-mordenite catalysts: Influence of the metal loading method. <u>Applied Catalysis A</u>, 169, 137-150.
- Chen, G., Li, S., Jiao, F., and Yuan, Q. (2007). Catalytic dehydration of bioethanol to ethylene over TiO2/γ-Al2O3 catalysts in microchannel reactors. <u>Catalysis Today</u>, 125, 111-119.
- Dufresne, L.A., and Le Van Mao, R. (1994). Hydrogen back-spillover effects in the aromatization of ethylene on hybrid catalysts. <u>Catalysis Letters</u>, 25, 371-383.
- Dũng, N.A., Mhodmonthin, A., Wongkasemjit,S., and Jitkarnka, S. (2009). Light olefins and light oil production from catalytic pyrolysis of waste tire. <u>Journal of Analytical and Applied Pyrolysis</u>, 86, 281-286.
- Inaba, M., Murata, K., Saito, M., and Takahara, I. (2005). Ethanol conversion to aromatic hydrocarbons over several zeolite catalyst. <u>Reaction Kinetics</u> <u>Catalysis Letters</u>, 88(1), 135-142.
- Kojima, M., Aida, T., and Asami, Y. (1981). Catalyst for production of ethylene from ethanol. US. Patent 4,302,357.

- Le Van Mao, R., Dufresne L.A., Yao, J., and Yu, Y. (1997). Effects of the nature of coke on the activity and stability of the hybrid catalyst used in the aromatization of ethylene and n-butane. <u>Applied Catalyst A</u>, 164, 81-89.
- Lukyanov, D., B., Gnep, S., and Guisnet, M.R. (1994). Kinetic modeling of ethane and propene aromatization over HZSM-5 and GaHZSM-5. <u>Industrial &</u> <u>Engineering Chemistry Research</u>, 33, 223-234.
- Makarfi, Y.I., Yakimova, M.S., Lermontov, A.S., Erofeevc, V.I., Koval, L.M., and Tretiyakov, V.F. (2009). Conversion of bioethanol over zeolites. <u>Chemical Engineering Journal</u>, 154, 396-400.
- Mat, R., Amin, N.A.S., Ramli, Z., and Bakar, W.A.W.A. (2006). Ethyleneconversion to higher hydrocarbon over copper loaded BZSM-5 in the presence of oxygen. <u>Processding of yhe 1st International Conference on Natural</u> <u>Resources Engineering & Technology 2006, 297-307.</u>
- Nagamori, Y., and Kawase, M. (1998). Converting light hydrocarbons containing Olefinsto aromatics (Alpha Process). <u>Microporous and Mesoporous</u> <u>Materials</u>, 21, 439-445.
- Ni, Y., Peng, W., Sun, A., Mo, W., Hu, J., Li, T., and Li, G. (2010). High selectivity and stable performance of catalytic aromatization of alcohols and ether over La/Zn/HZSM-5 catalysts. <u>Journal of Industrial and Engineering</u> <u>Chemistry</u>, 16, 503-505.
- Ouyang, J., Kong, F., Si, G., Hu, Y., and Song, Q. (2009). Catalytic coversion of bio-ethanol to ethylene over La-modified HZSM-5 catalyst in a bioreactor. <u>Catalysis Letters</u>, 132, 64-74.
- Qiu, P., Lunsford, J.H., and Rosynek, M.P. (1998). Characterization of Ga/ZSM-5 for the catalytic aromatization of dilute ethylene streams. <u>Catalysis</u> <u>Letters</u>, 52, 37-42.
- Saha, S.K., and Sivasanker, S. (1992). Influence of Zn- and Ga-doping on the conversion of ethanol to hydrocarbons over ZSM-5. <u>Catalysis Letters</u>, 15, 413-418.
- Sawa, M., Niwa, M., and Murakami, Y. (1989). Acid-leached dealuninated mordenite: Effect of acid concentration on catalyst life in methanol conversion. <u>Applied Catalysis A</u>, 53, 169-174.

- Takahara, I., Saito, M., Inaba, M., and Murata, K. (2005). Dehydration of ethanol into ethylene over solid acid catalysts. <u>Catalysis Letters</u>, 105(3-4), 249-252
- Zhang, X., Wang, R., Yang, X., and Zhang, F. (2008). Comparison of four catalysts in the catalytic dehydration of ethanol to ethylene. <u>Microporous and</u> <u>Mesoporous Materials</u>, 116, 210-215.

"The dehydration of alcohols", Jim Clark, 19 May 2011,

<http://www.chemguide.co.uk/mechanisms/elim/dhethanol.html>

APPENDICES

Appendix A Product Distribution and Product Yield Calculation

$$Yield (wt \%) = \frac{Total weight of any products}{Total weight of converted bioethanol} \times 100$$

Table A1 Product distribution and product yields from the single-bed catalytic

 systems

Catalyst	HZ5	GHZ5	ZHZ5	Z+HZ5
Ethanol conversion (wt %)	85.05	83.36	82.80	79.90
Fed ethanol (ml/hr)	3.63	3.65	3.68	3.67
Fed ethanol (g/hr) *	2.81	2.82	2.84	2.83
Converted ethanol (g/hr)	2.39	2.35	2.35	2.26
Product distribution (g/hr)				
Total Oil	0.25	0.43	0.31	0.40
Total Gas	1.34	1.14	1.26	1.12
Others **	1.22	1.25	1.27	1.31
Product yield (wt %)				
Oil yield	10.33	18.27	13.20	17.77
Gas yield	56.21	48.51	53.66	49.53

*Ethanol concentration is 99.5 5 v/v %

**The summation of feed water, reaction water, and unconverted ethanol

Catalyst	EPC:HZ5	EPC:GHZ5	EPC:ZHZ5	EPC:Z+HZ5
Ethanol conversion (wt %)	83.66	85.61	85.29	88.55
Fed ethanol (ml/hr)	3.58	3.74	3.65	3.67
Fed ethanol (g/hr) *	2.77	2.89	2.82	2.83
Converted ethanol (g/hr)	2.32	2.47	2.40	2.51
Product distribution (g/hr)				
Total Oil	0.37	0.57	0.31	0.53
Total Gas	1.17	1.07	1.29	1.13
Others **	1.22	1.24	1.22	1.17
Product yield (wt %)				
Oil yield	16.11	23.00	12.75	21.09
Gas yield	50.63	43.46	53.76	44.99

 Table A2
 Product distribution and product yields in the dual-bed catalytic systems

*Ethanol concentration is 99.5 5 v/v %

**The summation of feed water, reaction water, and unconverted ethanol

Appendix B Chemical Composition in Gas Products

Table B1 Gas composition as a function of time on stream in the single-bedcatalytic system of HZSM-5 catalyst

		Composition (mol %)							
Component	@ 10	@ 70	(a) 130	(a) 190	@ 250	@ 310			
	min	min	min	min	min	min			
CH4	33.5	30.2	22.3	26.5	23.5	21.5			
CO2	33.1	14.8	12.2	12.8	11.2	10.5			
Ethylene	0.00	8.04	9.65	8.15	8.54	9.22			
Ethane	19.1	21.7	21.3	24.3	23.8	23.5			
C3s	9.49	23.3	30.3	25.9	28.6	31.6			
C4s	0.00	1.17	2.43	1.40	2.85	2.64			
C5s	0.00	0.00	0.00	0.00	0.00	0.00			
C6s	4.80	0.75	1.68	0.96	1.44	0.97			
Σ	100	100	100	100	100	100			

Table B2 Gas composition as a function of time on stream in the single-bedcatalytic system of $Ga_2O_3/HZSM$ -5 catalyst

	Composition (mol %)						
Component	<u>a</u> 10	<i>a</i> 70	<i>a</i> 130	<i>a</i> 190	<i>a</i> 250	<i>a</i> 310	
	min	min	min	min	min	min	
CH4	39.7	29.5	31.1	26.9	28.8	23.5	
CO2	13.8	18.2	22.0	18.9	21.6	17.9	
Ethylene	0.00	5.58	4.97	6.42	5.74	7.82	
Ethane	33.0	24.7	22.9	21.8	21.0	20.0	
C3s	13.5	20.4	17.3	23.7	21.0	28.6	
C4s	0.00	0.00	0.00	0.00	0.00	0.00	
C5s	0.00	0.00	0.00	0.00	0.00	0.00	
C6s	0.00	1.64	1.82	2.28	1.79	2.26	
Σ	100	100	100	100	100	100	

	Composition (mol %)							
Component	@ 10 min	@ 70 min	@ 130 min	@ 190 min	@ 250 min	@ 310 min		
CH4	27.4	22.7	21.5	18.4	21.7	19.4		
CO2	30.5	34.4	35.9	30.8	36.0	35.4		
Ethylene	0.77	0.99	1.13	13.9	1.50	7.19		
Ethane	37.8	33.8	33.1	24.1	32.2	25.0		
C3s	3.51	7.04	7.11	9.80	6.89	9.84		
C4s	0.00	0.62	0.65	1.86	0.74	1.77		
C5s	0.00	0.00	0.00	0.00	0.00	0.00		
C6s	0.00	0.38	0.66	1.17	0.96	1.44		
Σ	100	100	100	100	100	100		

Table B3 Gas composition as a function of time on stream in the single-bedcatalytic system of ZnO/HZSM-5 catalyst

Table B4 Gas composition as a function of time on stream in the single-bedcatalytic system of $ZnO-Al_2O_3$ co-catalyst combined with HZSM-5 catalyst

	Composition (mol %)						
Component	@ 10 min	@ 70 min	@ 130 min	@ 190 min	@ 250 min	@ 310 min	
H2	76.7	13.2	9.72	18.8	15.5	15.4	
CH4	29.0	21.9	20.5	21.2	18.4	18.3	
CO2	46.2	38.1	39.0	38.0	39.4	39.3	
Ethylene	0.00	7.48	6.82	7.38	8.38	7.39	
Ethane	24.8	19.1	20.0	20.3	20.3	20.9	
C3s	0.00	12.7	12.7	12.0	12.0	12.4	
C4s	0.00	0.75	0.74	0.79	0.85	0.86	
C5s	0.00	0.00	0.00	0.00	0.00	0.00	
C6s	0.00	0.00	0.30	0.36	1.01	0.92	
Σ	100	100	100	100	100	100	

	Composition (mol %)						
Component	<i>a</i> 10	<i>a</i> 70	<i>a</i> 130	<i>a</i> 250	<i>a</i> 310		
	min	min	min	min	min		
CH4	31.0	23.1	25.5	21.3	16.9		
CO2	1.15	1.57	2.90	3.34	2.98		
Ethylene	8.40	7.89	7.58	7.64	7.92		
Ethane	28.1	27.4	29.3	28.2	25.0		
C3s	29.5	36.4	31.0	35.9	42.0		
C4s	1.86	2.43	2.19	2.47	3.94		
C5s	0.00	0.06	0.04	0.03	0.14		
C6s	0.00	1.07	1.44	1.11	1.13		
Σ	100	100	100	100	100		

Table B5 Gas composition as a function of time on stream in the dual-bed catalyticsystem of HZSM-5 catalyst

Table B6 Gas composition as a function of time on stream in the dual-bed catalyticsystem of $Ga_2O_3/HZSM$ -5 catalyst

	Composition (mol %)						
Component	<i>a</i> 10	<i>a</i> 70	<i>a</i> 130	<i>a</i> 190	<i>a</i> 250	<i>a</i> 310	
	min	min	min	min	min	min	
CH4	45.2	29.5	29.5	24.1	22.3	20.3	
CO2	9.94	4.76	6.14	5.28	5.30	4.90	
Ethylene	4.17	5.52	5.47	6.24	6.19	6.76	
Ethane	31.9	28.7	28.7	26.1	25.5	24.5	
C3s	8.76	29.5	28.4	35.9	37.6	40.0	
C4s	0.00	0.48	0.44	0.97	1.32	1.81	
C5s	0.00	0.00	0.00	0.00	0.00	0.00	
C6s	0.00	1.55	1.40	1.46	1.77	1.70	
Σ	100	100	100	100	100	100	

	Composition (mol %)						
Component	<i>a</i> 10	<i>a</i> 70	<i>a</i> 130	<i>a</i> 190	<i>a</i> 250	<i>a</i> 310	
	min	min	min	min	min	min	
CH4	24.0	24.0	24.5	25.7	24.1	26.4	
CO2	20.3	33.0	33.8	33.7	34.5	33.1	
Ethylene	0.82	2.82	1.32	1.48	1.99	2.67	
Ethane	51.4	31.1	32.1	31.5	30.2	28.9	
C3s	2.36	7.62	6.83	6.34	7.31	7.16	
C4s	0.00	0.89	0.67	0.55	0.74	0.91	
C5s	1.20	0.00	0.00	0.00	0.00	0.00	
C6s	0.00	0.59	0.74	0.74	1.10	0.94	
Σ	100	100	100	100	100	100	

Table B7 Gas composition as a function of time on stream in the dual-bed catalyticsystem of ZnO/HZSM-5 catalyst

Table B8 Gas composition as a function of time on stream in the dual-bed catalyticsystem of $ZnO-Al_2O_3$ co-catalyst combined with HZSM-5 catalyst

		Composition (mol %)						
Component	@ 10	@ 70	@ 130	@ 190	@ 250	@ 310		
CILLA						20.0		
CH4	26.1	26.3	25.1	23.3	18.6	20.9		
CO2	27.1	23.5	22.3	24.9	23.1	29.3		
Ethylene	0.00	7.25	8.28	7.64	11.6	15.6		
Ethane	32.0	24.0	24.2	25.4	22.5	26.1		
C3s	0.00	18.1	18.8	16.8	20.4	3.25		
C4s	0.00	0.49	0.62	0.50	1.61	1.91		
C5s	7.06	0.00	0.00	0.00	0.00	0.00		
C6s	7.81	0.37	0.59	1.46	2.13	2.92		
Σ	100	100	100	100	100	100		

	Composition (mol %)						
Component	<i>a</i> 10	<i>a</i> 70	<i>a</i> 130	<i>(a)</i> 190	<i>a</i> 250	<i>a</i> 310	
	min	min	min	min	min	min	
CH4	0.00	0.00	0.00	0.00	0.00	0.00	
CO2	0.00	0.00	0.00	0.00	0.00	0.00	
Ethylene	100	84.2	83.0	80.9	87	83.6	
Ethane	0.00	0.54	0.54	0.52	0.54	0.56	
C3	0.00	0.30	0.28	0.27	0.30	0.31	
C4	0.00	3.12	2.95	2.94	2.94	3.38	
C5	0.00	11.8	13.2	15.4	9.25	12.2	
C6	0.00	0.00	0.00	0.00	0.00	0.00	
Σ	100	100	100	100	100	100	

Table B9 Gas composition as a function of time on stream in the case of onlyMgHPO4/Al2O3 catalyst packed in the first catalytic bed

 Table C1
 Oil composition from the single-bed catalytic systems (After 5 hours time on stream)

Common ant	Compositi	on (wt %)
Component	ZHZ5	Z+HZ5
NA	3.63	3.60
Benzene	19.22	20.08
Toluene	44.40	44.14
p-Xylene	5.36	4.72
m-Xylene	11.80	10.39
o-Xylene	5.47	4.88
Ethylbenzene	0.65	1.01
С9	1.62	1.85
C10+	7.85	9.33
	<u>100</u>	<u>100</u>
BTX/total aromatic	0.89	0.87

Component	Composition (wt %)			
Component	HZ5	GHZ5		
Monoaromatic	87.0	90.1		
Diaromatic	1.3	1.7		
Triaromatic	< 0.1	< 0.1		
Non-aromatic	11.7	8.2		

Component	Composition (wt %)					
Component	EPC:HZ5	EPC:GHZ5	EPC:ZHZ5	EPC:Z+HZ5		
NA	3.53	3.68	3.79	3.74		
Benzene	20.45	19.92	21.31	23.51		
Toluene	41.05	42.06	43.24	44.99		
p-Xylene	4.36	4.46	4.92	4.57		
m-Xylene	9.55	10.01	10.80	9.91		
o-Xylene	4.51	4.67	4.97	4.57		
Ethylbenzene	1.92	0.93	0.85	1.10		
С9	3.22	1.92	1.70	1.65		
C10+	11.42	12.34	8.42	5.95		
	<u>100.0</u>	<u>100.0</u>	<u>100.0</u>	<u>100.0</u>		
BTX/total aromatic	0.83	0.84	0.89	0.91		

Table C2 Oil composition from the dual-bed catalytic systems (After 5 hours time on stream)

% OFF	Boiling point (°C)				
%OFF	HZ5	GHZ5	ZHZ5	Z+HZ5	
0	55.6	55.7	60.3	59.9	
5	57.4	73.4	78.0	77.2	
10	73.5	74.0	78.6	77.6	
15	74.2	74.4	79.2	78.0	
20	75.1	74.9	105.5	104.7	
25	103.2	102.8	105.7	105.0	
30	103.4	103.0	105.8	105.1	
35	103.5	103.1	105.9	105.3	
40	103.6	103.2	106.0	105.4	
45	103.7	103.3	106.1	105.5	
50	103.8	103.4	106.2	105.6	
55	104.0	103.5	106.3	105.7	
60	104.7	103.7	107.1	105.9	
65	135.7	103.9	138.1	137.2	
70	136.2	134.7	138.4	137.6	
75	136.7	135.2	138.6	137.9	
80	141.9	135.9	143.2	142.5	
85	172.4	141.6	158.4	157.4	
90	222.6	200.5	224.8	203.3	
95	247.4	222.5	445.0	243.4	
100	562.9	554.5	547.4	540.4	

APPENDIX D True Boiling Point Curves

 Table D1
 True boiling point curves: Single-bed catalytic systems

$\mathbf{R}_{\text{oiling point}}(^{0}\mathbf{C})$	Petroloum Cut		%	ó wt	
boning point (C)	I etroieum Cut	HZ5	GHZ5	ZHZ5	Z+HZ5
<149	Gasoline	81.16	85.63	81.91	89.64
149-232	Kerosene	10.73	9.51	8.26	5.47
232-343	Gas oil	4.62	1.67	2.52	0.84
343-371	LVGO	0.44	0.42	0.64	1.18
>371	HVGO	3.04	2.76	6.68	2.87

 Table D2
 Petroleum cuts (Type 1) obtained from single-bed catalytic systems

 Table D3
 Petroleum cuts (Type 2) obtained from single-bed catalytic systems

Boiling point (°C)	Petroleum Cut		% wt		
		HZ5	GHZ5	ZHZ5	Z+HZ5
<200	Full range naphtha	87.75	89.96	88.13	82.18
200-250	Kerosene	7.29	5.46	2.44	11.40
250-300	Light gas oil	0.79	0.75	1.14	3.10
300-370	Heavy gas oil	1.11	1.05	1.59	0.47
>370	Residue	3.06	2.78	6.70	2.85

	Boiling point (°C)				
	EPC:HZ5	EPC:GHZ5	EPC:ZHZ5	EPC:Z+HZ5	
0	72.6	58.2	59.3	59.7	
5	73.4	73.8	76.4	77.0	
10	73.7	74.1	76.8	77.4	
15	74.2	74.5	77.2	77.7	
20	102.5	77.0	104.0	79.9	
25	102.8	103.1	104.4	104.9	
30	103.0	103.2	104.5	105.0	
35	103.1	103.3	104.6	105.1	
40	103.2	103.4	104.7	105.3	
45	103.3	103.5	104.8	105.4	
50	103.4	103.6	104.9	105.5	
55	103.5	103.7	105.0	105.6	
60	103.7	103.8	105.2	105.7	
65	134.2	131.8	136.5	105.9	
70	135.0	135.3	137.0	137.2	
75	135.4	135.7	137.2	137.5	
80	140.7	136.3	137.8	137.8	
85	155.2	141.6	142.7	142.6	
90	200.3	200.7	223.9	164.8	
95	222.2	222.3	507.2	227.9	
100	253.5	246.5	562.7	561.4	

 Table D4
 True boiling point curves: Dual-bed catalytic systems

.

Bailing point $\binom{0}{C}$	Potroloum Cut		0/	ó wt	
Doning point (C)	retroieum Cut	HZ5	GHZ5	ZHZ5	Z+HZ5
<149	Gasoline	82.86	85.63	88.53	92.79
149-232	Kerosene	13.70	11.38	1.93	2.54
232-343	Gas oil	3.43	3.00	0.88	0.75
343-371	LVGO	0.00	0.00	1.24	1.05
>371	HVGO	0.00	0.00	7.42	2.87

 Table D5
 Petroleum cuts (Type 1) obtained from dual-bed catalytic systems

 Table D6
 Petroleum cuts (Type 2) obtained from dual-bed catalytic systems

Boiling point (°C)	Petroleum Cut		%	% wt		
		HZ5	GHZ5	ZHZ5	Z+HZ5	
<200	Full range naphtha	89.97	89.94	85.39	86.44	
200-250	Kerosene	9.47	10.06	4.76	8.62	
250-300	Light gas oil	0.56	0.00	1.96	1.66	
300-370	Heavy gas oil	0.00	0.00	0.49	0.42	
>370	Residue	0.00	0.00	7.40	2.85	

Table E1 Product distribution for economic evaluation (172.2 ton per day of ethanol feed)

Component	9/ Viold		Weig	ht
Component	% rield TPD		TPH	TPY
Gas	37.2	64.1	2.7	21,356.2
Oil	19.7	33.9	1.4	11,300.2
Water	28.7	49.4	2.1	16,477.9
Unconverted ethanol	14.4	24.8	1.0	8,265.6
Total	100	172.2	7.2	57,400.0

 Table E2
 Basic Assumption of Economic Evaluation

Plant Capacity				
Natural gas	21,356 Ton/year			
Liquid hydrocarbons	11,300	Ton/year		
Working time	8,000	hours/year		
Natural goo	2.7	ton/hr		
Natural gas	64.1	ton/day		
Liquid hudrooorhono	1.4	ton/hr		
Liquid nydrocarbons	33.9	ton/day		
	172.2	ton/day		
Raw material capacity	57,400	ton/year		
	218,251	Ltrs/day		
All Capex is paid	at zero yea	r		
Economic life, years		20		
Corporate taxes, %		30		
Depreciation, years	Depreciation, years 20			
Labor and maintenance is 3.1% of investment cost				
Utility costs are 20% deducted from that of Chematur plant				
Exchanger rate is 30 Baht/US\$				

Table E3	Summary	of pla	nt inforn	nation
----------	---------	--------	-----------	--------

Total Capital Cost				
Total investment (Million \$)	75.74			
Total investment (Mil. Baht)	2,272.2			
Operating Cost				
Raw material cost (Mil. Baht/year)	1,249.85			
Labor cost and Maintenance cost (Mil. Baht/year)	70.44			
Utilities cost (Mil. Baht/year)	138.77			
Total Operating cost	1,459.06			
Revenue				
Liquid hydrocarbons Capacity (tons/year)	11,300			
Contract Price of liquid hydrocarbons (Baht/ton)	25,600			
NG Heating Value (MilBTU/year)	992,993			
Contract Price of NG (Baht/MilBTU)	442.3			
Gross sale (Mil. Baht/year)	728.45			
Margin				
Margin (Mil. Baht/year)	-730.61			

Item	Raw material and product	Eng. unit	Price	Price (\$/T)	Basis
1	Ethanol	Baht/lt	17.2	-	Ethanol price (99.5%) from Thaioil ethanol
]		Baht/kg	22.0	-	Ethanol density 0.78 kg/lt
2	Liquid hydrocarbon	Baht/kg	25.6	824.7	Naphtha to Mogas pool
3	Natural gas	Baht/ton	16,974.0	-	Marginal economic
		Baht/Mil BTU	442.3	-	monitoring 2012
4	Mixed-xylene (PX content 18- 20%)	Baht/ton	37,326	1,244.2	
5	Paraxylene (PX 99.7%)	Baht/ton	46,626	1,554.2	MEM corp plan'12
6	Benzene	Baht/ton	35,451	1,181.7	
7	Toluene	Baht/ton	32,976	1,099.2	
8	C9	Baht/ton	29,130	971	
9	C10	Baht/ton	25,791	859.7	

 Table E5
 Heating value and revenues of gaseous products

Composition	%	TPY	Heating Value	Heating Value	Revenue
of natural gas	composition	(Ton/Year)	(Btu/lb)	(MilBTU/Year)	(Mil.Baht/ year)
Methane	9.4	1,999.6	23,811	1.0E+05	4.6E+01
Ethylene	5.4	1,162.0	21,884	5.6E+04	2.5E+01
Ethane	21.1	4,512.2	22,198	2.2E+05	9.7E+01
C3	50.7	10,820.3	21,016	5.0E+05	2.2E+02
C4	3.0	643.7	21,210	3.0E+04	1.3E+01
C5+	4.2	896.2	20,526	4.0E+04	1.8E+01
CO ₂	6.2	1,322.2	14,150	4.1E+04	1.8E+01
Total	100.0	21,356.2		992,993.5	439.2

 Table E6
 Revenues of liquid hydrocarbon products (based on naphtha price)

Product	Capacity (ton/year)	Revenue (Mil. Baht/year)	
Liquid hydrocarbon	11 200	290.2	
(Naphtha)	11,500	289.5	

 Table E7 Summary of project economic evaluation

Profitability indicators:	Value		
IRR after tax	-	% per year	
NPV after tax	- 6,201.17	Mil.Bahts	
Profitability index (NPV/Fixed cost)	-	-	
Simple payback period before tax	-	Months	

 Table E8
 Economic evaluation: Ethanol price sensitivity

EtOH	Margin	IRR	NPV	PI	PB	operating
price						(Mil.
(Bth/l)	(Baht/year)	(%)	(Mil.Bahts)	(-)	(Months)	Baht/year)
17.1785	-730.5	#NUM!	-6200.5	-2.7	-37.3	1459.1
15	-572.0	#NUM!	-5287.4	-2.3	-47.7	1300.5
13	-426.5	#NUM!	-4449.1	-2.0	-63.9	1155.0
11	-281.0	#NUM!	-3610.8	-1.6	-97.0	1009.5
9	-135.5	#NUM!	-2772.4	-1.2	-201.2	864.0
7	10.0	-8.2	-1934.1	-0.9	2729.6	718.5
5	155.5	2.3	-1095.8	-0.5	175.4	573.0
3	301.0	8.8	-257.5	-0.1	90.6	427.5
2	373.7	11.6	161.7	0.1	73.0	354.7
1	446.5	14.2	580.9	0.3	61.1	282.0
0.8	461.0	14.7	664.7	0.3	59.1	267.4
0.7	468.3	14.9	706.6	0.3	58.2	260.1
0.6	475.6	15.2	748.5	0.3	57.3	252.9
0.4	490.1	15.7	832.3	0.4	55.6	238.3

Product Price	Liquid HCs	NC
Increasing	price	NO
(%)	(Bath/ton)	(Bath/MilBTU)
0	25600	442.3
20	30720	530.7
40	35840	619.2
60	40960	707.6
80	46080	796.1
100	51200	884.5
120	56320	973.0
140	61440	1061.4
160	66560	1149.9
161	66816	1154.3
162	67072	1158.7
163	67328	1163.1
164	67584	1167.6
165	67840	1172.0

 Table E9
 Economic evaluation: Product prices sensitivity

 Table E10
 Economic evaluation: Product prices sensitivity (Cont.)

Product Price	Mangin	ממו		ומ	 DD	
Increasing	Margin	IKK	INF V	r I	F D	
(%)					(Months)	
0	-730.6	#NUM!	-6201.2	-2.7	-37.3	
20	-584.9	#NUM!	-5361.8	-2.4	-46.6	
40	-439.2	#NUM!	-4522.3	-2.0	-62.1	
60	-293.5	#NUM!	-3682.9	-1.6	-92.9	
80	-147.8	#NUM!	-2843.5	-1.3	-184.4	
100	-2.2	-9.8	-2004.1	-0.9	-12623.2	
120	143.5	1.7	-1164.7	-0.5	190.0	
140	289.2	8.3	-325.3	-0.1	94.3	
160	434.9	13.8	514.1	0.2	62.7	
161	442.2	14.0	556.1	0.2	61.7	
162	449.5	14.3	598.1	0.3	60.7	
163	456.8	14.5	640.0	0.3	59.7	
164	464.0	14.8	682.0	0.3	58.8	
165	471.3	15.1	724.0	0.3	57.8	

Investment	Investment					
Variation	Cost	Margin	IRR	NPV	PI	PB
(%)	(Mil \$)					
0	75.7	-730.5	#NUM!	-6200.5	-2.7	-37.3
-5	72.0	-727.0	#NUM!	-6080.7	-2.8	-35.6
-10	68.2	-723.5	#NUM!	-5960.8	-2.9	-33.9
-20	60.6	-716.4	#NUM!	-5721.0	-3.1	-30.4
-30	53.0	-709.4	#NUM!	-5481.3	-3.4	-26.9
-40	45.4	-702.3	#NUM!	-5241.5	-3.8	-23.3
-50	37.9	-695.3	#NUM!	-5001.8	-4.4	-19.6
-60	30.3	-688.2	#NUM!	-4762.0	-5.2	-15.8
-70	22.7	-681.2	#NUM!	-4522.3	-6.6	-12.0
-80	15.1	-674.1	#NUM!	-4282.5	-9.4	-8.1
-90	7.6	-667.1	#NUM!	-4042.8	-17.8	-4.1
-100	0.0	-660.1	#NUM!	-3803.0	#DIV/0!	0.0

 Table E11
 Economic evaluation: Investment cost

Lithanoi to Aromatic Plant Cost Estimation

According with the process owerview for Emande to Acomate Plant, Upstream process (advance wactor system, quench to werland compressor) has been diapscated with Chematur Plant.

Figure E1 Cost estimation of ethanol to aromatic plant.

Figure E2 Cost estimation of ethanol to aromatic plant (Cont.).

Emanol to Light Overin Plain Conf Estemotion

Accessing with the process prenview for Ethanoi to Eight-Olefan Hant, Uputream process (adiabatic reactor system, quench tower and compresson) has been duplicated with Chemick Plant.

Figure E3 Cost estimation of ethanol to light olefin plant.

Figure E4 Cost estimation of ethanol to light olefin plant (Cont.).

Figure E5 Cost estimation of ethanol to light olefin plant (Cont.).

CURRICULUM VITAE

Name: Mr. Sak Saewong

Date of Birth: October 22, 1987

Nationality: Thai

University Education:

2006-2009 Bachelor Degree of Engineering (Petrochemical and Polymeric Materials Engineering), Faculty of Engineering and Industrial Technology, Silpakorn University, Nakorn Prathom, Thailand

Work Experience:

April 2008-May 2008	Position:	Student internship
	Company name:	APEX plastic company,
		Thailand Co Ltd.

Presentations:

 Saewong, S., Wungtanagorn C., and Jitkanka, S. (2012, April 24) Dual-bed (MgHPO₄/Al₂O₃:Ga₂O₃/HZSM-5) Catalytic System for Liquid Hydrocarbon Production from Bioethanol. Poster presented at <u>the 3nd Research Symposium on</u> <u>Petroleum, Petrochemicals, and Advanced Materials and the 18th PPC Symposium on Petroleum, Petrochemicals, and Polymers, Queen Sirikit National Convention Centre, Bangkok, Thailand.
</u>

