SYNTHESIS AND APPLICATIONS OF POLYBENZOXAZINE MEMBRANES

Kansiri Pakkethati

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2012

551759

Thesis Title:	Synthesis and Applications of Polybenzoxazine Membranes
By:	Kansiri Pakkethati
Program:	Polymer Science
Thesis Advisors:	Assoc. Prof. Sujitra Wongkasemjit
	Asst. Prof. Thanyalak Chaisuwan

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

..... Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Asst. Prof. Pomthong Malakul)

(Assoc. Prof. Sujitra Wongkasemjit)

(Asst. Prof. Thanyalak Chaisuwan)

Thanyalak Chaisuwan apare L

(Asst. Prof. Apanee Luengnaruemitchai)

B. tim

(Asst. Prof. Bussarin Ksapabutr)

ABSTRACT

4982005063: Polymer Science Program
Kansiri Pakkethati: Synthesis and Applications of Polybenzoxazine
Membranes.
Thesis Advisors: Assoc. Prof. Sujitra Wongkasemjit, Asst. Prof.
Thanyalak Chaisuwan, 100 pages
Keywords: Polybenzoxazine/ Static light scattering/ Dynamic light scattering/

Pervaporation/ Swelling/ Sorption/ Permeation flux/ Separation factor

The present work focuses on synthesizing polybenzoxazine via a facile "quasi-solventless" method by using bisphenol-A, formaldehyde and diamine to fabricate as a membrane for separation application. Four different diamines, viz. hexa-methylenediamine (hda), tetraethylenepentamine (tepa), ethylenediamine (eda), and triethylenetetramine (teta), were used to prepare polybenzoxazine membranes, denoted as poly(BA-had), poly(BA-tepa, poly(BA-eda), and poly(BA-teta), respectively, for pervaporation testing. It was found that both poly(BA-hda) and poly(BA-eda) showed a very good performance with separation factor of higher than 10,000 and permeation flux of higher than 1.00 kg/m²h at 70 °C using 10:90 ethanol:water feeding mixture and 200 µm membrane thickness. However, the poly(BA-eda) membrane provided higher permeation flux and separation factor with increasing ethanol concentration. Moreover, the poly(BA-hda) was also used to mix with ZSM-5 to prepare a mixed matrix membrane (MMM) for CO_2/CH_4 gas separation, and the results show that 5 wt.% of ZSM-5 loading showed great CO₂ and CH₄ permeability and selectivity when comparing with those with other ZSM-5 loading content. Among the synthesized membranes, the poly(BA-hda) gave the best separation performance, thus, its property details, viz. molecular weight, radius of gyration and hydrodynamic radius, were studied using static and dynamic light scattering as function of time. The swelling and sorption behaviours of the polybenzoxazine membranes were also studied.

บทคัดย่อ

กานต์สิริ ปักเคธาติ: การสังเคราะห์และการประยุกต์ใช้แผ่นเยื่อบางพอลิเมอร์เบนซอก ซาซีน (Synthesis and Applications of Polybenzoxazine Membranes) อ. ที่ปรึกษา: รอง ศาสตราจารย์ คร. สุจิตรา วงศ์เกษมจิตต์ และ ผู้ช่วยศาสตราจารย์ คร.ธัญญลักษณ์ ฉายสุวรรณ์, 100 หน้า

้งานวิจัยนี้ มุ่งเน้นไปที่การสังเคราะห์แผ่นเยื่อบางพอลิเมอร์เบนซอกซาซีนผ่านกรรมวิธี ที่เรียกว่า "quasi-solventless" โดยใช้สารตั้งต้น บิสฟีนอล-เอ, ฟอร์มอลดีไฮค์ และไคเอมีน เพื่อ ประยุกต์ใช้ในกระบานการแยกสาร ใคเอมีนที่นำมาศึกษามี 4 ชนิดคือ เฮกซะเมทธิลไดเอมีน (hda), เตตระเอธิลลีนเพนตะมีน (tepa) เอธิลลีนไคเอมีน (eda) และ ใตรเอธิลลีนเตตรามีน (teta) เพื่อสังเคราะห์แผ่นเยื่อบางพอลิเมอร์เบนซอกซาซีนที่ให้ชื่อย่อว่า poly(BA-hda), poly(BA-tepa, poly(BA-eda), และ poly(BA-teta) ตามลำดับ จากการทดลองพบว่า แผ่นเยื่อบาง poly(BA-hda) และ poly(BA-eda) ให้ประสิทธิภาพในการแยก 10:90 เอธานอลและน้ำ ด้วยกระบวนการเพอร์แว พอเรชั่นได้ดีมาก โดยให้ก่าการแยกผ่านมากกว่า 10,000 และความสามารถในการผ่านมากกว่า 1.00 กิโลกรัมต่อตารางเมตรต่อชั่วโมง ภายใต้สภาวะของอุณหภูมิของสารละลายผสมเอทานอล ที่ 70 องศาเซลเซียส และความหนาของแผ่นเยื่อบางที่ 200 ใมโครเมตร อย่างไรก็ตาม แผ่นเยื่อบาง poly(BA-eda) ให้ผลของการแยกผ่าน และความสามารถในการผ่านใค้สูงกว่า เมื่อปริมาณของเอ ทานอลเพิ่มขึ้น นอกจากนี้ ยังได้มีการสังเคราะห์แผ่นเยื่อบางที่เรียกว่า มิกซ์แมทริกเมมเบรน (MMM) โดยการผสม poly(BA-hda) กับซีโอไลต์ ZSM-5 เพื่อนำมาศึกษาการแยกก๊าซ ้ คาร์บอนไคออกไซค์และก๊าซมีเทน และจากการทคลองพบว่า แผ่นเยื่อบางที่มีซีโอไลต์ผสมอยู่เป็น ้ปริมาณ 5% โคยน้ำหนัก ให้ประสิทธิภาพในการแยกดีที่สุด จากการศึกษาแผ่นเยื่อบางทั้ง 4 ชนิดนี้ รวมทั้งศึกษาพฤติกรรมการบวมและการซึมซับ พบว่า poly(BA-hda) ให้ประสิทธิภาพในการแขก ดีที่สุด ดังนั้น จึงได้ทำการศึกษาเกี่ยวกับน้ำหนักและขนาดของพอลิเมอร์ โมเลกุล ซึ่งเปลี่ยนแปลง ตามเวลา โคยใช้เทคนิคการกระเจิงแสง

ACKNOWLEDGEMENTS

The present dissertation would not have been completed without the participation of the following people and organizations. The author would like to thank all for making this research accomplished.

The author deeply appreciates Assoc. Prof. Sujitra Wongkasemjit and Asst Prof. Thanyalak Chaisuwan, her research supervisors, who gave her an opportunity to study Ph.D program, for their kind advice, motivation, inspiration, help, encouragement, valuable suggestion, positive criticism, and proof-reading all of her works, manuscripts, and dissertation. She also would like to give her best regard to Prof. Alexander M. Jamieson at Case Western Reserve University, United States, for giving her an opportunity to do some research work in his laboratory. The author would like to give special thanks to Asst. Pomthong Malakul, Asst. Prof. Apanee Luengnaruemitchai and Asst. Prof. Bussarin Ksapabutr.

The author would like to express her appreciation to the Development and Promotion Science and Technology Thailand Project (DPST) for providing her a scholarship to continue her Ph.D. study, including expenses during being at Case Western Reserve University. She also would like to acknowledge the partial scholarship and partial funding of the research work provided by the Ratchadapisak Sompote Fund and the National Reserch Council of Thailand (NRCT). This thesis work is funded by the Petroleum and Petrochemical College, and by the Center of Excellence on Petrochemical and Materials Technology, Thailand.

The author would like to thank all of her friends who always encouraged her throughout the study. She also enlarges her thanks to all PPC staffs for their laboratory and official supports.

Finally, she wishes to express her appreciation to her family for their support, understanding, encouragement, and advice whenever she falls and needs someone to stand beside her.

TABLE OF CONTENTS

PAGE

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Schemes	ix
List of Figures	x
List of Table	xiii

CHAPTER

I	INTRODUCTION	1
	1.1 Introduction to polybenzoxazine	1
	1.2 Membrane separation	1
	1.3 Pervaporation	2
	1.4 Gas separation process	3
	1.5 Static light scattering	3
	1.6 Dynamic light scattering	3
	1.7 Objectives	4
II	LITERATURE REVIEW	5
	2.1 Literature review	5
	2.2 Characterization	9
III	EXPERIMENTAL	11
	3.1 Material	11
	3.2 Measurements	11
	3.3 Methodology	12
	3.4 Characterization	13

CHAPTER		PAGE
	3.5 Pervaporation studies	13
	3.6 Gas separation studies	14
	3.7 Light scattering studies	16
IV	DEVELOPMENT OF POLYBENZOXAZINE	
	MEMBRANES FOR ETHANOL ETHNOL-WATER	
	SEPARATION VIA PERVAPORATION	17
	4.1 Abstract	17
	4.2 Introduction	18
	4.3 Experimental	19
	4.4 Results and discussion	23
	4.5 Conclusions	36
	4.6 Acknowledgement	38
	4.7 References	38
V	HIGH PERFORMANCE OF POLYBENZOXAZINE	
	MEMBRANES FOR ETHANOL-WATER SEPARATIO	N
	VIA PERVAPORATION TECHNIQUE	40
	5.1 Abstract	40

.....

VI	HYBRID POLYBENZOXAZINE COMPOSITE			
	MEMBRANE FOR CO ₂ /CH ₄ SEPARATION	56		
	6.1 Abstract	56		
	6.2 Introduction	57		

5.2 Introduction

5.3 Experimental

5.5 Conclusions

5.7 References

5.4 Results and discussion

5.6 Acknowledgements

41

42

45

54

54

55

	٠	٠	٠	
v	1	1	1	

CHAPTER

	6.3 Experimental	57
	6.4 Results and discussion	62
	6.5 Conclusions	72
	6.6 Acknowledgements	73
	6.7 References	73
VII	STATIC AND DYNAMIC LIGHT SCATTERING	
	STUDY OF POLYBENZOXAZINE IN DIOXANE	75
	7.1 Abstract	75
	7.2 Introduction	76
	7.3 Experimental	76
	7.4 Results and discussion	78
	7.5 Conclusions	85
	7.6 Acknowledgements	85
	7.7 References	85
VIII	CONCLUSIONS	88
	8.1 Conclusions	88
	8.2 Recommendations for future work	88
	REFERENCES	90

CURRICULUM VITAE 99

LIST OF SCHEMES

SCHEMES

CHAPTER I

1.1	Simple synthesis reaction of polybenzoxazine	
	CHAPTER VI	

6.1	The synthesis of benzoxazine precursor.	60
6.2	Chemical structures of ZSM-5 (a) and Poly(BA-hda) (b).	67

CHAPTER VII

7.1	Synthesis of poly(BA-hda)	79
7.2	The possible crosslink in poly(BA-hda) : (a) intermolecular	
	crosslinking reaction, (b) intramolecular crosslinking	
	reaction.	83

LIST OF FIGURES

FIGURE

PAGE

32

CHAPTER I

1.1	Overview of pervaporation	2
	CHAPTER III	
3.1	Experimental set up for the pervaporation apparatus.	14
3.2	Experimental set up for a gas permeability apparatus.	15
3.3	Schematic of a membrane testing unit.	15
3.4	Experimental set up of light scattering	16
	CHAPTER IV	
4.1	Experimental set up for the pervaporation apparatus.	22
4.2	¹ H-NMR spectra of polybenzoxazine precursors: poly(BA-	
	hda) (a), poly(BA-teta) (b), and poly(BA-tepa) (c).	25
4.3	DSC thermograms of polybenzoxazine membranes:	
	poly(BA-hda) (a), poly(BA-teta) (b), and poly(BA-tepa) (c).	26
4.4	SEM micrographs of surface, cross-section and appearances	
	of poly(BA-hda) (a and d), poly(BA-teta) (b and e), and	
	poly(BA-tepa) (c and f).	28
4.5	Swelling degrees of polybenzoxazine membranes in water	
	(a) and ethanol (b) with time, and in the ethanol-water	
	mixtures (c).	30
4.6	ATR-IR spectra of the poly(BA-tepa) membrane immersed	
	in the ethanol-water mixtures and the characteristic peaks of	

4.7 % Ethanol in the retentate side of the poly(BA-hda) (a), poly(BA-teta) (b), and poly(BA-tepa) (c) membranes in the pervaporation process as a function of the operating time.
33

ethanol (a) and water (b).

FIGURE

Total permeation flux (a) and Arrhenius plot (b) of the 4.8 poly(BA-hda) membrane in the pervaporation process as a function of the feed solution temperature. 34 Total permeation flux of the poly(BA-hda) membrane in the 4.9 pervaporation process as a function of the membrane 35 thickness.

CHAPTER V

	CHAPTER VI	
	membranes as a function of the membrane thickness.	53
5.6	Total permeation fluxes of poly(BA-eda) and poly(BA-hda)	
	membranes as a function of the feed concentration.	52
5.5	Total permeation fluxes of poly(BA-eda) and poly(BA-hda)	
	membranes as a function of the feed temperature.	48
5.4	Total permeation fluxes of poly(BA-eda) and poly(BA-hda)	
	eda) (a)(c) and poly(BA-hda) (b)(d), respectively	47
5.3	SEM micrographs of surface and cross-section of poly(BA-	
	eda) (A) and poly(BA-hda) (B).	46
5.2	¹ H-NMR spectra of polybenzoxazine precursors: poly(BA-	
5.1	Experimental set up for the pervaporation apparatus.	44

6.1	Experimental setup for a gas permeability apparatus and	
	Schematic diagram of a membrane testing unit.	59
6.2	¹ H NMR spectra of polybenzoxazine precursors: Poly(BA-	
	hda).	62
6.3	Appearance of polybenzoxazine membrane: Poly(BA-hda)	
	and mixed matrix membranes: Poly(BA-hda)-ZSM-5	
	MMMs.	63

FIGURE

PAGE

6.4	SEM micrographs of surface and cross-section of Poly(BA-	
	hda) membrane: (a) and (b), and poly(BA-hda)–ZSM–5	
	MMMs with 1 (c) and (d), 5 (e) and (f), and 10 wt. $\%$ (g) and	
	(h) of ZSM-5 loadings.	64
6.5	XRD patterns of ZSM-5 and MMMs.	65
6.6	The FT-IR spectra of ZSM-5, Poly(BA-hda) and MMMs.	66
6.7	Effect of ZSM–5 loading on CO_2 and CH_4 permeability and	
	selectivity.	68
6.8	The FT-IR spectra of MMMs in CO_2 and after degas.	70
6.9	The FT-IR spectra of MMMs in CH₄ and after degas.	71

CHAPTER VII

7.1	¹ H NMR spectrum of poly(BA-hda)	79
7.2	Differential refractive index versus $1/\lambda^2$	80
7.3	Zimm plot of poly(BA-hda) at 48 h.	81
7.4	Molecular weight of poly(BA-hda) versus time	82
7.5	Correlation functions of poly(BA-hda) for various times.	84
7.6	Correlation function of poly(BA-hda) at 48 h.	84

LIST OF TABLES

TABLE

CHAPTER IV

4.1	Thermal stability of the polybenzoxazine membranes	26
4.2	Tensile properties of the polybenzoxazine membranes	27
4.3	Separation factors of the poly(BA-hda) membrane in the pervaporation	
	process as a function of the membrane thickness.	36
4.4	Performance of the poly membranes in ethanol-water separation	
	By pervaporation	37

CHAPTER V

5.1	Separation factors of ethanol-water using poly(BA-eda) and	
	poly(BA-hda) membranes as a function of the feed temperature	48
5.2	Solubilities of water, ethanol, poly(BA-hda), and poly(BA-eda)	50
5.3	Separation factors of poly(BA-eda) and poly(BA-hda) membranes as	
	a function of membrane thickness	54

CHAPTER VI

6.1	Performance of the polyme	r membranes in CO ₂ /CH ₄ separation	72
-----	---------------------------	--	----

CHAPTER VII

7.1	Molecular weight M_w , Radius of gyration R_g and hydrodynamic radius	
	R _h of poly(BA-hda)	82