INVESTIGATION OF NON-NOBLE METALS (Ni AND Fe) AS SUBSTITUTES OF NOBLE METALS (Pd AND Ru) SUPPORTED ON ACID ZEOLITES FOR WASTE TIRE PYROLYSIS

Lalita Saeaeh

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2012

551751

Investigation of Non-noble Metals (Ni and Fe) as Substitutes
of Noble Metals (Pd and Ru) Supported on Acid Zeolites for
Waste Tire Pyrolysis
Lalita Saeaeh
Petrochemical Technology
Assoc. Prof. Sirirat Jitkarnka

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

College Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Assoc. Prof. Sirirat Jitkarnka)

PPANI (Assoc. Prof. Apanee Luengnaruemitchai)

(Dr. Ruengsak Thitiratsakul)

ABSTRACT

5371011063: Petrochemical Technology Program
Lalita Saeaeh: Investigation of Non-noble Metals (Ni and Fe) as
Substitutes of Noble Metals (Pd and Ru) Supported on Acid Zeolites
for Waste Tire Pyrolysis
Thesis Advisor: Assoc. Prof. Sirirat Jitkarnka, 121 pp.
Keywords: Catalytic pyrolysis/ Waste tire/ Noble metal/ Non-noble metal/
Zeolite

Pyrolysis of waste tire is one of alternative techniques to produce petrochemical products. Noble metals supported on acid zeolite catalysts, especially Pd and Ru supported on acid zeolites (HMOR and HBeta), were reported as potential catalysts to produce the valuable petrochemical products from waste tire pyrolysis. Due to the high prices of noble metal catalysts, the objective of this research work was to use non-noble metal catalysts as substitutes of noble metal catalysts. The nonnoble metals (Ni and Fe) supported on acid zeolites (HMOR and HBeta) were used in this research because Ni and Fe catalysts have high activity in isomerization, cracking, and the ring opening of hydrocarbons. Moreover, Ni and Fe are elements in the same group as Pd and Ru noble metals, which is the VIIIB group, aiming to produce high valuable products similar to those obtained from the noble metals. It was found that 5%Ni/HBeta can be used as a substitute of 1%Pd/HBeta as a naphthaproducing catalyst since it produced the similar quantity of full range naphtha as 1%Pd/HBeta. Moreover, 5%Ni/HBeta produced the good quality of petroleum oil which contained high sat HCs/total aromatics and low sulfur content in oil. With using HMOR as a support, 20%Ni/HMOR appeared to be a capable catalyst for substituting 1%Pd/HMOR because 20%Ni/HMOR can produce as high quantity and quality as 1%Pd/HMOR. Furthermore, the petrochemical production by using 1%Ru/HBeta can be substituted by using 10%Fe/HBeta since it can produce the higher yields of light olefins, cooking gases, mixed C₄, and light mono-aromatics (BTXs) than those of 1%Ru/HBeta. Similarly, 20%Fe/HMOR can be used as a substitute of 1%Ru/HMOR for petrochemical products.

บทคัดย่อ

ลลิตา แซ่เอี้ยะ: การศึกษาการใช้นิกเกิลและ ไอรอนแทนพาลาเดียมและรูทีเนียมซึ่งบรรจุ บนซีโอไลท์ชนิดกรดสำหรับกระบวนการไพโรไลซิสยางรถยนต์หมดสภาพ (Investigation of Non-noble Metals (Ni and Fe) as Substitutes of Noble Metals (Pd and Ru) Supported on Acid Zeolites for Waste Tire Pyrolysis) อ. ที่ปรึกษา: รศ. ดร. ศิริรัตน์ จิตการค้า 121 หน้า

กระบวนการไพโรไลซิสยางรถยนต์หมดสภาพเป็นกระบวนการทางเลือกสำหรับการ ้ผลิตผลิตภัณฑ์ปีโตรเกมี โลหะมีตระกูลที่บรรจุบนซีโอไลท์ชนิคกรคโดยเฉพาะอย่างยิ่งพาลาเคียม และรูที่เนี้ยมบรรจุบนซีโอไลท์ชนิคมอร์และชนิคเบด้า ถูกกั้นพบว่าเป็นตัวเร่งปฏิกิริยาที่มีศักยภาพ ในการผลิตผลิตภัณฑ์ปีโตรเคมีจากกระบวนการไพโรไลซิสยางรถยนต์หมคสภาพ เนื่องจากโลหะ มีตระกูลนั้นมีราคาแพง งานวิจัยนี้จึงศึกษาการใช้โลหะไม่มีตระกูลแทนโลหะมีตระกูล นิกเกิล และใอรอนซึ่งเป็นโลหะไม่มีตระกูลได้ถูกเลือกนำมาศึกษาเนื่องจากตัวเร่งทั้งสองนั้นมี ความสามารถสูงในการทำปฏิกิริยาไอโซเมอร์ไรเซชัน ปฏิกิริยาการแตกตัวของโมเลกุล และ ปฏิกิริยาเปิดวงของไฮโครคาร์บอน ยิ่งไปกว่านั้นนิกเกิลและไอรอนอยู่ในกลุ่มโลหะทรานซิชัน เดียวกันกับพาลาเดียมและรูทีเนียมคือกลุ่ม 8 บี จึงมีความเป็นไปได้ว่าจะสามารถผลิตผลิตภัณฑ์ปี ้โตรเกมีประเภทเดียวกันได้ จากการศึกษาพบว่า ตัวเร่งปฏิกิริยานิกเกิลร้อยละ 5 โดยน้ำหนักซึ่ง บรรจุบนซีโอไลท์เบต้านั้น สามารถนำไปใช้แทนตัวเร่งปฏิกิริยาพาลาเคียมร้อยละ 1 โคยน้ำหนัก ที่บรรจุบนซีโอไลท์ประเภทเคียวกัน ในการผลิตน้ำมันที่มีคุณภาพและปริมาณที่ใกล้เคียงกัน ซึ่ง ้น้ำมันที่ผลิตได้นั้นมีสารประกอบอะโรมาติกส์และซัลเฟอร์ในปริมาณที่ต่ำ ส่วนการเปรียบเทียบ พาลาเคียมกับนิกเกิลบรรจุบนซีโอไลท์ชนิคมอร์พบว่า ตัวเร่งปฏิกิริยาของนิกเกิลร้อยะละ 20 โคย น้ำหนักซึ่งบรรจุบนซีโอไลท์ชนิคมอร์นั้นสามารถใช้ในการผลิตน้ำมันที่มีปริมาณและคุณภาพ ใกล้เคียงกับการใช้ตัวเร่งปฏิกิริยาพาลาเคียมร้อยละ 1 โคยน้ำหนักที่บรรจุบนซีโอไลท์ชนิค เดียวกัน นอกจากนี้การผลิตผลิตภัณฑ์ปีโตรเคมีด้วยตัวเร่งปฏิกิริยาไอรอนร้อยละ10 โดยน้ำหนักที่ บรรจุบนซีโอไลท์ชนิคเบค้าเป็นตัวเร่งปฏิกิริยานั้น มีประสิทธิภาพเทียบเคียงกับการใช้รูทีเนียม ร้อยละ 1 โดยน้ำหนักที่บรรจุบนซีโอไลท์ชนิดเบต้า เนื่องจากสามารถผลิตโอเลฟินส์ แก๊สหุ้งต้ม และสารประกอบโมโนอโรมาติกส์ได้มากกว่าการใช้รูทีเนียมร้อยละ 1 โดยน้ำหนักที่บรรจุบนซี โอไลท์ชนิดเดียวกัน นอกจากนี้ตัวเร่งปฏิกิริยาไอรอนร้อยละ 20 โดยน้ำหนักที่บรรจุบนซีโอไลท์ ชนิดมอร์ก็สามารถผลิตผลิตภัณฑ์ปีโตรเคมีได้เทียบเคียงกับการใช้รูทีเนียมร้อยละ 1 โดยน้ำหนักที่ บรรจุบนซีโอไลท์ชนิดเดียวกัน

ACKNOWLEDGEMENTS

This research work could not have been accomplished without the assistance and supports from all these individuals and organizations.

First of all, I am deeply grateful to my advisor, Assoc. Prof. Sirirat Jitkarnka, who gave me a great experience and always encouraged me. It was so kind of her to help me everything and provide me a valuable suggestion, beneficial recommendations and intensive attention in my thesis, especially her patience for proofread my thesis book.

Special thanks to Assoc. Prof. Apanee Luengnaruemitchai, and Dr. Ruengsak Thitiratsakul who served as my committees.

I would like to thank for the scholarship and funding supported by the Petroleum and Petrochemical College, Chulalongkorn University, Thailand Research Fund and the Commissions on Higher Education, and the Center of Excellence on Petrochemical and Materials Technology, Thailand.

My sincere appreciation also extends to all staff members at The Petroleum and Petrochemical College who have provided helpful assistance and many useful technical supports at various occasions.

Finally, I also would like to dedicate this thesis to my parents who have always been my encouragement. I deeply thanks to them for their love, care and understanding to me all the time

TABLE OF CONTENTS

	PAGE
Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	V
Table of Contents	vi
List of Tables	viii
List of Figures	xii
CHAPTER	
I INTRODUCTION	1
II BACKGROUND AND LITERATURE REVIEW	3

III EXPERIMENTAL

	3.1 Materials and Equipment	16
	3.1.1 Waste Tire Sample	16
	3.1.2 Equipment	16
	3.1.3 Chemicals and Solvents	17
	3.2 Experimental Procedures	17
	3.2.1 Catalyst Preparation	17
	3.2.2 Pyrolysis of Waste Tire	18
	3.2.3 Products Analysis	19
	3.2.4 Catalyst Characterization	21
IV	RESULTS AND DISCUSSION	22
	4.1 Comparison of Ni with Pd	22
	4.1.1 Using HBeta as a Support	23
	4.1.2 Using HMOR as a Support	34

16

CHAPTER			PAGE
	4.2 Comparis	son of Fe with Ru	43
	4.2.1 Us	ing HBeta as a Support	43
	4.2.2 Us	ing HMOR as a Support	52
V	CONCLUSI	ONS AND RECOMMENDATIONS	61
	REFERENC	ES	63
	APPENDIC	ES	67
	Appendix A	Temperature Profiles	67
	Appendix B	Yields of Pyrolysis Products	85
	Appendix C	Liquid Composition in Maltenes	90
	Appendix D	Petroleum Fractions of Derived Oils	92
	Appendix E	Composition of Char, Coke, and	
		Asphaltenes	93
	Appendix F	Sulfur in Derived Oils and Sulfur	
		Deposition on Spent Catalysts	94
	Appendix G	True Boiling Point Curves of Compositions	
		in Pyrolytic Oils	95
	Appendix H	Carbon Number Distribution of Maltenes	113
	Appendix I	Carbon Number Distribution of Mono-	
		aromatics	117

LIST OF TABLES

TABLE

2.1	Structure of commercial zeolites	7
3.1	Optimized compositions and volumes of mobile phases for	
	the chromato-graphic column	20
4.1	Concentration of light mono-aromatics (BTXs)	29
4.2	Precursor price of palladium and nickel	33
4.3	Yield of benzene, toluene and xylenes in mono-aromatics	
	fraction obtained from using Ni/HMOR catalysts in	
	comparison with that from 1%Pd/HMOR	36
4.4	Precursor price of palladium and nickel	42
4.5	Yields of benzene, toluene and xylenes in mono-aromatics	
	obtained from using Fe/HBeta catalysts in comparison with	
	those from 1%Ru/HBeta	47
4.6	Precursor prices of ruthenium and iron	51
4.7	Yields of benzene, toluene and xylenes (BTXs) in mono-	56
	aromatics obtained from using Fe/HMOR catalysts in	
	comparison with those from 1%Ru/HMOR.	
4.8	Precursor prices of ruthenium and iron	60
Al	Pyrolysis conditions: Non-catalytic Pyrolysis	67
A2	Pyrolysis conditions: 1%Pd/HBeta catalyst	68
A3	Pyrolysis conditions: 5%Ni/HBeta catalyst	69
A4	Pyrolysis conditions: 10%Ni/HBeta catalyst	70
A5	Pyrolysis conditions: 20%Ni/HBeta catalyst	71
A6	Pyrolysis conditions: HMOR catalyst	72
A7	Pyrolysis conditions: 1%Pd/HMOR catalyst	73
A8	Pyrolysis conditions: 5%Ni/HMOR catalyst	74
A9	Pyrolysis conditions: 10%Ni/HMOR catalyst	75
A10	Pyrolysis conditions: 20%Ni/HMOR catalyst	76

PAGE

TABLE

A11	Pyrolysis conditions: 1%Ru/HBeta catalyst	77
A12	Pyrolysis conditions: 5%Fe/HBeta catalyst	78
A13	Pyrolysis conditions: 10%Fe/HBeta catalyst	79
A14	Pyrolysis conditions: 20%Fe/HBeta catalyst	80
A15	Pyrolysis conditions: 1%Ru/HMOR catalyst	81
A16	Pyrolysis conditions: 5%Fe/HMOR catalyst	82
A17	Pyrolysis conditions: 10%Fe/HMORcatalyst	83
A18	Pyrolysis conditions: 20%Fe/HMORcatalyst	84
B1	Yield of product distribution obtained from pyrolysis with	
	1%Pd/HBeta and varied Ni/HBeta	85
B2	Yield of product distribution obtained from pyrolysis with	
	1%Pd/HMOR and varied Ni/HMOR	85
B3	Yield of product distribution obtained from pyrolysis with	
	1%Ru/HBeta and varied Fe/HBeta	85
B4	Yield of product distribution obtained from pyrolysis with	
	1%Ru/HMOR and varied Fe/HMOR	85
B5	Yield of gas composition obtained from pyrolysis with	
	1%Pd/HBeta and varied Ni/HBeta	86
B6	Yield of gas composition obtained from pyrolysis with	
	1%Pd/HMOR and varied Ni/HMOR	87
B7	Yield of gas composition obtained from pyrolysis with 1%	
	Ru/HBeta and varied Fe/HBeta	88
B8	Yield of gas composition obtained from pyrolysis with	
	1%Ru/HMOR and varied Fe/HMOR	89
Cl	Concentration of liquid compositions obtained from	
	pyrolysis with 1%Pd/HBeta and varied Ni/HBeta	90
C2	Concentration of liquid compositions obtained from	
	pyrolysis with 1%Pd/HMOR and varied Ni/HMOR	90

PAGE

TABLE

C3	Concentration of liquid compositions obtained from	
	pyrolysis with 1%Ru/HBeta and varied Fe/HBeta	91
C4	Concentration of liquid compositions obtained from	
	pyrolysis with 1%Ru/HMOR and varied Fe/HMOR	91
Dl	Petroleum fractions in maltenes obtained from pyrolysis	
	with 1%Pd/HBeta and varied Ni/HBeta	92
D2	Petroleum fractions in maltenes obtained from pyrolysis	
	with 1%Pd/HMOR and varied Ni/HMOR	92
D3	Petroleum fractions in maltenes obtained from pyrolysis	
	with 1%Ru/HBeta and varied Fe/HBeta	92
D4	Petroleum fractions in maltenes obtained from pyrolysis	
	with 1%Ru/HMOR and varied Fe/HMOR	92
El	Char, Coke, and Asphaltenes obtained from pyrolysis with	
	1%Pd/HBeta and varied Ni/HBeta	93
E2	Char, Coke, and Asphaltenes obtained from pyrolysis with	
	1%Pd/HMOR and varied Ni/HMOR	93
E3	Char, Coke, and Asphaltenes obtained from pyrolysis with	
	1%Ru/HBeta and varied Fe/HBeta	93
E4	Char, Coke, and Asphaltenes obtained from pyrolysis with	
	1%Ru/HMOR and varied Fe/HMOR	93
Fl	Sulfur in derived oils and sulfur deposition on spent catalyst	
	obtained from pyrolysis with 1%Pd/HBeta and varied	
	Ni/HBeta	94
F2	Sulfur in derived oils and sulfur deposition on spent catalyst	
	obtained from pyrolysis with 1%Pd/HMOR and varied	
	Ni/HMOR	94
F3	Sulfur in derived oils and sulfur deposition on spent catalyst	
	obtained from pyrolysis with 1%Ru/HBeta and varied	
	Fe/HBeta	94

F4	Sulfur in derived oils and sulfur deposition on spent catalyst	
	obtained from pyrolysis with 1%Ru/HMOR and varied	
	Fe/HMOR	94
Gl	True boiling point curves: - non catalytic case	95
G2	True boiling point curves: - 1%Pd-HBeta catalyst	96
G3	True boiling point curves: - 5%Ni-HBeta catalyst	97
G4	True boiling point curves: - 10%Ni-HBeta catalyst	98
G5	True boiling point curves: - 20%Ni-HBeta catalyst	99
G6	True boiling point curves: - HMOR catalyst	100
G7	True boiling point curves: - 1%Pd/HMOR catalyst	101
G8	True boiling point curves: - 5%Ni/HMOR catalyst	102
G9	True boiling point curves: - 10%Ni/HMOR catalyst	103
G10	True boiling point curves: - 20%Ni/HMOR catalyst	104
G11	True boiling point curves: - 1%Ru/HBeta catalyst	105
G12	True boiling point curves: - 5%Fe/HBeta catalyst	106
G13	True boiling point curves: - 10%Fe/HBeta catalyst	107
G14	True boiling point curves: - 20%Fe/HBeta catalyst	108
G15	True boiling point curves: - 1%Ru/HMOR catalyst	109
G16	True boiling point curves: - 5%Fe/HMOR catalyst	110
G17	True boiling point curves: - 10%Fe/HMOR catalyst	111
G18	True boiling point curves: - 20%Fe/HMOR catalyst	112
H1	Influences of 1%Pd/HBeta and varied Ni/HBeta	113
H2	Influences of 1%Pd/HMOR and varied Ni/HMOR	114
H3	Influences of 1%Ru/HBeta and varied Fe/HBeta	115
H4	Influences of 1%Ru/HMOR and varied Fe/HMOR	116
11	Influences of 1%Pd/HBeta and varied Ni/HBeta	117
I2	Influences of 1%Pd/HMOR and varied Ni/HMOR	118
I3	Influences of 1%Ru/HBeta and varied Fe/HBeta	119
I 4	Influences of 1%Ru/HMOR and varied Fe/HMOR	120

LIST OF FIGURES

FIGURE

2.1	Fuel quality specifications	4
2.2	Reaction network for 4,6-dimethyldibenzothiophene	5
	hydrodesulfuriztion	
3.1	Schematic of the pyrolysis process	18
4.1	G/L ratio obtained from using various % Ni/HBeta in	
	comparison with that non-catalytic and 1%Pd/HBeta cases	22
4.2	Yield of olefins obtained from using various % Ni/HBeta in	
	comparison with those from 1%Pd/HBeta	23
4.3	Yield of cooking gases obtained from using various	
	%Ni/HBeta in comparison with those from 1%Pd/HBeta	24
4.4	Yield of mixed C_4 obtained from using various %Ni/HBeta	
	zeolite in comparison with that from 1%Pd/HBeta.	25
4.5	TPR spectra of various % Ni loading on HBeta zeolite	26
4.6	Chemical compositions in maltenes obtained from using	
	Ni/HBeta catalysts in comparison with those from	
	1%Pd/HBeta	27
4.7	Average carbon number of mono-aromatics fractions	
	obtained from using various % Ni/HBeta in comparison with	
	that of 1%Pd/HBeta.	28
4.8	Petroleum fractions in maltenes obtained from using varied	
	%loading of Ni/HBeta catalysts in comparison with that of	
	1%Pd/HBeta	29
4.9	Carbon number distribution of maltenes obtained from using	
	various %loading of Ni/HBeta catalysts in comparison with	
	that from 1%Pd/HBeta	31

PAGE

4.10	Average carbon number of maltenes and mono-aromatics	
	fractions in comparison with that from 1%Pd/HBeta	31
4.11	Sat HCs/Total aromatics ratio obtained from using Ni/HBeta	
	catalyst in comparison with that from 1%Pd/HBeta	31
4.12	Sulfur content on spent catalysts and in pyrolytic oil	
	obtained from varied Ni/HBeta catalysts in comparison with:	
	those from 1%Pd/HBeta.	32
4.13	L/G ratio from using various % Ni/HMOR in comparison	
	with that of non-catalytic and 1%Pd/HMOR cases	34
4.14	Chemical compositions in maltenes from using Ni/HMOR	
	catalysts in comparison with those from 1%Pd/HMOR	35
4.15	Average carbon number of mono-aromatics obtained from	
	using Ni/HMOR catalyst in comparison with that of	36
	1%Pd/HMOR	
4.16	Petroleum fractions in maltenes obtained from using	
	Ni/HMOR catalysts in comparison with those from	37
	1%Pd/HMOR	
4.17	True boiling point curves of maltenes obtained from using	
	Ni/HMOR catalysts in comparison with that from	38
	1%Pd/HMOR	
4.18	Sat HCs/Total aromatics ratio obtained from using	
	Ni/HMOR catalysts in comparison with that from	39
	1%Pd/HMOR	
4.19	(a) Yield of ethylene and propylene obtained from using	
	Ni/HMOR in comparison with those from 1%Pd/HMOR,	
	pure HMOR and non-catalytic cases	40
	(b) Yield of propane and mixed C ₄ obtained from using	
	Ni/HMOR in comparison with those from 1%Pd/HMOR,	
	pure HMOR and non-catalytic cases	40

	(c) Yield of mixed C_4 obtained from using Ni/HMOR in	
	comparison with those from 1%Pd/HMOR, pure HMOR	
	and non-catalytic cases	41
4.20	Sulfur content on spent catalysts and in pyrolytic oil	
	obtained from Ni/HMOR catalysts in comparison with those	
	from 1%Pd/HMOR	42
4.21	G/L ratio obtained from using various % Fe/HBeta in	
	comparison with that of non-catalytic and 1%Ru/HBeta	
	cases	43
4.22	(a) Yield of ethylene and propylene obtained from using	
	Fe/HBeta in comparison with those from 1%Ru/HBeta, pure	
	HBeta and non-catalytic cases	44
	(b) Yield of propane and mixed C_4 obtained from using	
	Fe/HBeta in comparison with those from 1%Ru/HBeta, pure	
	HBeta and non-catalytic cases	45
	(c) Yield of mixed C ₄ obtained from using Fe/HBeta in	
	comparison with that from 1%Ru/HBeta, pure HBeta and	
	non-catalytic cases	45
4.23	Chemical compositions in maltenes from using Fe/HBeta	
	catalysts in comparison with those from 1%Ru/HBeta	46
4.24	Average carbon number of mono-aromatics obtained from	
	using Fe/HBeta catalysts in comparison with 1%Ru/HBeta	47
4.25	Petroleum fractions in maltenes obtained from using	
	Fe/HBeta catalysts in comparison with those of	
	1%Ru/HBeta	48
4.26	True boiling point curves of maltenes obtained from using	
	Fe/HBeta catalysts in comparison with that from	
	1%Ru/HBeta	49

4.27	Average carbon number of maltenes obtained from using	
	Fe/HBeta catalyst in comparison with that from	
	1%Ru/HBeta	49
4.28	Sat HCs/Total aromatics ratio obtained from using Fe/HBeta	
	catalysts in comparison with that from 1%Ru/HBeta	50
4.29	Sulfur content on spent catalysts and in pyrolytic oils	
	obtained from Fe/HBeta catalysts in comparison with those	
	from 1%Ru/HBeta	51
4.30	G/L ratio obtained from using various % Fe/HMOR in	
	comparison with that of pure HMOR and 1%Ru/HMOR	
	cases	52
4.31	(a) Yield of light olefins obtained from using Fe/HMOR in	
	comparison with those from 1%Ru/HMOR, pure HMOR	
	and non-catalytic cases	53
	(b) Yield of cooking gases obtained from using Fe/HMOR	
	catalysts in comparison with those from 1%Ru/HMOR, pure	
	HMOR and the non-catalytic cases	54
	(c) Yield of mixed C_4 obtained from using Fe/HMOR	
	catalysts in comparison with those from 1%Ru/HMOR, pure	
	HMOR and the non-catalytic cases	54
4.32	Chemical compositions in maltenes from using Fe/HMOR	
	catalysts in comparison with those from 1%Ru/HMOR	55
4.33	Average carbon number of mono-aromatics obtained from	
	using Fe/HMOR catalysts in comparison with 1%Ru/HMOR	56
	Petroleum fractions in maltenes obtained from using	
4.34	Fe/HMOR catalysts in comparison with those of	
	1%Ru/HMOR and pure HMOR cases	57

4.35	True boiling point curves of maltenes obtained from using	
	Fe/HMOR catalysts in comparison with that from	
	1%Ru/HMOR	58
4.36	Sat HCs/Total aromatics ratio obtained from using	
	Fe/HMOR catalysts in comparison with that from	
	1%Ru/HMOR	58
4.37	Sulfur content on spent catalysts and in pyrolytic oil	
	obtained from Fe/HMOR catalysts in comparison with those	
	from 1%Ru/HMOR	59

.