

REFERENCES

- Aboul-Gheit, A.K., Aboul-Fotouh, S.M., and Aboul-Gheit, N.A.K., (2005).
 Hydroconversion of cyclohexane using catalysts containing Pt, Pd, Ir and Re supported on H-ZSM-5 zeolite. <u>Applied Catalysis A: General</u>, 283, 157-164
- Adjaye, J.D., and Bakhshi, N.N., (1995). Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part I: Conversion over various catalysts. <u>Fuel Processing Technology</u>, 45, 161-183
- Auerbach, S.M., Carrado, K.A., and Dutta, P.K., (2003) <u>Handbook of Zeolite</u> <u>Science and Technology</u>, USA: Marcel Dekker
- Aylón, E., Murillo, R., Fernández-Colino, A., Aranda, A., García, T., Callén, M.S., and Martral, A.M., (2007). Emission from the combustion of gas-phase products at tyre pyrolysis. Journal of Analytical and Applied Pyrolysis, 79, 210-214
- Castaño, P., Pawelec, B., Fierro, J.L.G., Arandes, J.M., and Bilbao, J.,(2006). Aromatics reduction of pyrolysis gasoline (PyGas) over HY-supported transition metal catalysts. <u>Applied Catalysis A: General</u>, 315, 101-113
- Chang, Y.M., (1996). On pyrolysis of waste tire: degradation rate and product yields. <u>Resources, Consevation and Recycling</u>, 17, 125-139
- Choosuton, A., (2007). <u>Development of Waste Tire Pyrolysis for the Production of</u> <u>Commercial Fuels: Effect of Noble Metals and Supports</u>. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Cunliffe, A.M., and Williams, P.T., (1998). Composition of oils derived from the batch pyrolysis of tyres. Journal of Analytical and Applied Pyrolysis, 44, 131-152
- Diez, C., Martínez, O., Calvo, L.F., Cara, J., and Morán, A.,(2004). Pyrolysis of tyres. Influence of the final temperature of the process on emissions and the calorific value of the products recovered. <u>Waste Management</u>, 24, 463-469

- Dũng, N.A., Tanglumlert, W., and Jitkarnka, S., (2008). Effects of pyrolysis temperature and Pt-loaded catalysts on polar-aromatic content in tirederived oil. <u>Applied Catalysis B: Environmental</u>, 91, 300-307
- Dũng, N.A., Tanglumlert, W., Wongkasemjit, S., and Jitkarnka, S., (2010). Roles of ruthenium on catalytic pyrolysis of waste tire and the changes of its activity upon the rate of calcination. <u>Journal of Analytical and Applied Pyrolysis</u>, 87, 256-262
- Eswaramoorthi, L., Bhavani, A.G., and Lingappan, N., (2003). Activity, selectivity and stability of Ni-Pt loaded zeolite-β and mordenite catalysts for hydroisomerisation of *n*-heptane. <u>Applied Catalysis A: General</u>, 253, 469-486
- Fúnez, A., Lucas, A.D., Sánchez, P., Ramos, M.J., and Valverde, J.L., (2008) Hydroisomerization in liquid phase of a refinery naphtha stream over Pt-Ni/H-beta zeolite catalysts. <u>Chemical Engineering Journal</u>, 136, 267-275
- Guo, J., Lou, H., Zhao, H., Zheng, L., and Zheng, X., (2005). Dehydrogenation and aromatization of propane over rhenium-modified HZSM-5 catalyst. <u>Journal</u> <u>of Molecular Catalysis A: Chemical</u>, 239, 222-227
- He, C., Wang, Y., Cheng, Y., Lambert, C.K., and Yang, R., (2009). Activity, stability and hydrocarbon deactivation of Fe/Beta catalyst for SCR of NO with ammonia. <u>Applied Catalysis A: General</u>, 368, 121-126
- Hossain, M.M., (2006). Influence of noble metals (Rh, Pd, Pt) on Co-saponite catalysts for HDS and HC of heavy oil. <u>Chemical Engineering Journal</u>, 123, 15-23
- Ishihara, A., Dumeignil, F., Lee, J., Mitsuhashi, K., Qian, E.W., and Kabe, T., (2005). Hydrodesulfurization of sulfur-containing polyaromatic compounds in light gas oil using noble metal catalysts. <u>Applied Catalysis A: General</u>, 289, 163-173
- Juszczyk, W., and Karpiński, Z., (2001). Hydrocarbon reactions on Pd-Re/Al₂O3 catalysts. <u>Applied Catalysis A: General</u>, 206, 67-78
- Klimova, T., Vara, P.M., and Lee, I.P (2010). Development of new NiMo/g-alumina catalysts doped with noble metals for deep HDS, <u>Catalysis Today</u>, 150, 171-178

- Kaminsky, W., and Mennerich, C.,(2001). Pyrolysis of synthetic tire rubber in a fluidised-bed reactor to yield 1,3-butadiene, styrene and carbon black, <u>Journal of Analytical and Applied Pyrolysis</u>, 58-59, 803-811
- Lee, S., Speight, J.G., and Loyalka, S.K., (2007). <u>Handbook of Alternative Fuel</u> <u>Technologies</u>, New York: CSC Press.
- Loiha, S., Föttinger, K., Zorn, K., Klysubun, W., Rupprechter, G., and Wittayakun, J., (2009). Catalytic enhancement of platinum supported on zeolite beta for toluene hydrogenation by addition of palladium. <u>Journal of Industrial and Engineering Chemistry</u>, 15, 819-823
- Ma, X., Sun, Q., Ying, W., and Fang, D., (2009). Effects of the ratio of Fe to Co over Fe-Co/SiO₂ bimetallic catalysts on their catalytic performance for Fischer-Tropsch synthesis. Journal of Natural Gas Chemistry, 18, 232-236
- Mhodmonthin, A. (2005). <u>Development of Waste Tire Pyrolysis Process for</u> <u>Production of Fuel and Diesel Oils</u>. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Navarro, R., Pawelec, B., Fierro, J.L.G., Vasudevan, P.T., Cambra, J.F., Guemez, M.B., and Arias, P.L., (1999). Dibenzothiophene hydrodesulfurization on HY-zeolite-supported transition metal sulfide catalysts. <u>Fuel Processing Technology</u>, 61, 73-88
- Olazar, M., Arabiourrutia, M., López, G., Aguado, R., and Bilbao, J., (2008). Effect of acid catalysts on scrap tyre pyrolysis under fast heating conditions. Journal of Analytical and Applied Pyrolysis, 82, 199-204
- Oyama, S.T., and Lee, Y.K., (2008). The active site of nickel phosphide catalysts for the hydrodesulfurization of 4,6-DMDBT. Journal of catalysis, 258, 393-400
- Pour, A.N., Zamani, Y., Tavasoli, A., Shahri, S.M.K., and Taheri, S., (2008). Study on products distribution of iron and iron-zeolite catalysts in Fischer-Tropsch synthesis. <u>Fuel</u>, 87, 2004-2012
- Rodriguez, I.M., Laresgoiti, M.F., Cabrero, M.A., Torres, A., and Caballero, B., (2001). Pyrolysis of scrap tyres. <u>Feul Processing Technology</u>, 72, 9-22

- Tavasoli, A., Trépanier, M., Abbaslou, R.M.M., Dalai, A., and Abatzoglou, N., (2009). Fischer-Tropsch synthesis on mono- and bimetallic Co and Fe catalysts supported on carbon nanotubes, <u>Fuel Processing technology</u>, 90, 1486-1494
- Williams, P.T., Serpil Besler., and Taylor, D.T., (1990). The pyrolysis of scrap automotive tyres The influence of temperature and heating rate on product composition. <u>Fuel</u>, 69, 1474-1482
- Williams, P.T. and Taylor, D.T., (1993). Aromatization of type pyrolysis oil to yield polycyclic aromatic hydrocarbons. <u>Fuel</u>, 72, 1469-1474
- Williams, P.T., and Brindle, A.J. (2002). Catalytic pyrolysis of tyres: influence of tyres: influence of catalyst temperature. <u>Fuel</u>, 81, 2425-2434.
- Williams, P.T., and Brindle, A.J. (2003). Aromatic chemicals from the catalytic pyrolysis of scrap tyres. <u>Journal of Analytical and Applied Pyrolysis</u>, 67, 143-164.
- Williams, P.T., and Richard P.B (1994). Sulfur-polycyclic aromatic hydrocarbons in tyre pyrolysis oil. <u>Fuel</u>, 74, 736-742
- Zabaniotou, A.A., and Stavropoulos, G., (2003). Pyrolysis of used automobile tires and residual char utilization. Journal of Analytical and Applied Pyrolysis, 70, 711-722

APPENDICES

Appendix A Temperature Profiles

 Table A1 Pyrolysis conditions: Non-catalytic Pyrolysis

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	TI	Т2	Time (min)	TI	Т2	Time (min)	Tl	T2	Time (min)	Tl	Т2
2	_23.7	24.8	32	345.4	505.6	62	350.4	496.6	92	355.0	499.5
4	29.9	35.5	34	358.0	562.1	64	350.6	499.6	94		
6	41.6	54.1	36	411.3	547.0	66			96	353.0	500.1
8	58.5	79.5	38	410.8	533.0	68	350.1	499.5	98	353.3	500.1
10	81.7	114.9	40	403.4	508.8	70	349.0	499.6	100	351.7	501.2
12	115.7	161.7	42	397.2	495.2	72	349.8	500.2	102	351.5	500.8
14	145.5	201.9	44	389.5	503.2	74	350.4	499.8	104	350.9	499.5
16	183.9	251.6	46	379.3	499.9	76	350.1	500.3	106	349.9	500.1
18	226.1	309.8	48	372.2	497.7	78	348.6	500.5	108	350.1	500.5
20	274.5	369.0	50	366.2	499.1	80	348.2	500.2	110	349.1	500.2
22	310.1	427.9	52	351.5	507.3	82	350.6	501.7	112	349.6	499.2
24	321.5	439.3	54	358.2	502.2	84	354.6	499.8	114	350.7	499.6
26	323.0	358.4	56	353.2	498.0	86	354.0	500.3	116	351.1	498.4
28	313.0	418.3	58	351.0	497.3	88	354.6	501.0	118	350.1	501
30	321.5	444.1	60	350.5	502.0	90	354.4	500.9	120	350.6	500.5

Figure A1 Temperature profiles of non-catalytic pyrolysis case.

Table A2 Pyrolysis conditions: 1%Pd/HBeta catalyst

Tire = 30 g, N₂ flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	TI	T2	Time (min)	T1	T2	Time (min)	T1	T2	Time (min)	T1	Т2
2	24.0	26.4	32	339.8	480.0	62	400.2	499.7	92	371.5	500.1
4	28.2	38.3	34	341.8	485.8	64	398.5	503.2	94	370.6	495.2
6	36.4	56.1	36	347.8	506.0	66	397.7	497.9	96	368.8	499.0
8	49.1	81.9	38	370.6	506.2	68	395.1	504.8	98	367.4	498.3
10	66.6	115.0	40	385.2	501.2	70	392.5	497.1	100	365.7	502.2
12	88.9	154.7	42	398.4	498.4	72	389.5	497.5	102	363.3	504.9
14	116.3	196.4	44	402.4	503.7	74	388.3	497.3	104	361.7	502.0
16	148.0	242.3	46	405.4	499.0	76	387.9	499.1	106	360.6	494.2
18	183.6	293.4	48	408.3	503.2	78	385.1	499.9	108	359.1	495.6
20	220.0	345.0	50	408.2	502.7	80	381.9	501.5	110	357.2	499.3
22	264.0	414.1	52	408.7	499.3	82	380.5	498.7	112	356.9	498.5
24	309.0	440.1	54	407.5	501.3	84	378.9	503.0	114	354.8	499.0
26	329.4	481.0	56	406.3	499.7	86	376.2	499.3	116	353.3	499.3
28	330.2	490.9	58	403.4	504.2	88	376.2	503.9	118	351.6	499.5
30	330.5	489.0	60	402.9	498.2	90	373.7	504.5	120	350.3	500.8

Figure A2 Temperature profiles of waste tire pyrolysis with using 1% Pd/HBeta catalyst.

Table A3 Pyrolysis conditions: 5%Ni/HBeta catalyst

Tire = 30 g, N₂ flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	T1	T2	Time (min)	TI	T2	Time (min)	Tl	T2	Time (min)	Tl	T2
2	26.1	28.9	32	343.2	483.8	62	430.9	500.9	92	385.8	499.8
4	31.3	40.7	34	387.4	495.6	64	427.6	498.4	94	382.9	500.3
6	40.4	58.5	36	403.9	510.6	66	424.5	499.3	96	380.1	499.5
8	56.4	85.6	38	426.0	512.9	68	420.7	499.4	98	377.4	499.6
10	79.3	120.1	40	440.9	510.9	70	417.2	500.4	100	375.4	500.0
12	105.9	160.6	42	447.4	506.3	72	414.3	499.8	102	373.4	499.8
14	134.7	205.1	44	452.0	501.4	74	411.0	499.4	104	371.2	499.8
16	166.5	256.3	46	450.3	504.4	76	408.2	499.8	106	368.6	500.1
18	201.5	307.7	48	452.9	502.8	78	405.4	498.3	108	366.3	499.9
20	236.0	361.7	50	450.8	496.1	80	402.7	500.1	110	364.4	500.1
22	285.8	411.7	52	448.6	497.2	82	399.4	500.3	112	362.5	499.8
24	334.7	446.5	54	442.0	499.3	84	395.2	500.0	114	360.8	499.8
26	344.0	474.3	56	441.7	499.2	86	394.2	499.9	116	358.3	500.0
28	294.0	428.3	58	437.3	499.3	88	390.9	499.5	118	357.4	500.0
30	311.2	483.0	60	434.4	499.9	90	388.3	500.4	120	355.8	498.9

Figure A3 Temperature profiles of waste tire pyrolysis with using 5% Ni/HBeta catalyst.

Table A4 Pyrolysis conditions: 10%Ni/HBeta catalyst

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	TI	T2	Time (min)	TI	T2	Time (min)	TI	T2	Time (min)	Tl	T2
2	26.8	28.9	32	340.1	539.2	62	369.6	499.3	92	352.4	500.5
4	33.3	42.2	34	368.7	521.1	64	368.6	500.8	94	351.3	500.0
6	44.5	61.3	36	367.7	511.3	66	367.2	499.8	96	350.4	500.1
8	61.9	89.7	38	359.7	500.4	68	365.6	500.2	98	349.5	501.1
10	86.1	123.1	40	357.5	496.6	70	364.6	500.3	100	349.9	500.3
12	113.9	165.3	42	358.7	501.4	72	363.8	500.0	102	353.8	499.9
14	148.3	216.5	44	359.8	500.7	74	362.6	500.3	104	357.6	498.7
16	175.7	263.7	46	361.5	501.7	76	361.4	499.9	106	357.2	499.2
18	211.8	315.6	48	367.3	503.0	78	360.3	498.7	108	352.9	498.8
20	249.5	372.1	50	368.3	494.5	80	360.5	500.6	110	351.8	501.4
22	304.8	419.8	52	369.5	495.3	82	359.5	500.2	112	351.0	502.3
24	331.1	459.8	54	370.0	498.5	84	358.1	500.1	114	350.6	501.8
26	332.0	399.5	56	370.6	500.7	86	356.8	500.0	116	348.0	502.1
28	326.4	478.0	58	370.1	499.2	88	355.2	499.7	118	347.8	500.2
30	309.9	543.2	60	368.8	500.9	90	354.2	499.8	120	350.1	499.3

Figure A4 Temperature profiles of waste tire pyrolysis with using 10% Ni/HBeta catalyst.

 Table A5
 Pyrolysis conditions: 20%Ni/HBeta catalyst

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	Т1	T2	Time (min)	TI	Т2	Time (min)	ТІ	T2	Time (min)	TI	T2
2	24.2	24.5	32	355.3	499.1	62	351.3	500.0	92	358.3	499.1
4	29.3	35.5	34	338.9	507.0	64	341.9	505.3	94	353.8	500.4
6	40.4	58 .7	36	353.2	504.3	66	341.1	501.2	96	348.3	499.7
8	55.9	83.5	38	371.2	501.7	68	342.7	500.1	98	345.6	502.4
10	73.0	108.2	40	380.4	503.7	70	350.4	501.0	100	354.3	500.3
12	99.0	149.2	42	382.6	504.6	72	352.1	501.2	102	357.6	498.7
14	128.0	199.4	44	384.2	500.3	74	353.0	494.6	104	358.4	500.8
16	160.4	244.0	46	404.5	495.6	76	348.0	499.6	106	361.4	495.8
18	195.8	297.5	48	398.4	493.9	78	345.3	500.4	108	360.0	497.7
20	236.0	350.1	50	392.7	499.5	80	342.2	499.9	110	358.6	500.5
22	274.0	413.2	52	386.9	498.6	82	342.7	500.2	112	352.2	500.1
24	311.5	441.5	54	380.8	499.8	84	352.4	505.9	114	346.1	499.9
26	334.5	474.9	56	370.4	501.0	86	359.6	500.1	116	344.3	500.2
28	343.8	480.3	58	365.5	500.3	88	360.6	496.2	118	345.0	501.3
30	342.9	495.6	60	358.7	501.5	90	354.5	498.4	120	350.8	505.0

Figure A5 Temperature profiles of waste tire pyrolysis with using 20% Ni/HBeta catalyst.

Table A6 Pyrolysis conditions: HMOR catalyst

Tire = 30 g, N₂ flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	Tl	T2	Time (min)	TI	T2	Time (min)	TI	Т2	Time (min)	T1	T2
2	26.3	29.9	32	344.0	501.2	62	366.3	499.9	92	349.0	500.1
4	31.8	43.0	34	354.6	499.0	64	356.8	500.6	94	349.9	501.6
6	45.8	70.9	36	361.8	500.8	66	349.6	500.4	96	350.1	500.1
8	59.2	98.7	38	370.5	499.6	68	349.2	503.8	98	349.7	501.0
10	82.1	141.2	40	377.8	499.3	70	343.0	502.3	100	348.4	499.5
12	107.0	186.2	42	374.5	500.3	72	342.5	498.5	102	351.3	500.7
14	151.6	256.2	44	375.7	500.1	74	342.0	500.0	104	352.8	498.1
16	175.6	289.7	46	377.7	500.1	76	341.2	500.3	106	351.4	498.4
18	215.0	360.7	48	379.0	500.1	78	341.3	500.7	108	355.3	500.8
20	262.8	400.1	50	379.9	502.0	80	341.6	501.2	110	353.3	500.6
22	271.5	452.2	52	379.4	500.1	82	341.2	499.5	112	346.1	504.4
24	286.9	475.8	54	379.5	500.7	84	341.7	500.0	114	350.9	503.7
26	296.4	502.5	56	380.4	499.7	86	346.9	500.1	116	353.6	499.1
28	309.8	500.7	58	379.4	498.3	88	350.4	500.7	118	353.8	500.3
30	326.0	499.3	60	373.0	499.1	90	350.3	500.9	120	350.4	498.8

Figure A6 Temperature profiles of waste tire pyrolysis with using HMOR catalyst.

Table A7 Pyrolysis conditions: 1%Pd/HMOR catalyst

Tire = 30 g, N₂ flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	TI	T2	Time (min)	TI	T2	Time (min)	ТІ	T2	Time (min)	TI	T2
2	24.4	24.8	32	370.5	533.2	62	359.0	500.1	92	352.9	500.8
4	29.5	36.5	34	390.4	526.7	64	359.6	499.1	94	352.0	500.8
6	40.4	56.9	36	396.7	523.5	66	359.9	498.4	96	351.2	500.7
8	60.9	90.4	38	408.5	517.7	68	358.0	500.0	98	350.0	500.3
10	83.4	124.5	40	408.8	510.6	70	358.7	499.2	100	349.7	499.6
12	118.4	173.4	42	399.1	498.7	72	359.2	500.0	102	347.1	500.9
14	149.6	219.6	44	396.1	504.1	74	358.2	498.7	104	346.6	500.3
16	187.7	280.5	46	385.5	497.8	76	358.4	499.9	106	345.8	498.4
18	220.4	327.8	48	378.8	502.8	78	358.0	500.2	108	350.3	501.3
20	264.1	384.5	50	368.9	497.7	80	357.7	502.4	110	350.6	499.6
22	298.1	436.2	52	353.1	499.4	82	356.3	499.6	112	352.1	503.9
24	317.1	466.2	54	353.7	497.2	84	355.9	499.2	114	354.6	498.8
26	320.9	501.5	56	359.2	497.4	86	355.2	499.6	116	356.6	502.4
28	333.4	490.7	58	356.0	501.8	88	354.8	499.5	118	356.8	500.7
30	336.5	531.7	60	358.2	500.2	90	354.0	499.7	120	356.5	499.8

Figure A7 Temperature profiles of waste tire pyrolysis with using 1%Pd/HMOR catalyst.

Table A8 Pyrolysis conditions: 5%Ni/HMOR catalyst

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	T1	T2	Time (min)	Tl	T2	Time (min)	TI	T2	Time (min)	T1	T2
2	24.8	24.4	32	337.9	532.2	62	357.9	498.7	92	353.7	500.1
4	29.9	34.6	34	349.1	518.4	64	358.4	500.2	94	355.3	498.9
6	39.3	50.9	36	355.3	506.9	66	358.5	499.8	96	355.4	500.7
8	54.0	74.8	38	361.5	492.4	68	357.6	501.0	98	355.8	499.4
10	77.0	108.5	40	359.8	478.7	70	354.4	498.2	100	350.5	499.8
12	104.1	149.6	42	357.2	486.9	72	356.6	501.3	102	348.4	502.3
14	134.4	195.5	44	353.5	505.1	74	356.1	500.7	104	351.2	499.0
16	168.8	249.0	46	350.5	497.8	76	355.4	499.3	106	355.3	500.9
18	204.9	301.8	48	345.1	501.0	78	355.0	502.2	108	356.7	500.8
20	250.4	360.7	50	351.9	501.2	80	354.0	499.2	110	356.3	499.4
22	281.9	419.1	52			82	353.9	501.2	112	357.2	501.5
24	273.1	443.7	54	358.1	499.0	84	352.5	500.9	114	357.5	498.8
26	304.1	483.4	56	360.8	500.5	86	352.1	499.7	116	352.4	499.5
28	319.2	457.8	58	359.2	500.8	88	350.9	499.1	118	350.0	500.0
30	313.4	537.9	60	360.5	500.4	90	350.0	499.5	120	346.9	500.2

Figure A8 Temperature profiles of waste tire pyrolysis with using 5%Ni/HMOR catalyst.

Table A9 Pyrolysis conditions: 10%Ni/HMOR catalyst

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	TI	Т2	Time (min)	TI	T2	Time (min)	T1	Т2	Time (min)	Tl	T2
2	26.7	29.4	32	411.0	539.6	62	417.1	493.8	92	348.4	499.1
4	32.7	38.8	34			64	412.0	496.0	94	351.7	503.0
6	43.3	56.6	36	427.0	537.5	66			96	352.8	500.4
8	63.0	86.2	38	434.0	533.3	68	404.7	499.4	98	352.7	501.0
10	87.8	119.8	40	442.5	525.0	70	400.8	500.4	100	350.2	498.7
12	115.9	161.2	42	445.7	520.2	72	393.9	501.8	102	351.3	501.9
14	142.2	197.5	44	442.7	514.8	74	385.7	499.7	104	350.8	500.7
16	184.6	259.2	46	443.0	511.9	76	382.9	499.3	106	350.5	499.9
18	222.2	312.8	48	441.5	503.9	78	378.7	497.3	108	355.8	500.7
20	267.3	371.9	50	439.4	495.2	80	372.9	499.1	110	357.7	501.1
22	296.0	427.8	52	436.6	489.7	82	368.0	500.0	112	356.7	499.7
24	332.1	453.0	54	433.1	504.9	84	364.1	500.8	114	355.8	500.1
26	337.0	486.5	56	430.7	503.1	86	360.6	500.1	116	354.3	499.5
28	345.0	512.6	58	427.3	497.7	88	356.8	501.0	118	352.3	500.4
30	349.7	537.5	60	423.1	503.7	90	351.5	500.2	120	350.8	499.2

Figure A9 Temperature profiles of waste tire pyrolysis with using 10%Ni/HMOR catalyst.

Table A10 Pyrolysis conditions: 20%Ni/HMOR catalyst

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	TI	T2	Time (min)	Tl	T2	Time (min)	TI	Т2	Time (min)	Tl	T2
2	23.5	24.0	32	360.5	523.7	62	384.6	498.6	92	366.7	496.5
4	28.0	36.3	34	380.0	519.2	64	383.8	499.5	94	366.3	497.8
6	41.5	63.0	36	386.5	509.9	66	383.0	500.8	96	364.9	502.0
8	63.7	99.2	38	391.4	502.9	68	382.1	501.3	98	346.9	500.6
10	86.6	130.1	40	391.3	499.9	70	381.1	502.8	100	359.5	502.6
12	113.6	173.7	42	392.3	504.3	72	380.0	499.0	102	356.0	502.1
14	145.8	224.0	44	392.7	493.0	74	377.9	499.5	104	354.2	499.9
16	190.3	295.6	46	393.3	483.3	76	377.1	500.6	106	350.7	498.7
18	220.7	336.5	48	392.2	476.8	78	375.2	500.4	108	345.3	503.3
20	278.7	404.3	50	390.0	488.3	80	374.2	500.9	110	345.1	499.9
22	318.0	450.7	52	388.5	502.9	82	372.3	499.5	112	348.7	499.3
24	328.6	485.5	54	388.1	503.3	84	371.1	500.9	114	350.4	498.7
26	345.4	498.2	56	387.0	502.2	86	370.5	499.1	116	351.2	501.9
28	330.1	510.7	58	386.6	494.7	88	368.3	499.6	118	353.7	501.0
30	343.2	531.4	60	385.2	498.4	90	367.3	500.9	120	359.5	500.2

Figure A10 Temperature profiles of waste tire pyrolysis with using 20%Ni/HMOR catalyst.

Table A11 Pyrolysis conditions: 1%Ru/HBeta catalyst

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	T1	T2	Time (min)	T1	T2	Time (min)	Tl	T2	Time (min)	Tl	T2
2	28.0	26.8	32	366.6	500.0	62	355.6	501.3	92	340.5	500.7
4	33.9	39.7	34	379.3	500.9	64	367.0	502.4	94	343.7	499.9
6	50.5	68.8	36	370.2	499.8	66	360.4	500.2	96	345.5	501.4
8	66.5	94.8	38	364.1	498.6	68	362.5	499.9	98	349.3	500.2
10	90.7	132.7	40	351.3	492.8	70	367.2	500.8	100	349.9	502.3
12	119.6	178.3	42	338.7	499.8	72	366.8	500.3	102	351.2	498.8
14	170.1	254.6	44	337.4	500.1	74	366.0	499.9	104	352.3	497.0
16	193.2	302.0	46	345.4	500.3	76	365.5	501.1	106	352.4	498.8
18	224.3	352.4	48	351.5	501.6	78	364.7	498.8	108	353.2	499.8
20	272.1	423.9	50	358.3	500.8	80	362.9	501.8	110	353.7	501.3
22	325.0	457.7	52	358.2	493.2	82	353.1	493.5	112	352.8	499.7
24	344.6	479.5	54	349.5	498.6	84	339.1	499.7	114	352.6	500.3
26	309.6	520.7	56	342.6	499.1	86	330.0	503.0	116	351.5	501.4
28	327.9	515.8	58	340.4	500.7	88	334.8	500.8	118	349.9	500.0
30	352.4	505.4	60	342.9	504.4	90	336.3	501.7	120	348.8	497.4

Figure A11 Temperature profiles of waste tire pyrolysis with using 1%Ru/HBeta catalyst.

Table A12 Pyrolysis conditions: 5%Fe/HBeta catalyst

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	TI	T2	Time (min)	TI	T2	Time (min)	Tl	Т2	Time (min)	T1	T2
2	23.9	25.6	32	362.5	500.5	62	386.9	500.1	92	368.4	500.8
4	32.4	50.2	34	369.5	505.2	64	386.1	500.5	94	367.2	499.3
6	41.6	62.3	36	372.9	503.9	66	384.7	499.8	96	365.8	500.3
8	58.9	91.9	38	382.1	496.6	68	384.1	501.4	98	364.8	499.7
10	84.7	134.1	40	387.7	497.7	70	382.4	499.9	100	363.8	499.8
12	113.5	182.9	42	387.5	499.2	72	380.7	498.4	102	362.7	499.6
14	146.1	233.1	44	389.1	500.0	74	379.5	500.5	104	361.1	500.0
16	182.1	300.4	46	390.9	500.7	76	378.5	500.1	106	360.4	500.0
18	227.5	353.2	48	389.7	500.2	78	376.7	500.3	108	358.6	501.3
20	266.7	401.8	50	389.6	500.8	80	374.8	499.5	110	358.1	499.2
22	328.7	451.0	52	391.0	500.9	82	373.8	501.6	112	356.8	498.6
24	357.1	487.1	54	390.4	499.9	84	372.8	499.8	114	356.2	501.4
26	363.2	513.2	56	390.3	500.9	86	371.9	497.9	116	355.2	501.2
28	328.1	508.1	58	387.8	500.1	88	370.2	501.1	118	354.3	502.1
30	334.1	500.4	60	387.6	499.6	90	370.1	499.6	120	354.0	496.4

Figure A12 Temperature profiles of waste tire pyrolysis with using 5%Fe/HBeta catalyst.

 Table A13
 Pyrolysis conditions: 10%Fe/HBeta catalyst

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	TI	T2	Time (min)	Tl	T2	Time (min)	TI	Т2	Time (min)	T1	T2
2	26.3	28.0	32	373.4	508.8	62	368.2	500.2	92	356.2	499.6
4	32.3	42.5	34	379.7	506.1	64	357.0	499.8	94	357.4	499.4
6	48.2	73.9	36	382.5	502.8	66	348.8	500.5	96	349.4	499.7
8	59.1	92.5	38	384.9	500.8	68	346.0	500.5	98	346.3	499.7
10	90.7	138.5	40	395.4	501.0	70	341.7	499.9	100	350.1	501.0
12	130.3	199.8	42	408.7	501.2	72	342.7	499.7	102	355.8	500.5
14	175.4	245.1	44	439.2	500.6	74	353.0	500.6	104	354.2	499.9
16	189.1	293.7	46	438.1	501.1	76	357.7	500.8	106	353.8	499.8
18	228.1	352.7	48	436.4	501.0	78	356.2	500.7	108	347.5	500.0
20	301.7	427.0	50	430.2	498.7	80	354.8	499.6	110	354.4	500.3
22	324.5	454.0	52	417.0	498.1	82	350.4	500.2	112	356.0	501.0
24	351.0	485.1	54	404.0	498.3	84	346.6	499.9	114	357.2	499.8
26	313.7	511.2	56	396.4	498.7	86	351.3	503.3	116	354.7	499.6
28	325.7	504.3	58	386.9	500.0	88	352.3	501.7	118	350.2	500.1
30	339.6	501.0	60	377.0	499.5	90	353.2	495.0	120	350.9	499.8

Figure A13 Temperature profiles of waste tire pyrolysis with using 10%Fe/HBeta catalyst.

Table A14 Pyrolysis conditions: 20%Fe/HBeta catalyst

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	TI	T2	Time (min)	T1	T2	Time (min)	T 1	T2	Time (min)	TI	T2
2	25.4	27.4	32	345.9	526.0	62	358.8	497.2	92	352.4	500.1
4	30.4	38.6	34	421.1	524.4	64	356.4	500.2	94	354.2	500.1
6	48.7	70.6	36	425.4	513.7	66	352.8	500.4	96	354.7	499.5
8	69.6	104.2	38	420.5	498.7	68	353.2	500.7	98	356.0	499.9
10	98.7	136.7	40	412.9	503.2	70	354.0	497.8	100	357.1	496.9
12	113.7	175.9	42	399.7	500.7	72	355.0	499.1	102	353.6	501.6
14	163.6	237.8	44	398.6	497.2	74	354.6	499.7	104	350.4	500.0
16	193.7	287.6	46	386.9	493.1	76	350.6	499.5	106	352.7	499.6
18	230.2	333.8	48	377.4	499.8	78	345.6	502.9	108	346.2	504.1
20	277.7	388.3	50	369.4	499.3	80	347.2	505.2	110	350.9	501.5
22	344.2	445.3	52	363.1	501.8	82	351.1	502.0	112	354.0	499.0
24	346.3	467.8	54	354.0	500.0	84	352.7	495.3	114	356.5	499.7
26	306.7	473.5	56	347.3	499.1	86	349.1	499.2	116	354.9	499.8
28	328.6	531.1	58	350.1	502.9	88	347.7	505.1	118	351.7	499.2
30	356.9	529.1	60	352.8	503.1	90	351.5	500.7	120	349.9	499.8

Figure A14 Temperature profiles of waste tire pyrolysis with using 20%Fe/HBeta catalyst.

Table A15 Pyrolysis conditions: 1%Ru/HMOR catalyst

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	T1	T2	Time (min)	TI	T2	Time (min)	Tl	T2	Time (min)	TI	T2
2	27.9	29.2	32	363.1	504.0	62	350.1	500.4	92	363.5	498.0
4	35.4	48.1	34	368.2	499.0	64	355.2	500.1	94	360.4	499.7
6	48.0	71.6	36	384.2	498.3	66	357.3	496.7	96	364.5	497.5
8	69.3	108.0	38	396.7	496.5	68	357.6	497.3	98	355.7	499.9
10	96.6	152.8	40	395.0	493.8	70	354.7	499.1	100	357.6	500.2
12	135.2	221.8	42	393.0	495.0	72	347.0	497.1	102	354.2	499.4
14	159.0	261.1	44	385.6	501.0	74	350.7	498.7	104	353.6	501.7
16	205.6	335.4	46	371.4	499.8	76	349.4	499.3	106	350.9	499.1
18	235.7	370.0	48	360.8	498.3	78	348.7	502.5	108	350.2	504.9
20	260.0	431.3	50	346.4	502.2	80	343.0	500.8	110	350.9	499.6
22	308.7	466.5	52	341.1	504.2	82	342.6	501.8	112	344.5	501.0
24	337.1	481.0	54	340.6	502.7	84	347.6	499.5	114	345.8	498.9
26	325.5	498.5	56	341.9	500.9	86	354.9	501.5	116	350.8	500.4
28	348.6	518.4	58	345.7	499.1	88	357.0	502.3	118	353.6	498.9
30	351.9	512.4	60	349.1	501.6	90	359.6	502.4	120	356.6	502.0

Figure A15 Temperature profiles of waste tire pyrolysis with using 1%Ru/HMOR catalyst.

Table A16 Pyrolysis conditions: 5%Fe/HMOR catalyst

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	T1	T2	Time (min)	TI	T2	Time (min)	TI	T2	Time (min)	Tl	T2
2	25.3	24.6	32	410.0	494.0	62	357.2	499.5	92	368.4	500.4
4	34.5	43.8	34	400.0	498.7	64	351.3	501.2	94	368.6	501.0
6	49.3	66.4	36	384.9	494.5	66	350.9	505.4	96	368.9	498.6
8	86.6	109.7	38	366.4	501.1	68	356.4	501.4	98	368.6	497.9
10	105.5	142.6	40	350.1	497.3	70	360.3	497.5	100	368.1	499.6
12	128.1	169.7	42	335.1	503.1	72	361.8	499.5	102	368.3	499.8
14	169.4	234.5	44	335.5	503.0	74	350.4	502.7	104	368.3	500.3
16	197.6	306.4	46	344.5	498.0	76	356.6	503.2	106	367.2	499.5
18	231.7	336.5	48	355.4	500.8	78	350.8	500.3	108	365.8	499.3
20	274.8	400.7	50	364.4	501.2	80	356.1	501.9	110	365.3	501.8
22	318.8	446.5	52	366.0	499.1	82	361.6	500.0	112	365.1	501.4
24	331.8	455.1	54	368.7	498.1	84	363.7	503.2	114	364.4	489.9
26	347.2	503.1	56	367.1	497.6	86	366.6	500.0	116	363.0	499.7
28	358.4	544.0	58	353.4	498.9	88	367.8	501.1	118	362.9	498.9
30	402.1	518.5	60	356.8	498.9	90	368.4	501.1	120	357.6	502.5

Figure A16 Temperature profiles of waste tire pyrolysis with using 5%Fe/HMOR catalyst.

Table A17 Pyrolysis conditions: 10%Fe/HMOR catalyst

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	T 1	T2	Time (min)	TI	T2	Time (min)	TI	T2	Time (min)	TI	T2
2	27.0	25.9	32	388.0	536.0	62	360.2	501.4	92	353.5	500.6
4	33.0	38.9	34	392.4	525.1	64	360.6	500.7	94	358.3	501.5
6	47.2	63.3	36	395.3	490.0	66	357.7	498.7	96	358.8	497.3
8	67.1	91.2	38	385.5	491.3	68	352.4	500.0	98	352.0	499.6
10	103.2	133.4	40	375.3	503.0	70	346.0	499.7	100	351.0	500.3
12	141.1	184.3	42	370.1	500.3	72	346.3	503.5	102	346.5	499.9
14	165.6	230.2	44	364.6	500.2	74	349.3	502.2	104	342.8	502.8
16	194.7	281.2	46	360.5	501.1	76	353.9	499.5	106	344.5	500.8
18	232.9	341.1	48	356.5	500.0	78	356.1	499.0	108	352.5	499.2
20	276.6	409.1	50	350.7	499.8	80	354.3	499.1	110	360.8	498.2
22	309.7	435.6	52	345.3	500.5	82	348.9	501.5	112	361.5	499.6
24	309.2	400.6	54	346.0	502.3	84	344.7	500.5	114	363.6	498.3
26	312.6	434.6	56	352.7	501.0	86	341.7	500.4	116	365.6	500.8
28	315.2	524.5	58	353.2	499.2	88	342.8	503.6	118	366.9	499.9
30	365.0	543.1	60	365.5	500.8	90	349.5	498.8	120	368.1	497.2

Figure A17 Temperature profiles of waste tire pyrolysis with using 5%Fe/HBeta catalyst.

Table A18 Pyrolysis conditions: 20%Fe/HMOR catalyst

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	TI	T2									
2	26.5	28.0	32	371.2	514.4	62	350.8	498.0	92	349.6	504.6
4	33.0	43.1	34	382.8	496.6	64	348.7	502.2	94	350.9	498.6
6	46.9	67.9	36	381.9	497.2	66	348.4	502.7	96	351.3	502.2
8	70.1	102.6	38	362.0	499.9	68	347.7	501.3	98	352.0	498.8
10	101.3	147.0	40	361.2	499.8	70	352.8	500.8	100	352.7	502.0
12	136.3	202.0	42	355.6	498.7	72	356.5	502.5	102	353.6	501.3
14	162.5	246.6	44	351.6	499.5	74	357.3	499.7	104	352.6	499.1
16	211.9	319.7	46	350.5	500.9	76	357.7	500.6	106	351.7	498.2
18	239.7	354.8	48	350.0	501.1	78	356.6	498.0	108	354.1	489.2
20	279.6	419.9	50	347.3	499.4	80	358.2	500.4	110	355.3	498.0
22	294.1	446.9	52	349.1	504.8	82	359.4	500.3	112	354.5	498.4
24	333.7	434.9	54	349.1	502.3	84	358.3	496.1	114	350.1	497.9
26	303.5	449.3	56	351.8	499.9	86	357.0	495.4	116	354.6	498.6
28	309.3	537.6	58	356.6	496.8	88	352.4	499.7	118	354.9	501.9
30	336.0	530.0	60	355.2	497.3	90	349.2	497.3	120	355.3	499.3

Figure A18 Temperature profiles of waste tire pyrolysis with using 20%Fe/HBeta catalyst.

Appendix B Yields of Pyrolysis Products

 Table B1
 Yield of product distribution obtained from pyrolysis with 1%Pd/HBeta

 and varied Ni/HBeta

Product	Non-cat	LIData	1%Pd/	5%Ni/	10%Ni/	20%Ni/
	Non-cat	HBela	HBeta	HBeta	HBeta	HBeta
Gas	16.1	18.2	21.5	16.6	22.7	21.2
Liquid	40.0	33.0	35.7	42.1	33.2	34.2
Solid	44.1	48.9	42.8	41.3	44.4	44.6
G/L ratio	0.40	0.55	0.60	0.39	0.68	0.62

Table B2	Yield of product distribution obtained from pyrolysis with 1%Pd/HMOR
and varied	Ni/HMOR

Product	Non-cat	HMOR	1%Pd/ HMOR	5%Ni/ HMOR	10%Ni/ HMOR	20%Ni/ HMOR
Gas	16.1	18.8	18.6	24.2	17.7	18.3
Liquid	40.0	37.4	38.7	31.9	43.2	39.1
Solid	44.1	43.8	42.6	43.9	42.5	42.6
G/L ratio	0.40	0.50	0.48	0.76	0.41	0.47

Table B3 Yield of product distribution obtained from pyrolysis with 1%Ru/HBetaand varied Fe/HBeta

Product	Non-cat	Hbeta	1%Ru/ HBeta	5%Fe/ HBeta	10%Fe/ HBeta	20%Fe/ HBeta
Gas	16.1	18.2	24.3	20.5	27.8	15.2
Liquid	40.0	33.0	33.4	36.8	30.3	42.5
Solid	44.1	48.9	42.4	42.7	41.9	42.3
G/L ratio	0.40	0.55	0.73	0.56	0.92	0.36

Table B4 Yield of product distribution obtained from pyrolysis with 1%Ru/HMORand varied Fe/HMOR

Product	Non-cat	HMOR	1%Ru/ HMOR	5%Fe/ HMOR	10%Fe/ HMOR	20%Fe/ HMOR
Gas	16.1	18.8	21.1	14.8	17.1	22.2
Liquid	40.0	37.4	35.9	42.1	39.0	34.6
Solid	44.1	43.8	42.9	43.1	43.9	43.3
G/L ratio	0.40	0.50	0.59	0.35	0.44	0.64

Products distribution (%yield)	Non- Catalyst	HBeta	1%Pd/ HBeta	5%Ni/ HBeta	10%Ni/ HBeta	20%Ni/ HBeta
Methane	3.52	1.72	3.00	2.12	4.00	3.84
Ethylene	1.65	0.70	1.35	1.16	1.89	1.55
Ethane	2.87	1.55	3.02	2.12	3.52	3.41
Propylene	1.83	1.18	2.20	1.80	2.53	2.28
Propane	1.45	1.66	2.23	1.54	2.02	2.14
C4	3.23	5.51	6.49	4.82	5.25	5.10
C5	1.30	4.55	2.55	2.24	2.53	2.22
C6+	0.22	1.33	0.62	0.80	0.97	0.65
Total	16.1	18.2	21.5	16.6	22.7	21.2

 Table B5
 Yield of gas composition obtained from pyrolysis with 1%Pd/HBeta and varied Ni/HBeta

Products distribution (%yield)	Non- Catalyst	HMOR	1%Pd/ HMOR	5%Ni/ HMOR	10%Ni/ HMOR	20%Ni/ HMOR
Methane	3.52	4.11	3.92	5.41	3.73	3.81
Ethylene	1.65	1.20	1.10	1.49	1.10	1.11
Ethane	2.87	3.59	3.60	4.77	3.35	3.54
Propylene	1.83	1.18	1.47	2.07	1.69	0.99
Propane	1.45	3.50	2.77	3.30	2.12	3.08
C4	3.23	3.61	3.85	4.54	3.66	3.80
C5	1.30	1.27	1.52	2.00	1.57	1.51
C6+	0.22	0.31	0.40	0.64	0.46	0.47
Total	16.1	18.8	18.6	24.2	17.7	18.3

Table B6 Yield of gas composition obtained from pyrolysis with 1%Pd/HMOR and varied Ni/HMOR

Products distribution (%yield)	Non- Catalyst	HBeta	1%Ru/ HBeta	5%Fe/ HBeta	10%Fe/ HBeta	20%Fe/ HBeta
Methane	3.52	1.72	3.66	3.87	4.55	2.49
Ethylene	1.65	0.70	1.44	1.45	1.66	1.30
Ethane	2.87	1.55	3.79	3.44	4.14	2.68
Propylene	1.83	1.18	2.02	2.30	3.33	1.73
Propane	1.45	1.66	2.99	1.85	3.29	1.60
C4	3.23	5.51	7.21	5.23	8.63	3.69
C5	1.30	4.55	2.97	1.83	2.39	1.52
C6+	0.22	1.33	0.62	0.54	0.55	0.39
Total	16.1	18.2	24.7	20.5	28.5	15.4

 Table B7
 Yield of gas composition obtained from pyrolysis with 1%Ru/HBeta and varied Fe/HBeta

Products distribution (%yield)	Non- Catalyst	HMOR	1%Ru/ HMOR	5%Fe/ HMOR	10%Fe/ HMOR	20%Fe/ HMOR
Methane	3.52	4.11	3.34	2.60	2.91	3.67
Ethylene	1.65	1.20	1.19	1.30	1.51	2.10
Ethane	2.87	3.59	4.97	3.44	4.04	5.38
Propylene	1.83	1.18	1.53	1.49	1.65	2.25
Propane	1.45	3.50	4.11	2.07	2.37	3.02
C4	3.23	3.61	4.47	2.94	3.33	4.45
C5	1.30	1.27	1.53	1.00	1.25	1.30
C6+	0.22	0.31	0	0	0	0
Total	16.1	18.8	21.1	14.8	17.1	22.2

Table B8 Yield of gas composition obtained from pyrolysis with 1%Ru/HMOR and varied Fe/HMOR

Appendix C Liquid Composition in Maltenes

 Table C1 Concentration of liquid compositions obtained from pyrolysis with

 1%Pd/HBeta and varied Ni/HBeta

Liquid compositions (%wt)	Non- Catalyst	HBeta	1%Pd/ HBeta	5%Ni/ HBeta	10%Ni/ HBeta	20%Ni/ HBeta
Saturated hydrocarbons	56.5	66.2	56.3	60.6	59.2	53.3
Mono-aromatics	6.61	10.5	27.8	14.3	11.7	10.3
Di- aromatics	9.23	8.60	2.38	5.82	2.72	2.11
Poly- aromatics	7.45	5.22	4.75	6.61	13.0	10.0
Polar- aromatics	20.2	9.53	8.79	12.7	13.3	24.3

 Table C2 Concentration of liquid compositions obtained from pyrolysis with

 1%Pd/HMOR and varied Ni/HMOR

Liquid compositions (%wt)	Non- Catalyst	HMOR	1%Pd/ HMOR	5%Ni/ HMOR	10%Ni/ HMOR	20%Ni/ HMOR
Saturated hydrocarbons	56.5	59.1	64.0	51.7	57.0	61.5
Mono-aromatics	6.61	16.0	10.3	6.62	8.18	6.01
Di- aromatics	9.23	4.62	3.35	4.33	2.95	2.00
Poly- aromatics	7.45	11.1	4.19	16.3	18.9	4.29
Polar- aromatics	20.2	9.23	18.2	21.1	13.0	26.2

□ Non-catalyst ■ HMOR □ 1%Pd/HMOR ■ 5%Ni/HMOR □ 10%Ni/HMOR □ 20%Ni/HMOR

Table C3 Concentration of liquid compositions obtained from pyrolysis with1%Ru/HBeta and varied Fe/HBeta

Liquid compositions (%wt)	Non- Catalyst	HBeta	1%Ru/ HBeta	5%Fe/ HBeta	10%Fe/ HBeta	20%Fe/ HBeta
Saturated hydrocarbons	56.5	66.2	62.5	61.2	72.9	76.1
Mono-aromatics	6.61	10.5	10.3	5.74	10.7	8.76
Di- aromatics	9.23	8.60	2.95	2.73	3.46	1.81
Poly- aromatics	7.45	5.22	8.26	3.83	3.75	3.63
Polar- aromatics	20.2	9.53	15.9	26.5	9.22	9.67

Table C4 Concentration of liquid compositions obtained from pyrolysis with1%Ru/HMOR and varied Fe/HMOR

Liquid compositions (%wt)	Non- Catalyst	HMOR	1%Ru/H MOR	5%Fe/ HMOR	10%Fe/H MOR	20%Fe/H MOR
Saturated hydrocarbons	56.5	59.1	55.2	65.9	71.3	57.8
Mono-aromatics	6.61	16.0	13.8	8.73	7.73	14.4
Di- aromatics	9.23	4.62	8.44	2.65	4.70	6.15
Poly- aromatics	7.45	11.1	8.70	4.76	7.46	8.02
Polar- aromatics	20.2	9.23	13.8	18.0	8.84	13.6

Appendix D Petroleum Fractions of Derived Oils

Table D1 Petroleum fractions in maltenes obtained from pyrolysis with

1%Pd/HBeta and varied Ni/HBeta

Petroleum fraction	Non- catalyst	HBeta	1%Pd/ HBeta	5%Ni/ HBeta	10%Ni/ HBeta	20%Ni/ HBeta
Full range naphtha	26.0	49.5	21.0	21.5	13.5	22.0
Kerosene	15.0	17.4	22.5	18.5	14.5	16.5
Light gas oil	19.5	13.5	20.0	20.0	24.0	26.5
Heavy gas oil	21.0	8.18	15.5	19.0	21.0	23.0
Long residue	16.5	11.5	15.0	21.0	27.0	11.0

 Table D2
 Petroleum fractions in maltenes obtained from pyrolysis with

1%Pd/HMOR and varied Ni/HMOR

Petroleum fraction	Non- catalyst	HMOR	1%Pd/ HMOR	5%Ni/ HMOR	10%Ni/ HMOR	20%Ni/ HMOR
Full range naphtha	26.0	33.3	26.5	26.1	17.8	25.8
Kerosene	15.0	17.6	13.0	15.9	13.5	14.1
Light gas oil	19.5	20.5	17.7	19.5	21.2	19.2
Heavy gas oil	21.0	16.6	21.1	18.3	26.3	19.2
Long residue	16.5	12.0	20.8	20.1	20.3	21.3

 Table D3
 Petroleum fractions in maltenes obtained from pyrolysis with

1%Ru/HBeta and varied Fe/HBeta

Petroleum fraction	Non- catalyst	HBeta	1%Ru/ HBeta	5%Fe/ HBeta	10%Fe/ HBeta	20%Fe/ HBeta
Full range naphtha	26.0	49.5	34.5	42.2	37.6	33.6
Kerosene	15.0	17.4	18.6	18.5	21.2	18.9
Light gas oil	19.5	13.5	13.3	19.7	17.5	17.6
Heavy gas oil	21.0	8.18	11.6	9.73	11.9	13.1
Long residue	16.5	11.5	19.2	8.02	11.7	15.9

Table D4 Petroleum fractions in maltenes obtained from pyrolysis with

Petroleum fraction	Non- catalyst	HMOR	1%Ru/H MOR	5%Fe/H MOR	10%Fe/H MOR	20%Fe/H MOR
Full range naphtha	26.0	33.3	39.9	37.5	39.3	37.3
Kerosene	15.0	17.6	21.2	14.5	21.8	20.6
Light gas oil	19.5	20.5	14.8	14.8	16.6	17.3
Heavy gas oil	21.0	16.6	11.4	15.4	10.7	13.0
Long residue	16.5	12.0	11.6	13.4	11.4	11.9

1% Ru/HMOR and varied Fe/HMOR

Appendix E Composition of Char, Coke, and Asphaltenes

Table E1 Char, Coke, and Asphaltenes obtained from pyrolysis with 1%Pd/HBeta

 and varied Ni/HBeta

Composition (%wt)	Non- catalyst	HBeta	1%Pd/ HBeta	5%Ni/ HBeta	10%Ni/ HBeta	20%Ni/ HBeta
Char	44.1	48.9	42.8	41.3	44.4	44.6
Coke	-	22.4	31.4	25.1	24.5	21.9
Asphaltene	0.097	0.092	0.014	0.104	0.114	0.115

Table E2 Char, Coke, and Asphaltenes obtained from pyrolysis with 1%Pd/HMOR

 and varied Ni/HMOR

Composition (%wt)	Non- catalyst	HMOR	1%Pd/ HMOR	5%Ni/ HMOR	10%Ni/ HMOR	20%Ni/ HMOR
Char	44.1	43.8	42.6	43.9	42.5	42.6
Coke	-	15.3	17.6	23.7	16.0	13.4
Asphaltene	0.097	0.113	0.323	0.112	0.196	0.127

Table E3 Char, Coke, and Asphaltenes obtained from pyrolysis with 1%Ru/HBeta

 and varied Fe/HBeta

Composition (%wt)	Non- catalyst	Hbeta	1%Ru/ HBeta	5%Fe/ HBeta	10%Fe/ HBeta	20%Fe/ HBeta
Char	44.1	48.9	42.4	42.7	41.9	42.3
Coke	-	22.4	29.2	21.0	18.4	11.6
Asphaltene	0.097	0.092	0.128	0.074	0.383	0.127

 Table E4
 Char, Coke, and Asphaltenes obtained from pyrolysis with 1%Ru/HMOR

 and varied Fe/HMOR

Composition (%wt)	Non- catalyst	HMOR	1%Ru/ HMOR	5%Fe/ HMOR	10%Fe/ HMOR	20%Fe/ HMOR
Char	44.1	43.8	42.9	43.1	43.9	43.3
Coke	-	15.3	16.6	11.4	7.70	6.18
Asphaltene	0.097	0.113	0.136	0.257	0.259	0.117

Appendix F Sulfur in Derived Oils and Sulfur Deposition on Spent Catalysts

Table F1 Sulfur in derived oils and sulfur deposition on spent catalyst obtainedfrom pyrolysis with 1%Pd/HBeta and varied Ni/HBeta

Catalyst	Metal	Sulfur (%wt)		
	Loading(%)	Spent Catalyst	Derived Oil s	
Non-catalyst	-	-	0.822	
HBeta	0	0.722	0.876	
Pd/HBeta	1	0.669	0.949	
	5	1.38	0.808	
Ni/HBeta	10	1.31	0.599	
	20	1.39	0.686	

Table F2 Sulfur in derived oils and sulfur deposition on spent catalyst obtainedfrom pyrolysis with 1%Pd/HMOR and varied Ni/HMOR

Catalvat	Metal	Sulfur (%wt)			
Catalyst	Loading(%)	Spent Catalyst	Derived Oil s		
HMOR	0	0.376	0.941		
Pd/HMOR	1	0.49	1.07		
	5	1.35	0.892		
Ni/HMOR	10	1.70	1.07		
	20	1.38	1.04		

Table F3 Sulfur in derived oils and sulfur deposition on spent catalyst obtainedfrom pyrolysis with 1%Ru/HBeta and varied Fe/HBeta

Cotolyst	Metal	Sulfur (%wt)		
Catalyst	Loading(%)	Spent Catalyst	Derived Oil s	
HBeta	0	0.722	0.876	
Ru/HBeta	1	0.79	0.959	
	5	1.53	0.878	
Fe/HBeta	10	1.76	0.914	
	20	1.57	1.15	

Table F4 Sulfur in derived oils and sulfur deposition on spent catalyst obtainedfrom pyrolysis with 1%Ru/HMOR and varied Fe/HMOR

	Metal	Sulfur (%wt)			
Catalyst	Loading(%)	Spent Catalyst	Derived Oil s		
HMOR	0	0.376	0.941		
Ru/HMOR	1	0.332	1.08		
	5	1.26	1.17		
Fe/HMOR	10	1.63	1.10		
	20	1.67	1.03		

	Boiling point (°C)									
% OFF	Maltene	Saturated Hydrocarbons	Mono- aromatics	Di- aromatics	Poly- aromatics	Polar- aromatics				
0	60.8	69.0	61.0	46.6	59.7	33.9				
5	122.7	199.7	232.1	61.0	191.8	85.5				
10	148.4	224.3	272.3	63.9	234.4	145.9				
15	154.9	241.3	292.9	66.5	255.3	211				
20	172.5	253.2	309.8	69.3	275.1	235.5				
25	192.0	261.1	322.0	78.7	305.0	252.4				
30	215.3	270.7	336.0	228.3	331.8	270.9				
35	231.3	279.1	350.3	254.3	351.5	288.2				
40	246.5	289.3	363.7	272.9	373.7	310.7				
45	257.8	296.9	374.3	368.7	389.3	331.8				
50	270.6	307.5	382.8	392.2	403.3	351.3				
55	284.2	315.4	389.4	412.9	416.6	366.3				
60	295.6	325.0	396.8	425.5	427.5	382.8				
65	309.9	334.3	405.4	440.1	438.5	398.4				
70	323.0	346.5	416.1	454.3	448.1	416.7				
75	338.2	361.2	426.5	472.5	458.4	435.9				
80	359.6	376.7	437.9	489.7	467.9	454.0				
85	381.9	394.6	452.5	510.4	476.3	469.9				
90	409.6	421.5	471.8	530.0	487.2	484.4				
95	457.8	457.7	497.5	548.7	513.2	515.0				
100	545.6	533.7	561.2	585.3	562.2	562.8				

 Table G1
 True boiling point curves: - non catalytic case

Appendix G True Boiling Point Curves of Compositions in Pyrolytic Oils

Figure G1 True boiling point curves of Non-catalytic case.

	Boiling point (°C)								
% OFF	Maltene	Saturated Hydrocarbons	Mono- aromatics	Di- aromatics	Poly- aromatics	Polar- aromatics			
0	61.7	61.9	61.8	61.6	61.4	54.7			
5	63.7	64.9	63.8	62.7	62.0	61.7			
10	143.9	89.3	70.4	63.6	62.4	62.1			
15	157.5	171.1	73.1	72.5	62.8	62.3			
20	176.3	191.2	78.5	84.6	63.1	62.6			
25	193.9	207.7	86.8	169.7	63.4	62.8			
30	209.3	214.9	178.4	235.1	63.7	63.0			
35	219.5	225.7	213.6	321.7	63.9	63.3			
40	231.5	234.6	236.7	333.4	64.6	63.5			
45	239.3	240.1	259.2	338.0	84.9	63.8			
50	251.3	249.8	282.4	353.9	86.2	64.0			
55	261.4	258.0	297.2	362.5	332.8	64.3			
60	275.3	268.3	308.2	372.6	375.0	64.5			
65	289.6	277.3	319.9	383.4	434.7	64.8			
70	302.8	289.8	333.9	397.0	455.5	66.1			
75	318.6	300.2	343.5	412.1	482.6	220.1			
80	339.5	313.0	365.8	433.3	498.1	501.5			
85	376.8	332.7	386.5	448.9	509.1	515.9			
90	431.9	373.4	416.6	479.8	523.3	527.6			
95	483.8	452.9	455.9	510.7	535.1	539.2			
100	542.6	540.3	541.2	548.8	556.8	547.1			

 Table G2
 True boiling point curves: - 1%Pd-HBeta catalyst

Figure G2 True boiling point curves of 1%Pd-HBeta catalyst.

	Boiling point (°C)								
% OFF	Maltene	Saturated Hydrocarbons	Mono- aromatics	Di- aromatics	Poly- aromatics	Polar- aromatics			
0	64.4	64.4	64.3	64.3	64.2	63.5			
5	147.4	169.3	104.7	101.6	104.4	64.6			
10	153.4	193.7	298.6	331.9	105.1	95.8			
15	173.4	213.2	304.5	343.1	108.8	226.0			
20	193.4	223.3	315.1	356.1	109.0	250.3			
25	212.9	236.4	321.8	373.2	109.3	281.6			
30	224.5	243.9	327.9	380.7	109.6	308.3			
35	238.8	252.7	336.0	388.6	112.5	329.1			
40	248.8	262.4	342.7	396.9	115.8	338.4			
45	262.0	271.1	350.3	403.7	125.0	352.4			
50	274.7	281.2	359.8	414.9	125.9	375.8			
55	287.3	291.2	371.6	423.6	127.6	388.7			
60	300.3	299.8	384.1	432.8	128.4	412.7			
65	313.0	309.8	395.5	438.7	129.6	433.8			
70	327.4	320.0	407.9	444.7	137.3	444.9			
75	344.2	333.2	419.0	450.7	138.3	456.6			
80	377.3	355.5	433.7	459.0	184.2	470.3			
85	411.8	391.3	444.7	468.8	246.2	485.3			
90	444.7	434.9	458.7	482.1	367.0	501.0			
95	475.5	467.0	482.3	501.2	450.7	522.1			
100	529.7	523.8	532.3	540.1	531.4	549.1			

Table G3 True boiling point curves: - 5%Ni-HBeta catalyst

Figure G3 True boiling point curves of 5%Ni-HBeta catalyst.

	Boiling point (°C)								
% OFF	Maltene	Saturated Hydrocarbons	Mono- aromatics	Di- aromatics	Poly- aromatics	Polar- aromatics			
0	92.9	92.2	99.2	90.8	99.1	99.1			
5	175.6	217.2	100.0	91.8	99.3	99.2			
10	185.7	244.5	268.8	92.9	177.7	99.4			
15	206.3	258.9	293.0	96.0	246.4	205.3			
20	223.1	271.7	315.8	140.6	267.7	243.8			
25	239.8	280.4	335.1	176.9	287.3	265.5			
30	253.8	286.2	348.4	408.0	334.9	277.7			
35	266.5	295.4	372.3	450.6	387.7	298.2			
40	277.8	302.1	392.6	465.6	432.4	317.8			
45	285.3	311.3	411.6	475.6	443.8	342.6			
50	296.4	319.3	429.2	483.7	454.7	385.8			
55	306.0	330.7	436.4	491.7	464.8	406.4			
60	317.9	340.2	443.8	497.4	474.2	429.4			
65	333.9	355.7	450.0	503.8	483.0	441.8			
70	350.6	375.8	457.2	508.8	491.7	453.7			
75	381.8	400.7	464.5	515.2	498.6	470.1			
80	417.8	428.2	473.5	522.0	505.3	486.6			
85	441.8	443.5	481.7	526.1	514.3	501.8			
90	461.0	460.1	492.5	532.4	524.2	517.0			
95	488.5	485.6	505.4	541.7	534.2	532.6			
100	531.3	528.7	537.8	557.8	554.7	558.4			

 Table G4
 True boiling point curves: - 10%Ni-HBeta catalyst

Figure G4 True boiling point curves of 10%Ni-HBeta catalyst.

	Boiling point (°C)								
% OFF	Maltene	Saturated Hydrocarbons	Mono- aromatics	Di- aromatics	Poly- aromatics	Polar- aromatics			
0	71.4	86.1	78.4	45.1	58.8	46.2			
5	148.3	206.5	231.5	59.5	214.9	93.8			
10	154.9	230.8	254.7	86.3	237.5	140.6			
15	172.8	247.5	265.8	171.1	254.0	200.4			
20	192.4	256.7	275.2	230.8	261.4	234.9			
25	211.1	264.1	284.0	259.0	277.2	247.1			
30	227.1	273.5	292.1	282.9	297.2	269.8			
35	239.8	279.1	300.5	309.2	323.4	289.7			
40	253.2	288.6	309.2	338.2	344.1	313.6			
45	260.7	294.7	316.9	364.7	356.6	335.3			
50	271.4	303.3	325.7	386.9	372.1	350.8			
55	279.4	310.6	334.4	404.7	381.9	359.3			
60	290.5	318.3	344.1	419.9	394.9	373.4			
65	299.7	328.3	356.5	432.2	405.8	383.6			
70	311.2	338.7	367.4	444.3	419.2	397.0			
75	323.7	351.8	379.8	455.4	432.1	413.3			
80	337.7	367.2	392.4	466.5	446.4	432.2			
85	357.1	383.4	413.2	475.1	462.5	449.5			
90	379.7	404.1	442.5	484.6	477.3	468.9			
95	415.1	447.5	490.3	501.1	499.2	490.0			
100	546.1	557.8	568.9	544.1	552.0	555.2			

Table G5 True boiling point curves: - 20%Ni-HBeta catalyst

Figure G5 True boiling point curves of 20%Ni-HBeta catalyst.

	Boiling point (°C)								
% OFF	Maltene	Saturated Hydrocarbons	Mono- aromatics	Di- aromatics	Poly- aromatics	Polar- aromatics			
0	53.8	61.8	55.3	51.0	53.1	52.1			
5	106.4	191.3	62.7	59.7	63.3	62.9			
10	147.6	221.3	65.6	62.0	67.3	66.5			
15	148.3	236.0	68.2	63.7	71.7	70.0			
20	155.1	248.5	70.1	65.6	86.1	94.5			
25	172.2	255.9	73.3	67.1	110.6	219.6			
30	189.5	262.8	76.5	69.5	244.3	295.4			
35	205.5	272.3	79.4	72.5	263.5	350.0			
40	222.2	281.4	79.9	78.7	311.7	371.5			
45	235.0	293.4	80.7	80.0	358.1	386.1			
50	248.4	306.2	86.7	93.8	380.7	409.2			
55	257.1	317.2	88.6	97.0	400.4	428.3			
60	267.5	328.9	98.1	110.4	421.5	444.0			
65	278.6	344.1	110.5	482.1	438.8	458.8			
70	294.7	361.4	434.6	496.4	455.6	469.3			
75	313.4	378.2	470.5	515.1	470.1	480.5			
80	331.1	394.9	494.7	527.0	484.1	494.5			
85	355.5	417.9	522.2	535.8	499.7	519.5			
90	379.5	444.8	535.5	547.1	524.9	531.9			
95	410.5	481.8	554.8	562.6	542.9	550.4			
100	510.5	563.9	589.3	591.3	582.2	586.5			

 Table G6
 True boiling point curves: - HMOR catalyst

Figure G6 True boiling point curves of HMOR catalyst.

	Boiling point (°C)								
% OFF	Maltene	Saturated Hydrocarbons	Mono- aromatics	Di- aromatics	Poly- aromatics	Polar- aromatics			
0	52.5	61.4	58.2	47.2	56.5	37.3			
5	70.5	169.1	63.1	58.2	59.3	59.5			
10	122.9	203.9	66.9	59.7	61.2	61.8			
15	147.9	222.7	70.8	61.0	62.9	63.9			
20	153.9	238.4	226.8	62.2	64.3	65.8			
25	169.7	250.7	287.9	63.3	66.0	69.2			
30	187.4	257.5	316.2	64.3	69.2	92.1			
35	206.8	268.0	333.1	65.4	74.0	163.3			
40	225.0	276.0	346.6	66.7	93.8	233.7			
45	241.5	287.4	357.5	69.0	109.1	236.2			
50	254.3	296.6	365.5	70.1	372.6	293.2			
55	265.0	308.6	374.3	77.9	407.6	356.5			
60	277.0	318.8	382.1	92.8	429.9	409.6			
65	292.1	330.2	388.5	94.9	466.9	455.6			
70	307.8	345.2	398.3	404.6	492.5	482.9			
75	322.5	363.1	409.3	498.1	509.8	499			
80	339.0	382.0	426.8	517.8	525.7	521.5			
85	360.5	405.8	459.0	528.5	534.8	530.9			
90	383.0	438.0	497.8	538.6	546.2	542.9			
95	419.0	476.1	532.4	553.9	562	559.8			
100	510.0	546.8	575.8	587.9	589.3	589.5			

 Table G7 True boiling point curves: - 1%Pd/HMOR catalyst

Figure G7 True boiling point curves of 1%Pd/HMOR catalyst.

	Boiling point (°C)								
% OFF	Maltene	Saturated Hydrocarbons	Mono- aromatics	Di- aromatics	Poly- aromatics	Polar- aromatics			
0	45.5	148.1	123.6	59.9	174.4	174.2			
5	122.7	200.2	238.0	234.8	215.1	215.9			
10	148.3	223.7	258.3	249.3	231.6	234.8			
15	160.1	239.6	277.8	256.8	246.1	235.8			
20	178.7	251.1	301.1	265.8	256.4	252.6			
25	195.4	257.8	320.6	275.2	268.6	269.8			
30	216.3	266.6	341.2	292.8	283.5	281.4			
35	230.9	274.2	357.0	333.4	315.5	301.4			
40	246.0	283.7	368.4	369.3	351.7	317.9			
45	256.0	292.8	377.8	388.3	379.6	336.3			
50	267.5	303.2	384.8	400.6	399.4	352.3			
55	279.2	311.8	390.3	414.1	415.0	364.8			
60	294.8	320.4	398.8	423.0	425.7	380.7			
65	312.1	329.4	406.8	431.6	436.4	393.7			
70	328.3	341.2	416.8	440.0	446.0	414.4			
75	348.7	355.4	426.6	448.8	456.1	437.1			
80	371.0	369.5	437.3	460.2	467.2	461.9			
85	392.4	384.3	450.3	471.7	477.0	481.1			
90	422.3	403.5	467.4	484.9	492.1	502.1			
95	458.2	437.8	486.1	513.6	526.1	532.3			
100	533.9	531.9	547.5	562.7	571.5	577.9			

 Table G8
 True boiling point curves: - 5%Ni/HMOR catalyst

Figure G8 True boiling point curves of 5%Ni/HMOR catalyst.

	Boiling point (°C)								
% OFF	Maltene	Saturated Hydrocarbons	Mono- aromatics	Di- aromatics	Poly- aromatics	Polar- aromatics			
0	56.3	108.2	77.8	57.8	94.1	52.1			
5	148.8	194.7	247.4	59.7	111.0	127.3			
10	159.9	224.0	271.1	62.2	112.2	144.0			
15	185.7	241.5	289.8	93.7	127.2	177.5			
20	211.3	254.7	307.1	94.8	128.7	218.4			
25	229.6	262.2	318.6	124.2	130.5	235.5			
30	247.3	272.6	332.6	146.5	136.5	255.4			
35	257.4	282.0	346.0	186.9	166.0	277.8			
40	269.5	292.6	360.2	235.7	212.8	295.1			
45	279.8	303.4	371.3	271.0	236.8	316.6			
50	293.3	312.1	384.3	311.5	254.3	335.6			
55	306.6	321.4	396.2	347.5	273.4	349.7			
60	317.9	330.0	408.7	374.0	313.4	359.6			
65	329.5	341.2	421.3	397.2	352.3	373.8			
70	342.9	353.3	431.0	416.0	378.2	384.4			
75	358.5	366.3	442.4	433.5	400.4	402.6			
80	373.5	378.6	453.8	449.8	423.3	426.0			
85	389.2	391.7	468.6	466.7	446.6	453.5			
90	412.4	412.4	483.3	480.6	471.2	481.7			
95	453.0	446.8	516.0	512.9	497.5	523.1			
100	548.2	539.6	566.9	571.9	557.5	568.5			

 Table G9 True boiling point curves: - 10%Ni/HMOR catalyst

Figure G9 True boiling point curves of 10%Ni/HMOR catalyst.

	Boiling point (°C)								
% OFF	Maltene	Saturated Hydrocarbons	Mono- aromatics	Di- aromatics	Poly- aromatics	Polar- aromatics			
0	69.7	76.7	69.2	58.2	93.8	69.2			
5	143.2	160.7	80.7	86.1	106.3	130.9			
10	148.8	191.3	246.9	351.9	275.0	174.0			
15	160.1	213.9	267.5	367.2	311.5	205.0			
20	178.9	228.2	283.5	375.9	343.8	234.3			
25	196.2	243.2	299.3	381.4	363.2	243.5			
30	219.6	253.4	313.5	388.0	374.3	266.4			
35	234.5	260.2	325.8	393.8	389.3	284.0			
40	250.3	269.9	336.0	400.5	398.8	308.5			
45	259.9	278.1	346.9	406.0	408.2	328.5			
50	272.8	289.6	357.0	414.0	417.4	349.8			
55	286.9	301.4	363.9	421.4	423.9	366.6			
60	302.7	313.3	372.4	427.5	431.9	383.5			
65	317.9	326.5	379.2	435.5	439.8	402.1			
70	335.5	340.9	385.6	444.3	447.7	421.4			
75	356.9	360.0	391.5	454.8	456.8	439.6			
80	376.2	379.6	400.8	467.7	466.8	460.0			
85	394.9	401.3	413.1	476.7	475.5	478.1			
90	421.9	431.4	431.8	489.2	487.5	496.7			
95	459.0	468.0	483.2	513.7	518.2	529.0			
100	537.1	527.7	559.4	548.0	564.1	569.6			

Table G10 True boiling point curves: - 20%Ni/HMOR catalyst

Figure G10 True boiling point curves of 20%Ni/HMOR catalyst.

	Boiling point (°C)								
% OFF	Maltene	Saturated Hydrocarbons	Mono- aromatics	Di- aromatics	Poly- aromatics	Polar- aromatics			
0	56.5	57.6	51.4	50.8	56.1	42.1			
5	109.0	133.3	55.0	53.8	80.9	53.3			
10	133.2	148.3	58.0	56.3	96.5	55.0			
15	141.5	160.6	61.0	58.4	164.7	56.7			
20	154.7	171.6	84.5	64.8	228.9	58.2			
25	170.2	183.2	183.3	234.9	253.3	60.8			
30	186.9	195.8	215.1	242.9	274.6	82.2			
35	201.6	204.0	233.5	259.3	285.5	223.2			
40	215.5	212.3	241.7	264.7	300.8	301.0			
45	225.7	220.8	243.7	270.0	314.9	327.5			
50	239.5	229.1	246.0	279.4	335.5	343.5			
55	256.7	238.2	262.0	288.0	390.0	354.5			
60	275.9	251.1	266.5	297.1	391.0	367.2			
65	294.3	266.3	276.8	305.1	424.3	377.5			
70	315.7	283.7	285.2	315.9	444.9	392.1			
75	339.9	301.1	299.2	327.8	466.6	416.0			
80	390.8	329.7	313.3	343.6	484.9	447.6			
85	440.7	390.7	331.6	365.2	500.4	486.2			
90	480.1	446.5	363.2	394.5	516.3	517.2			
95	512.0	494.2	509.1	524.1	533.9	540.5			
100	559.4	553.0	574.7	576.0	568.0	581.7			

 Table G11
 True boiling point curves: - 1%Ru/HBeta catalyst

Figure G11 True boiling point curves of 1%Ru/HBeta catalyst.

	Boiling point (°C)								
% OFF	Maltene	Saturated Hydrocarbons	Mono- aromatics	Di- aromatics	Poly- aromatics	Polar- aromatics			
0	55.5	65.6	59.9	62.2	61.6	63.5			
5	72.0	96.5	62.9	64.3	64.3	66.3			
10	123.5	171.9	65	65.8	66.3	68.4			
15	148.2	192.9	66.9	67.1	68.2	69.5			
20	148.6	211.8	68.6	68.4	69.3	69.9			
25	154.9	223.7	69.5	69.2	69.8	70.6			
30	165.9	233.7	71.3	69.8	70.5	72.1			
35	179.0	246.1	87.1	70.3	72.0	98.3			
40	193.2	254.2	97.8	71.5	98.1	218.8			
45	208.5	258.5	223.3	79.9	102.4	237			
50	223.9	267.8	490.3	98.5	345.3	306.7			
55	234.8	275.2	501	456.7	496.5	356.7			
60	248.9	287.5	514.5	472.1	509.3	414.5			
65	256.4	301.7	524.6	482.9	522.8	460.6			
70	266.6	317.9	530.1	491.4	528.3	478.4			
75	278.2	338.4	536.2	499.9	534.4	490.9			
80	297.6	364.5	543.1	513.3	541.4	503.7			
85	327.6	389.8	551.0	524.4	549.4	522.4			
90	366.9	426.7	560.6	531.0	558.9	530.2			
95	488.5	471.9	573.1	540.6	571.7	542.6			
100	557.7	546.8	594.0	562.2	592.5	572.2			

 Table G12
 True boiling point curves: - 5%Fe/HBeta catalyst

Figure G12 True boiling point curves of 5%Fe/HBeta catalyst.

	Boiling point (°C)								
% OFF	Maltene	Saturated Hydrocarbons	Mono- aromatics	Di- aromatics	Poly- aromatics	Polar- aromatics			
0	55.6	62.8	58.2	55.7	55.7	55.5			
5	106.6	140.9	103.8	63.5	93.9	99.0			
10	136.9	162.5	134.7	65.6	133.6	134.3			
15	138.3	180.0	149.1	70.3	149.5	149.7			
20	149.9	198.5	169.8	77.7	172.7	170.9			
25	163.1	209.5	192.6	96.4	199.8	195.1			
30	177.2	223.2	212.6	133.5	224.4	214.9			
35	194.1	231.9	232.0	151.4	248.8	237.0			
40	205.3	245.0	252.6	179.8	269.9	258.8			
45	217.9	257.1	271.9	210.1	288.1	279.1			
50	227.9	268.7	289.6	239.1	305.9	297.5			
55	241.1	281.4	306.5	267.2	321.0	314.4			
60	252.7	293.4	323.4	292.0	337.6	330.6			
65	267.3	304.9	340.2	314.8	390.1	389.8			
70	281.5	319.0	390.3	337.3	390.9	390.6			
75	295.9	334.3	397.5	390.4	411.2	405.7			
80	311.5	390.0	425.7	407.5	433.0	431.4			
85	333.0	392.9	442.4	436.0	445.0	444.0			
90	390.4	435.9	456.7	452.5	457.7	457.2			
95	438.1	469.0	472.0	470.0	472.2	471.8			
100	532.7	528.4	492.1	492.8	492.4	492.2			

 Table G13
 True boiling point curves: - 10%Fe/HBeta catalyst

Figure G13 True boiling point curves of 10%Fe/HBeta catalyst.

	Boiling point (°C)								
% OFF	Maltene	Saturated Hydrocarbons	Mono- aromatics	Di- aromatics	Poly- aromatics	Polar- aromatics			
0	56.3	56.5	55.9	50.4	55.8	55.7			
5	69.8	65.4	56.6	53.8	56.6	56.4			
10	124.9	148.8	57.2	55.5	57.2	56.9			
15	135.2	172.8	57.7	56.7	57.7	57.3			
20	149.9	195.7	58.1	58.0	58.3	57.7			
25	169.7	207.3	58.4	60.1	58.7	58.1			
30	189.0	221.1	58.7	61.2	60.7	58.4			
35	204.2	230.2	60.1	62.9	75.7	58.7			
40	219.0	243.2	65.8	72.8	76.9	60.1			
45	228.0	258.5	75.4	86.1	196.4	75.1			
50	242.4	273.4	76.2	87.4	219.0	76.0			
55	257.7	286.0	78.9	90.1	247.9	77.0			
60	272.8	299.8	431.0	212.2	310.2	200.8			
65	286.0	315.7	450.2	230.7	389.9	212.5			
70	299.8	333.2	459.1	249.0	410.9	258.6			
75	316.3	390.0	468.4	455.9	445.3	320.6			
80	334.8	393.0	482.8	490.4	463.8	458.2			
85	390.2	432.1	505.6	512.8	498.0	507.3			
90	411.6	454.3	524.7	530.9	517.9	525.5			
95	462.2	482.6	547.8	549.5	536.7	542.3			
100	548.7	547.1	574.3	586.1	571.0	573.9			

 Table G14 True boiling point curves: - 20%Fe/HBeta catalyst

Figure G14 True boiling point curves of 20%Fe/HBeta catalyst.

	Boiling point (°C)								
% OFF	Maltene	Saturated Hydrocarbons	Mono- aromatics	Di- aromatics	Poly- aromatics	Polar- aromatics			
0	55.4	55.5	55.7	54.1	55.4	53.8			
5	58.0	57.6	64.2	55.7	56.4	55.7			
10	103.7	131.8	170.0	56.2	57.6	56.2			
15	131.8	152.6	209.1	56.8	74.7	56.7			
20	140.1	168.6	221.9	57.3	79.7	57.2			
25	150.9	181.8	230.8	57.8	86.8	57.7			
30	168.1	194.9	237.7	73.0	93.7	59.3			
35	186.4	202.7	244.9	131.3	131.5	73.9			
40	200.3	211.3	251.2	174.8	159.1	206.2			
45	213.0	219.1	257.2	222.4	178.7	247.3			
50	222.9	224.8	264.4	268.2	200.5	288.1			
55	233.9	231.5	274.3	282.9	224.9	301.2			
60	246.5	240.9	281.9	297.8	269.7	315.5			
65	263.1	252.4	284.1	308.1	283.2	323.0			
70	280.2	263.2	293.9	319.7	303.9	335.2			
75	296.1	276.2	302.7	332.1	313.5	389.8			
80	318.8	288.8	313.5	389.7	329.4	390.6			
85	343.9	302.1	329.2	390.6	389.8	439.1			
90	402.1	326.7	389.8	503.7	391.0	515.4			
95	456.2	390.5	407.9	534.1	460.4	537.2			
100	553.8	554.6	549.6	570.4	560.9	570.8			

Table G15 True boiling point curves: - 1%Ru/HMOR catalyst

Figure G15 True boiling point curves of 1%Ru/HMOR catalyst.

	Boiling point (°C)								
% OFF	Maltene	Saturated Hydrocarbons	Mono- aromatics	Di- aromatics	Poly- aromatics	Polar- aromatics			
0	52.1	50.6	55	57.7	50.2	52.1			
5	60.5	52.7	98.7	60.1	52.3	60.5			
10	138.9	54.2	139.5	88.5	54.0	138.9			
15	163.2	55.7	163.0	128.4	55.3	163.2			
20	181.6	56.7	193.7	145.2	56.5	181.6			
25	204.0	58.0	218.6	164.8	57.8	204.0			
30	215.2	59.1	244.5	190.3	58.8	215.2			
35	231.6	62.4	274.0	214.7	61.4	231.6			
40	241.1	72.6	302.1	239.2	84.0	241.1			
45	249.2	84.6	329.6	265.0	193.4	249.2			
50	259.7	138.9	390.3	289.6	222.3	259.7			
55	269.7	490.6	403.9	312.8	239.7	269.7			
60	281.7	502.5	429.6	336.7	371.5	281.7			
65	294.2	517.9	440.7	390.5	497.5	294.2			
70	304.8	526.4	450.9	412.0	513.6	304.8			
75	315.8	532.7	460.9	438.9	525.5	315.8			
80	330.6	539.9	471.6	455.0	532.8	330.6			
85	349.3	548.2	484.0	470.4	541.4	349.3			
90	369.9	558.1	498.2	486.0	552.1	369.9			
95	399.8	571.2	519.8	506.8	566.4	399.8			
100	526.4	593.0	549.9	543.7	591.0	526.4			

 Table G16 True boiling point curves: - 5%Fe/HMOR catalyst

Figure G16 True boiling point curves of 5%Fe/HMOR catalyst.

	Boiling point (°C)								
% OFF	Maltene	Saturated Hydrocarbons	Mono- aromatics	Di- aromatics	Poly- aromatics	Polar- aromatics			
0	58.0	56.1	55.7	58.0	55.4	55.3			
5	103.2	59.3	56.4	58.4	56.1	55.9			
10	131.2	140.3	56.9	58.7	56.5	56.3			
15	133.4	161.5	57.5	74.8	56.9	56.7			
20	141.6	181.1	57.9	152.0	57.2	57.0			
25	155.0	196.4	58.5	215.9	57.6	57.3			
30	170.3	206.8	60.8	270.9	57.9	57.7			
35	189.7	217.7	74.8	296.5	58.3	58.0			
40	201.8	224.6	279.7	315.3	58.7	58.3			
45	215.0	232.5	294.9	328.0	60.5	58.7			
50	224.1	242.2	306.8	389.8	74.5	59.7			
55	234.7	254.6	321.4	390.4	82.0	73.8			
60	246.9	264.1	330.8	397.7	317.8	206.8			
65	262.1	276.9	343.0	432.0	390.0	503.3			
70	277.3	287.4	390.3	451.0	501.8	512.2			
75	291.5	298.8	492.6	469.1	512.4	522.6			
80	307.7	315.6	509.8	488.3	523.8	528.9			
85	330.5	337.2	524.3	504.4	531.8	536.4			
90	390.6	390.7	535.0	523.4	541.7	545.6			
95	450.6	490.0	549.0	539.4	555.1	557.9			
100	537.4	560.0	575.4	574.5	577.8	578.9			

 Table G17
 True boiling point curves: - 10%Fe/HMOR catalyst

Figure G17 True boiling point curves of 10%Fe/HMOR catalyst.

	Boiling point (°C)								
% OFF	Maltene	Saturated Hydrocarbons	Mono- aromatics	Di- aromatics	Poly- aromatics	Polar- aromatics			
0	58.3	62.0	58.1	58.1	58.1	58.1			
5	104.6	131.0	75.3	140.3	60.8	74.1			
10	131.8	140.1	147.6	171.4	78.9	183.3			
15	140.2	152.5	171.3	194.7	87.6	207.0			
20	147.8	164.0	194.7	205.6	95.8	230.8			
25	159.9	175.1	209.9	221.3	223.7	260.2			
30	175.5	188.6	221.9	238.6	270.5	279.4			
35	194.7	197.1	233.2	258.6	285.3	296.3			
40	206.3	206.0	238.3	275.4	303.2	308.9			
45	218.4	215.5	248.2	285.1	311.3	319.7			
50	227.9	222.8	256.9	297.0	324.9	328.5			
55	240.9	230.0	269.7	304.6	335.2	339.7			
60	256.8	241.5	279.6	311.9	389.8	390.0			
65	272.7	255.8	283.7	322.0	390.3	390.6			
70	285.8	270.6	295.6	330.7	390.9	405.4			
75	299.6	284.3	306.9	341.0	413.8	433.9			
80	317.2	297.3	322.1	390.2	435.8	451.0			
85	336.3	318.6	339.8	394.6	452.0	472.2			
90	390.5	343.1	390.5	436.3	475.7	496.1			
95	439.0	418.1	438.3	484.9	510.5	521.5			
100	528.8	528.6	539.2	552.6	561.7	562.5			

 Table G18
 True boiling point curves: - 20%Fe/HMOR catalyst

Figure G18 True boiling point curves of 20%Fe/HMOR catalyst.

No carbon	Non-	HReta	1%Pd/	5%Ni/	10%Ni/	20%Ni/
No. carbon.	catalytic	прега	HBeta	HBeta	HBeta	HBeta
2	0.000	0.000	0.001	0.000	0.000	0.000
3	0.000	0.000	0.008	0.001	0.000	0.000
4	0.248	0.080	0.042	0.011	0.000	0.019
5	2.099	1.470	0.172	0.081	0.001	0.228
6	2.668	3.952	0.558	0.364	0.017	0.480
7	3.301	6.881	1.431	1.097	0.161	0.934
8	3.974	9.068	2.933	2.386	0.719	1.665
9	4.650	9.995	4.896	4.033	1.913	2.715
10	5.280	9.829	6.848	5.629	3.574	4.034
11	5.811	8.989	8.284	6.820	5.243	5.457
12	6.193	7.854	8.948	7.452	6.516	6.744
13	6.390	6.674	8.875	7.562	7.226	7.664
14	6.386	5.581	8.276	7.281	7.408	8.088
15	6.193	4.628	7.391	6.758	7.197	8.019
16	5.841	3.826	6.410	6.117	6.737	7.560
17	5.378	3.164	5.456	5.445	6.152	6.856
18	4.850	2.623	4.591	4.795	5.525	6.040
19	4.302	2.184	3.840	4.196	4.909	5.213
20	3.766	1.828	3.204	3.660	4.335	4.438
21	3.265	1.538	2.675	3.189	3.815	3.745
22	2.812	1.302	2.238	2.781	3.354	3.145
23	2.411	1.109	1.879	2.430	2.950	2.636
24	2.063	0.951	1.584	2.128	2.598	2.210
25	1.763	0.819	1.341	1.869	2.293	1.855
26	1.506	0.710	1.141	1.647	2.028	1.561
27	1.289	0.619	0.975	1.456	1.799	1.317
28	1.104	0.541	0.836	1.291	1.600	1.114
29	0.947	0.476	0.720	1.148	1.426	0.946
30	0.814	0.420	0.623	1.023	1.274	0.806
31	0.700	0.372	0.540	0.914	1.141	0.688
32	0.604	0.330	0.470	0.818	1.023	0.589
33	0.521	0.293	0.410	0.733	0.918	0.505
34	0.450	0.261	0.358	0.658	0.824	0.434
35	0.389	0.233	0.313	0.590	0.740	0.373
36	0.336	0.207	0.274	0.529	0.665	0.321
37	0.291	0.185	0.240	0.474	0.596	0.277
38	0.251	0.164	0.209	0.424	0.533	0.238
39	0.216	0.146	0.183	0.378	0.476	0.205
40	0.186	0.129	0.159	0.336	0.423	0.176
41	0.160	0.114	0.138	0.297	0.374	0.150
42	0.136	0.100	0.119	0.260	0.329	0.128
43	0.115	0.086	0.101	0.226	0.286	0.108
44	0.096	0.074	0.086	0.194	0.245	0.090
45	0.079	0.062	0.071	0.163	0.206	0.074
46	0.063	0.050	0.057	0.132	0.167	0.059
47	0.048	0.039	0.044	0.102	0.130	0.045
48	0.033	0.027	0.031	0.072	0.091	0.031
49	0.019	0.016	0.017	0.041	0.052	0.018
50	0.004	0.003	0.003	0.008	0.010	0.004

Appendix H Carbon Number Distribution of Maltenes

No	Non-	шмор	1%Pd/	5%Ni/	10%Ni/	20%Ni/
INO. CARDON.	catalytic	HMUK	HMOR	HMOR	HMOR	HMOR
2	0.000	0.000	0.000	0.000	0.000	0.000
3	0.000	0.000	0.000	0.000	0.000	0.000
4	0.248	0.164	0.282	0.050	0.097	0.101
5	2.099	1.584	2.328	0.605	0.880	1.036
6	2.668	2.441	2.844	1.251	1.253	1.729
7	3.301	3.516	3.390	2.222	1.729	2.622
8	3.974	4.721	3.943	3.430	2.312	3.634
9	4.650	5.905	4.470	4.683	2.991	4.632
10	5.280	6.885	4.938	5.761	3.742	5.479
11	5.811	7.515	5.313	6.506	4.519	6.074
12	6.193	7.726	5.568	6.862	5.262	6.376
13	6.390	7.545	5.688	6.864	5.897	6.402
14	6.386	7.061	5.669	6.594	6.358	6.205
15	6.193	6.390	5.521	6.149	6.596	5.850
16	5.841	5.638	5.267	5.612	6.596	5.402
17	5.378	4.884	4.933	5.044	6.375	4.913
18	4.850	4.178	4.548	4.487	5.978	4.420
19	4.302	3.546	4.140	3.967	5.461	3.948
20	3.766	2.998	3.730	3.494	4.883	3.510
21	3.265	2.530	3.334	3.073	4.293	3.114
22	2.812	2.136	2.962	2.703	3.726	2.760
23	2.411	1.806	2.621	2.380	3.203	2.447
24	2.063	1.532	2.313	2.100	2.736	2.172
25	1.763	1.304	2.038	1.857	2.327	1.932
26	1.506	1.114	1.795	1.647	1.975	1.721
27	1.289	0.955	1.580	1.464	1.674	1.537
28	1.104	0.821	1.392	1.305	1.419	1.376
29	0.947	0.709	1.227	1.167	1.204	1.234
30	0.814	0.614	1.082	1.045	1.022	1.109
31	0.700	0.534	0.955	0.938	0.868	0.998
32	0.604	0.465	0.843	0.843	0.739	0.900
33	0.521	0.405	0.745	0.758	0.629	0.812
34	0.450	0.354	0.658	0.683	0.537	0.732
35	0.389	0.310	0.581	0.614	0.458	0.661
36	0.336	0.271	0.512	0.553	0.391	0.596
37	0.291	0.237	0.451	0.497	0.333	0.536
38	0.251	0.207	0.397	0.446	0.284	0.482
39	0.216	0.181	0.348	0.399	0.242	0.431
40	0.186	0.157	0.305	0.355	0.206	0.385
41	0.160	0.136	0.265	0.314	0.174	0.341
42	0.136	0.117	0.229	0.277	0.147	0.300
43	0.115	0 100	0.196	0.241	0.123	0.262
44	0.096	0.085	0.166	0.207	0.102	0.225
45	0.079	0.070	0.138	0.174	0.083	0.189
46	0.063	0.056	0.111	0.142	0.066	0.154
47	0.048	0.043	0.085	0.110	0.050	0.120
48	0.033	0.030	0.060	0.077	0.035	0.084
49	0.019	0.017	0.034	0.044	0.020	0.048
50	0.004	0.003	0.007	0.009	0.004	0.010

Table H2 Influences of 1%Pd/HMOR and varied Ni/HMOR

No carbon	Non-	LIPoto	1%Ru/	5%Fe/	10%Fe/	20%Fe/
NU. CATDUII.	catalytic	ndeta	HBeta	HBeta	HBeta	HBeta
2	0.000	0.000	0.000	0.000	0.000	0.000
3	0.000	0.000	0.000	0.000	0.000	0.000
4	0.248	0.080	0.070	0.081	0.053	0.171
5	2.099	1.470	1.106	1.016	0.756	1.694
6	2.668	3.952	2.673	2.199	1.876	2.681
7	3.301	6.881	4.607	4.014	3.665	3.879
8	3.974	9.068	6.318	6.199	5.801	5.139
9	4.650	9.995	7.426	8.201	7.698	6.263
10	5.280	9.829	7.860	9.489	8.883	7.073
11	5.811	8.989	7.749	9.843	9.216	7.474
12	6.193	7.854	7.282	9.388	8.847	7.468
13	6.390	6.674	6.627	8.420	8.040	7.134
14	6.386	5.581	5.905	7.236	7.039	6.579
15	6.193	4.628	5.192	6.045	6.013	5.910
16	5.841	3.826	4.529	4.963	5.059	5.210
17	5.378	3.164	3.935	4.036	4.221	4.533
18	4.850	2.623	3.414	3.269	3.509	3.912
19	4.302	2.184	2.964	2.647	2.915	3.359
20	3.766	1.828	2.578	2.149	2.427	2.879
21	3.265	1.538	2.250	1.751	2.027	2.468
22	2.812	1.302	1.970	1.435	1.700	2.118
23	2.411	1.109	1.731	1.183	1.433	1.822
24	2.063	0.951	1.528	0.980	1.215	1.572
25	1.763	0.819	1.354	0.818	1.035	1.361
26	1.506	0.710	1.205	0.686	0.886	1.183
27	1.289	0.619	1.076	0.579	0.762	1.032
28	1.104	0.541	0.964	0.491	0.659	0.903
29	0.947	0.476	0.867	0.419	0.572	0.793
30	0.814	0.420	0.782	0.359	0.498	0.698
31	0.700	0.372	0.707	0.308	0.436	0.616
32	0.604	0.330	0.640	0.266	0.382	0.545
33	0.521	0.293	0.580	0.230	0.335	0.483
34	0.450	0.261	0.526	0.199	0.295	0.429
35	0.389	0.233	0.478	0.173	0.260	0.380
36	0.336	0.207	0.433	0.150	0.229	0.338
37	0.291	0.185	0.393	0.130	0.202	0.299
38	0.251	0.164	0.355	0.113	0.178	0.265
39	0.216	0.146	0.320	0.098	0.156	0.234
40	0.186	0.129	0.287	0.085	0.137	0.206
41	0.160	0.114	0.256	0.073	0.119	0.181
42	0.136	0.100	0.227	0.063	0.103	0.158
43	0.115	0.086	0.199	0.054	0.089	0.136
44	0.096	0.074	0.172	0.045	0.075	0.116
45	0.079	0.062	0.145	0.037	0.063	0.097
46	0.063	0.050	0.119	0.030	0.051	0.078
47	0.048	0.039	0.092	0.023	0.039	0.060
48	0.033	0.027	0.065	0.016	0.027	0.042
49	0.019	0.016	0.037	0.009	0.016	0.024
50	0.004	0.003	0.008	0.002	0.003	0.005

Table H3 Influences of 1%Ru/HBeta and varied Fe/HBeta

No combon	Non-	шмор	1%Ru/	5%Fe/	10%Fe/	20%Fe/
No. carbon.	catalytic	HMUK	HMOR	HMOR	HMOR	HMOR
2	0.000	0.000	0.000	0.000	0.000	0.000
3	0.000	0.000	0.000	0.000	0.000	0.000
4	0.248	0.164	0.155	0.465	0.160	0.085
5	2.099	1.584	1.695	3.817	1.723	1.095
6	2.668	2.441	3.019	4.571	3.027	2.353
7	3.301	3.516	4.682	5.269	4.699	4.120
8	3.974	4.721	6.374	5.846	6.457	6.029
9	4.650	5.905	7.724	6.249	7.918	7.597
10	5.280	6.885	8.479	6.448	8.781	8.501
11	5.811	7.515	8.593	6,440	8.952	8.690
12	6.193	7.726	8.186	6.248	8.535	8.309
13	6.390	7.545	7.448	5.912	7.735	7.575
14	6.386	7.061	6.557	5.478	6.758	6.682
15	6.193	6.390	5.645	4.991	5.757	5.768
16	5.841	5.638	4.789	4.488	4.826	4.910
17	5.378	4.884	4.029	3.997	4.006	4.148
18	4.850	4.178	3.376	3.536	3.310	3.491
19	4.302	3.546	2.826	3.114	2.732	2.937
20	3.766	2.998	2.368	2.736	2.258	2.474
21	3.265	2.530	1.990	2.402	1.871	2.090
22	2.812	2.136	1.679	2.110	1.558	1.773
23	2.411	1.806	1.422	1.855	1.303	1.511
24	2.063	1.532	1.211	1.634	1.095	1.293
25	1.763	1.304	1.036	1.443	0.926	1.112
26	1.506	1.114	0.890	1.278	0.787	0.961
27	1.289	0.955	0.769	1.134	0.672	0.835
28	1.104	0.821	0.667	1.009	0.576	0.728
29	0.947	0.709	0.581	0.900	0.497	0.637
30	0.814	0.614	0.508	0.804	0.430	0.559
31	0.700	0.534	0.445	0.720	0.373	0.493
32	0.604	0.465	0.391	0.646	0.325	0.435
33	0.521	0.405	0.345	0.580	0.283	0.385
34	0.450	0.354	0.304	0.521	0.248	0.341
35	0.389	0.310	0.268	0.468	0.217	0.303
36	0.336	0.271	0.237	0.420	0.190	0.269
37	0.291	0.237	0.209	0.376	0.166	0.238
38	0.251	0.207	0.185	0.337	0.146	0.211
39	0.216	0.181	0.163	0.300	0.127	0.186
40	0.186	0.157	0.143	0.267	0.111	0.164
41	0.160	0.136	0.125	0.236	0.096	0.144
42	0.136	0.117	0.108	0.207	0.083	0.125
43	0.115	0.100	0.093	0.180	0.071	0.108
44	0.096	0.085	0.079	0.154	0.060	0.092
45	0.079	0.070	0.066	0.129	0.050	0.077
46	0.063	0.056	0.053	0.105	0.040	0.062
47	0.048	0.043	0.041	0.081	0.031	0.048
48	0.033	0.030	0.029	0.057	0.021	0.034
49	0.019	0.017	0.016	0.033	0.012	0.019
50	0.004	0.003	0.003	0.007	0.002	0.004

 Table H4
 Influences of 1%Ru/HMOR and varied Fe/HMOR

No.	Non-	HRata	1%Pd/	5%Ni/	10%Ni/	20%N
carbon.	catalytic	ndeta	HBeta	HBeta	HBeta	HBeta
2	0.000	0.000	0.000	0.000	0.220	0.000
3	0.000	0.000	0.000	0.000	0.289	0.000
4	0.015	0.051	0.115	0.000	0.370	0.000
5	0.138	0.460	0.961	0.000	0.464	0.000
6	0.208	0.647	1.209	0.000	0.572	0.000
7	0.305	0.885	1.493	0.000	0.692	0.000
8	0.434	1.183	1.811	0.000	0.823	0.000
9	0.602	1.545	2.160	0.000	0.965	0.001
10	0.813	1.977	2.538	0.000	1.115	0.023
11	1.073	2.479	2.939	0.002	1.273	0.267
12	1.385	3.055	3.360	0.042	1.435	1.253
13	1.752	3.701	3.793	0.302	1.601	3.261
14	2.172	4.412	4.233	1.103	1.770	5.745
15	2.643	5.177	4.668	2.557	1.940	7.822
16	3.155	5.973	5.085	4.353	2.110	8.984
17	3.696	6.758	5.467	6.000	2.280	9.223
18	4.244	7.462	5.790	7.153	2.450	8.793
19	4.775	7.977	6.021	7.714	2.621	7.984
20	5.254	8.171	6.126	7.762	2.793	7.02
21	5.646	7.924	6.072	7.445	2.966	6.059
22	5.916	7.203	5.836	6.907	3.142	5.16
23	6.037	6.106	5.420	6.263	3.322	4.370
24	5.994	4.843	4.854	5.591	3.506	3.680
25	5.790	3.630	4.193	4.940	3.696	3.10
26	5.445	2.607	3.502	4.336	3.892	2.62
27	4.993	1.820	2.841	3.789	4.095	2.21
28	4.474	1.249	2.250	3.303	4.304	1.87
29	3.927	0.850	1.750	2.876	4.516	1.594
30	3.386	0.577	1.343	2.502	4.727	1.357
31	2.877	0.393	1.022	2.177	4.922	1.158
32	2.415	0.268	0.773	1.894	5.076	0.99
33	2.007	0.184	0.583	1.648	5.139	0.849
34	1.655	0.127	0.440	1.434	5.023	0.729
35	1.357	0.089	0.332	1.247	4.619	0.62
36	1.108	0.062	0.251	1.085	3.871	0.539
37	0.902	0.044	0.190	0.942	2.882	0.464
38	0.732	0.031	0.144	0.817	1.904	0.399
39	0.593	0.022	0.110	0.708	1.145	0.343
40	0.479	0.016	0.084	0.611	0.650	0.294
41	0.387	0.012	0.064	0.525	0.361	0.25
42	0.311	0.008	0.049	0.449	0.200	0.213
43	0.249	0.006	0.038	0.381	0.112	0.180
44	0.198	0.005	0.029	0.319	0.064	0.150
45	0.155	0.003	0.022	0.263	0.037	0.12
46	0.119	0.002	0.016	0.210	0.022	0.09
47	0.088	0.002	0.012	0.160	0.013	0.075
48	0.060	0.001	0.008	0.112	0.008	0.052
49	0.033	0.001	0.004	0.063	0.004	0.029
50	0.007	0.000	0.001	0.013	0.001	0.006

Appendix I Carbon Number Distribution of Mono-aromatics

No.	Non-		1%Pd/	5%Ni/	10%Ni/	20%Ni/
carbon.	catalytic	HMOR	HMOR	HMOR	HMOR	HMOR
2	0.000	0.000	0.000	0.000	0.000	0.000
3	0.000	0.000	0.000	0.000	0.000	0.000
4	0.015	0.000	0.002	0.032	0.007	0.022
5	0.138	0.347	0.019	0.286	0.072	0.203
6	0.208	30.472	0.037	0.391	0.126	0.302
7	0.305	45.567	0.070	0.522	0.211	0.435
8	0.434	17.066	0.127	0.681	0.337	0.609
9	0.602	4.705	0.221	0.870	0.517	0.832
10	0.813	1.290	0.367	1.089	0.763	1.110
11	1.073	0.375	0.585	1.340	1.082	1.449
12	1.385	0.117	0.898	1.621	1.476	1.853
13	1.752	0.039	1.326	1.932	1.938	2.325
14	2.172	0.014	1.882	2.270	2.451	2.868
15	2.643	0.005	2.568	2.634	2.990	3.480
16	3.155	0.002	3.361	3.021	3.523	4.158
17	3.696	0.001	4.218	3.427	4.014	4.889
18	4.244	0.000	5.067	3.846	4.434	5.652
19	4.775	0.000	5.824	4.272	4.758	6.406
20	5.254	0.000	6.408	4.692	4.974	7.086
21	5.646	0.000	6.758	5.091	5.078	7.598
22	5.916	0.000	6.848	5.445	5.078	7.831
23	6.037	0.000	6.692	5.726	4.987	7.688
24	5.994	0.000	6.332	5.901	4.822	7.135
25	5.790	0.000	5.828	5.934	4.600	6.238
26	5.445	0.000	5.241	5.801	4.340	5.146
27	4.993	0.000	4.625	5.495	4.055	4.034
28	4.474	0.000	4.019	5.031	3.758	3.036
29	3.927	0.000	3.452	4.450	3.459	2.217
30	3.386	0.000	2.937	3.810	3.165	1.587
31	2.877	0.000	2.482	3.165	2.881	1.123
32	2.415	0.000	2.086	2.564	2.611	0.789
33	2.007	0.000	1.746	2.034	2.356	0.554
34	1.655	0.000	1.458	1.589	2.118	0.389
35	1.357	0.000	1.214	1.226	1.897	0.274
36	1.108	0.000	1.010	0.939	1.693	0.194
37	0.902	0.000	0.838	0.716	1.505	0.138
38	0.732	0.000	0.695	0.544	1.333	0.099
39	0.593	0.000	0.576	0.413	1.175	0.071
40	0.479	0.000	0.476	0.313	1.031	0.051
41	0.387	0.000	0.393	0.238	0.899	0.037
42	0.311	0.000	0.323	0.181	0.779	0.027
43	0.249	0.000	0.264	0.138	0.667	0.020
44	0.198	0.000	0.213	0.104	0.564	0.015
45	0.155	0.000	0.170	0.078	0.468	0.011
46	0.119	0.000	0.133	0.058	0.377	0.008
47	0.088	0.000	0.099	0.042	0.289	0.005
48	0.060	0.000	0.068	0.028	0.202	0.004
49	0.033	0.000	0.038	0.015	0.115	0.002
50	0.007	0.000	0.008	0.003	0.023	0.000

 Table I2
 Influences of 1%Pd/HMOR and varied Ni/HMOR

No.	Non-		1%Ru/	5%Fe/	10%Fe/	20%Fe/
carbon.	catalytic	нвета	HBeta	HBeta	HBeta	HBeta
2	0.000	0.000	0.000	0.000	0.000	0.000
3	0.000	0.000	0.000	0.000	0.000	0.000
4	0.015	0.051	0.046	0.007	0.472	0.384
5	0.138	0.460	0.464	0.066	3.676	2.826
6	0.208	0.647	0.793	0.091	4.022	2.868
7	0.305	0.885	1.303	0.121	4.254	2.895
8	0.434	1.183	2.058	0.158	4.379	2.909
9	0.602	1.545	3.123	0.202	4.412	2.910
10	0.813	1.977	4.542	0.254	4.370	2.899
11	1.073	2.479	6.289	0.313	4.272	2.878
12	1.385	3.055	8.206	0.379	4.133	2.850
13	1.752	3.701	9.948	0.452	3.967	2.814
14	2.172	4.412	11.037	0.532	3.785	2.773
15	2.643	5.177	11.087	0.618	3.596	2.729
16	3.155	5.973	10.071	0.711	3.406	2.682
17	3.696	6.758	8.356	0.810	3.220	2.634
18	4.244	7.462	6.454	0.914	3.042	2.586
19	4.775	7.977	4.739	1.025	2.873	2.540
20	5.254	8.171	3.375	1.142	2.714	2.495
21	5.646	7.924	2.365	1.265	2.566	2.454
22	5.916	7.203	1.649	1.395	2.430	2.415
23	6.037	6.106	1.152	1.533	2.305	2.380
24	5.994	4.843	0.809	1.679	2.190	2.349
25	5.790	3.630	0.573	1.834	2.084	2.321
26	5.445	2.607	0.409	1.998	1.988	2.297
27	4.993	1.820	0.295	2.174	1.899	2.276
28	4.474	1.249	0.215	2.360	1.817	2.259
29	3.927	0.850	0.158	2.557	1.741	2.243
30	3.386	0.577	0.117	2.766	1.671	2.229
31	2.877	0.393	0.087	2.985	1.604	2.216
32	2.415	0.268	0.066	3.213	1.540	2.202
33	2.007	0.184	0.050	3.449	1.478	2.187
34	1.655	0.127	0.038	3.689	1.417	2.169
35	1.357	0.089	0.029	3.930	1.357	2.147
36	1.108	0.062	0.022	4.164	1.297	2.119
37	0.902	0.044	0.017	4.386	1.236	2.083
38	0.732	0.031	0.013	4.585	1.173	2.038
39	0.593	0.022	0.010	4.750	1.107	1.983
40	0.479	0.016	0.008	4.866	1.039	1.914
41	0.387	0.012	0.006	4.916	0.966	1.830
42	0.311	0.008	0.005	4.880	0.890	1.729
43	0.249	0.006	0.004	4.735	0.808	1.608
44	0.198	0.005	0.003	4.459	0.721	1.467
45	0.155	0.003	0.002	4.037	0.627	1.302
46	0.119	0.002	0.002	3.469	0.527	1.112
47	0.088	0.002	0.001	2.776	0.418	0.895
48	0.060	0.001	0.001	1.990	0.301	0.651
49	0.033	0.001	0.000	1.138	0.174	0.378
50	0.007	0.000	0.000	0.228	0.035	0.077

Table 13 Influences of 1%Ru/HBeta and varied Fe/HBeta

No.	Non-	шиор	1%Pd/	5%Ni/	10%Ni/	20%Ni/
carbon.	catalytic	HMUR	HMOR	HMOR	HMOR	HMOR
2	0.000	0.000	0.000	0.000	0.000	0.000
3	0.000	0.000	0.000	0.000	0.000	0.000
4	0.015	0.000	0.001	0.012	0.699	0.038
5	0.138	0.347	0.017	0.103	4.963	0.410
6	0.208	30.472	0.055	0.137	4.746	0.751
7	0.305	45.567	0.159	0.178	4.531	1.308
8	0.434	17.066	0.427	0.226	4.320	2.162
9	0.602	4.705	1.048	0.282	4.114	3.375
10	0.813	1.290	2.327	0.345	3.915	4.945
11	1.073	0.375	4.582	0.415	3.723	6.738
12	1.385	0.117	7.808	0.492	3.539	8.458
13	1.752	0.039	11.245	0.576	3.365	9.715
14	2.172	0.014	13.528	0.665	3.199	10.189
15	2.643	0.005	13.714	0.760	3.044	9.808
16	3.155	0.002	12.046	0.859	2.898	8.763
17	3.696	0.001	9.517	0.964	2.763	7.376
18	4.244	0.000	7.014	1.072	2.637	5.942
19	4.775	0.000	4.965	1.185	2.521	4.648
20	5.254	0.000	3.446	1.303	2.415	3.570
21	5.646	0.000	2.376	1.426	2.318	2.717
22	5.916	0.000	1.642	1.554	2.229	2.061
23	6.037	0.000	1.141	1.688	2.149	1.565
24	5.994	0.000	0.801	1.828	2.076	1.193
25	5.790	0.000	0.568	1.976	2.010	0.914
26	5.445	0.000	0.407	2.132	1.951	0.705
27	4.993	0.000	0.295	2.296	1.897	0.547
28	4.474	0.000	0.215	2.469	1.848	0.427
29	3.927	0.000	0.159	2.651	1.803	0.336
30	3.386	0.000	0.118	2.842	1.761	0.266
31	2.877	0.000	0.089	3.041	1.721	0.211
32	2.415	0.000	0.067	3.246	1.683	0.169
33	2.007	0.000	0.051	3.456	1.645	0.136
34	1.655	0.000	0.039	3.667	1.606	0.109
35	1.357	0.000	0.030	3.876	1.566	0.089
36	1.108	0.000	0.023	4.077	1.524	0.072
37	0.902	0.000	0.018	4.262	1.477	0.059
38	0.732	0.000	0.014	4.425	1.426	0.048
39	0.593	0.000	0.011	4.553	1.369	0.039
40	0.479	0.000	0.009	4.634	1.305	0.032
41	0.387	0.000	0.007	4.652	1.233	0.026
42	0.311	0.000	0.005	4.589	1.152	0.021
43	0.249	0.000	0.004	4.425	1.061	0.017
44	0.198	0.000	0.003	4.143	0.959	0.014
45	0.155	0.000	0.003	3.729	0.844	0.011
46	0.119	0.000	0.002	3.189	0.716	0.009
47	0.088	0.000	0.001	2.541	0.573	0.006
48	0.060	0.000	0.001	1.816	0.415	0.004
49	0.033	0.000	0.001	1.037	0.240	0.002
50	0.007	0.000	0.000	0.208	0.049	0.000

 Table 14 Influences of 1%Ru/HMOR and varied Fe/HMOR

CURRICULUM VITAE

Name:	Ms.	Lalita	Saeaeh
Ivame:	IVIS.	Lama	Saeaen

Date of Birth: March 23,1988

Nationality: Thai

University Education:

2006-2010 Bachelor Degree of Industrial Chemistry, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Nonthaburi, Thailand

Work Experience:

2009	Position:	Student Internship
	Company name:	Pan asia CO,LTD

Proceeding and Presentations:

- Saeaeh, L. and Jitkarnka, S. (2012, April 11-13) Investigation of Nickel as a Metal Substitute of Palladium Supported on HBeta Zeolite for Waste Tire Pyrolysis, Poster presentation at ICCBEE 2012 : International Conference on Chemical, Biological and Environmental Engineering, Venice, Italy.
- Saeaeh, L. and Jitkarnka, S. (2012, April 24) Nickel as a Metal Substitute for Palladium Supported on HMOR Zeolite for Waste Tire Pyrolysis. Paper presented at the 3rdResearch Symposium on Petrochemical and Materials Technology, and the 18th PPC Symposium on Petroleum, Petrochemicals, and Polymers, Bangkok, Thailand.

