# POTENTIAL USE OF Co-SUPPORTED CATALYSTS AS A TIRE PYROLYSIS CATALYST FOR PRODUCTION OF VALUABLE PETROCHEMICALS



Parisa Saparakpunya

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2012

551756

| Thesis Title:    | Potential Use of Co-Supported Catalysts as a Tire Pyrolysis |
|------------------|-------------------------------------------------------------|
|                  | Catalyst for Production of Valuable Petrochemicals          |
| By:              | Parisa Saparakpunya                                         |
| Program:         | Petrochemical Technology                                    |
| Thesis Advisors: | Assoc. Prof. Sirirat Jitkarnka                              |

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

College Dean

(Asst. Prof. Pomthong Malakul)

**Thesis Committee:** 

(Assoc. Prof. Sirirat Jitkarnka)

161

(Assoc. Prof. Pramoch Rangsunvigit) .....

(Dr. Ruengsak Thitiratsakul)

#### ABSTRACT

 5371014063: Petrochemical Technology Program
Parisa Saparakpunya: Potential Use of Co-Supported Catalysts as a Tire Pyrolysis Catalyst for Production of Valuable Petrochemicals Thesis Advisor: Assoc. Prof. Sirirat Jitkarnka, 113 pp.
Keywords: Tire/ Pyrolysis/ Cobalt/HY/HMOR/HBETA/HZSM-5/ SAPO-34/Binary support/Catalyst

According to the increasing mono-aromatics consumption and the increasing price of oil, the aromatic prices increase. The catalytic waste tires pyrolysis is one of the alternative techniques, which has potential to convert the waste to valuable aromatic products. In this work, the advantages of bifunctional catalysts are taken to improve the quality of tire pyrolysis products, especially on mono-aromatics production by using 5 % of cobalt supported on different zeolites, namely HY, HBETA, HMOR, HZSM-5 and SAPO-34. Moreover, 5 % cobaltsupported binary support catalysts, namely HY/SAPO-34, HBETA/SAPO-34, and HMOR/SAPO-34 were studied. It is well known that HY, HBETA, HMOR and HZSM-5 have the advantages in isomerization and aromatization, whereas SAPO-34 has the advantage in cracking large molecules due to its pores. Therefore, combining SAPO-34 with HY, HBETA, HMOR, and HZSM-5 can be considered beneficial for the catalytic pyrolysis of waste tire. It was found that 5 %Co loaded on all supports increased gas yields and the concentration of mono-aromatics in oil products as compared to those of the pure zeolite and non-catalytic cases. Moreover, 5 %Co/HY catalyst gave the highest production of light olefins, whereas 5 %Co/HZSM-5 gave the highest production of cooking gas. Among the catalysts supported with acid zeolites, 5 %Co/HZSM-5 catalyst was found to give the highest mono-aromatics production in the pyrolytic oil. Furthermore, the binary support catalyst, 5 %Co/(HMOR+SAPO-34), gave the highest mono-aromatics production among all catalysts.

# บทคัดย่อ

ปาริสา สภารักษ์ปัญญา: การใช้ตัวเร่งปฏิกิริยาโคบอลต์ที่บรรจุในตัวรองรับประเภท ต่างๆในกระบวนการไพโรไลซิสยางรถยนต์หมดสภาพสำหรับเพิ่มมูลค่าผลิตภัณฑ์ปิโตรเคมี (Potential Use of Co-Supported Catalysts as a Tire Pyrolysis Catalyst for Production of Valuable) อ. ที่ปรึกษา: รศ. ดร. ศิริรัตน์ จิตการค้า 113 หน้า

เนื่องจากการบริโภคสารประกอบโมโนอะโรมาติกส์มีปริมาณสูงขึ้น และประกอบกับ ้น้ำมันมีราคาสูงขึ้น จึงส่งผลกระทบทำให้โมโนอะโรมาติกที่ใช้กันอย่างแพร่หลายนั้นมีราคาสูงขึ้น การใช้ตัวเร่งปฏิกิริยาในกระบวนการไพโรไลซิสยางรถยนต์ในการเปลี่ยนของเสียให้เป็น ้ผลิตภัณฑ์ที่มีก่าอย่างโมโนอะโรมาติกส์นั้นเป็นทางเลือกหนึ่งที่น่าสนใจ งานวิจัยนี้เป็นการศึกษา ผลของการใช้ซีโอไลท์ร่วมกับโลหะโคบอลต์ ทั้งทางเชิงคุณภาพและปริมาณของผลิตภัณฑ์ โดยเฉพาะอย่างยิ่งผลิตภัณฑ์โมโนอะโรมาติกส์ โดยการใช้โลหะโคบอลต์ร้อยละ 5 โดยน้ำหนัก บนซีโอไลท์ชนิดต่างๆ ได้แก่ เอชวาย, เอชมอร์, เอชเบด้า, เอชซีเอสเอ็มไฟว์, และซาโป้เธอตี้โฟร์ นอกจากนี้ยังศึกษาถึงผลของการใช้ตัวรองรับผสม ได้แก่ เอชวาย/ซาโป้เธอตี้โฟร์, เอชมอร์/ซาโป้เธอตี้โฟร์, เอชเบด้า/ซาโป้เธอตี้โฟร์ และ เอชซีเอสเอ็มไฟว์/ซาโป้เธอตี้โฟร์ ซึ่งเป็น ที่รู้กันว่า เอชวาย, เอชมอร์, เอชเบค้า, และเอชซีเอสเอ็มไฟว์สามารถทำให้เกิคปฏิกิริยาไอโซเมอร์ ไรเซชั่น และอะโรมาไตเซชั่นได้ ในขณะที่ซาโป้เธอตี้โฟร์สามารถแตกพันธะโมเลกุลใหญ่ของ สารตั้งต้นได้ เนื่องจากมีรูพรุนในระดับมีโซ ดังนั้นการผสม เอชวาย, เอชมอร์, เอชเบค้า, และ เอชซีเอสเอ็มไฟว์กับซาโป้เธอตี้โฟร์จึงน่าจะส่งผลที่ดีในกระบวนการไพโรไลซิสยางรถยนต์หมด สภาพ เมื่อเปรียบเทียบกับการไม่ใช้ตัวเร่งปฏิกิริยา จากการทคลองพบว่าการใช้ซีโอไลท์ และการ ใช้โคบอลต์ร้อยละ 5 เติมลงบนซีโอไลท์นั้น ตัวเร่งปฏิกิริยาทั้งหมดสามารถผลิตแก๊ส และ ้โมโนอะโรมาติกส์ในน้ำมันได้มากกว่าการไม่ใช้ตัวเร่งปฏิกิริยาหรือการใช้ตัวรองรับเพียงอย่าง เดียว นอกจากนี้ร้อยละ 5 ของโลหะโคบอลต์บนเอชวายผลิตโอเลฟินส์เบามากที่สุด ในขณะที่ ร้อยละ 5 ของโลหะโคบอลต์บนเอชซีเอสเอ็มไฟว์ผลิตแก๊สหุงต้ม และปริมาณโมโนอะโรมาติกส์ ในน้ำมันมากที่สุดเมื่อเทียบกับตัวเร่งปฏิกิริยาชนิดที่มีคุณสมบัติเป็นกรดด้วยกัน สุดท้ายนี้ยังพบว่า การผสมโลหะโคบอลต์ร้อยละ 5 บนเอชมอร์กับการผสมโคบอลต์ร้อยละ 5 บนซาโป้เธอตี้โฟร์นั้น ผลิตโมโนอะโรมาติกส์มากที่สุดเมื่อเทียบกับตัวเร่งปฏิกิริยาชนิดใดๆ

#### ACKNOWLEDGEMENTS

I would like to express our sincere thanks to Thailand Research Fund, The Commissions on Higher Education, the Petroleum and Petrochemical College, and the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand for successful completion of this research project by providing all facilities and supports.

In particular, I express my gratitude Assoc. Prof. Sirirat Jitkarnka, for her supervision and advice from the very early stage of this research and support in various ways.

I also gratefully thank Assoc. Prof. Pramoch Rangsunvigit and Dr. Ruengsak Thitiratsakul for their important comments.

I am deeply grateful to my family for their support and encouragement.

Finally, I would like to thank all entire PPC friends and staffs who made a valuable contributions to this research as well as expressing our apology for not mentioning personally by name.

## **TABLE OF CONTENTS**

|                       | PAGE |
|-----------------------|------|
| Title Page            | i    |
| Abstract (in English) | iii  |
| Abstract (in Thai)    | iv   |
| Acknowledgements      | v    |
| Table of Contents     | vi   |
| List of Tables        | ix   |
| List of Figures       | xiv  |

## CHAPTER

| Ι   | INTRODUCTION                     | 1  |
|-----|----------------------------------|----|
| II  | BACKGROUND AND LITERATURE REVIEW | 4  |
| III | EXPERIMENTAL                     | 18 |
|     | 3.1 Materials                    | 18 |
|     | 3.2 Equipment                    | 18 |
|     | 3.3 Chemicals and Solvents       | 19 |
|     | 3.4 Methodology                  | 19 |
|     | 3.4.1 Catalyst Preparation       | 17 |
|     | 3.4.2 Pyrolysis Experiment       | 20 |
|     | 3.4.3 Product Analysis           | 21 |
|     | 3.4.4 Catalyst Characterization  | 24 |

| IV | <b>RESULTS AND DISCUSSION</b>                                               | 26       |
|----|-----------------------------------------------------------------------------|----------|
|    | 4.1 Effects of SAPO-34 as a Catalyst                                        | 26       |
|    | 4.1.1 Physical Properties of Catalysts                                      | 26       |
|    | 4.1.2 Product Distribution                                                  | 27       |
|    | 4.1.3 Gaseous Products                                                      | 28       |
|    | 4.1.3 Oil Products                                                          | 29       |
|    | 4.2 Effects of Co-loading on Acid Zeolites                                  | 34       |
|    | 4.2.1 Product Distribution                                                  | 34       |
|    | 4.2.2 Product Distribution                                                  | 35       |
|    | 4.2.3 Gaseous Products                                                      | 36       |
|    | 4.2.3 Oil Products                                                          | 37       |
|    | 4.3 Effect of SAPO-34 as an Additive in Acid Zeolites                       | 44       |
|    | 4.3.1 Product Distribution                                                  | 44       |
|    | <ul><li>4.3.2 Product Distribution</li><li>4.3.3 Gaseous Products</li></ul> | 45<br>46 |
|    |                                                                             |          |
|    | 4.3.3 Oil Products                                                          | 47       |
| v  | CONCLUSIONS AND RECOMMENDATIONS                                             | 55       |
|    | REFERENCES                                                                  | 56       |
|    | APPENDICES                                                                  | 61       |
|    | Appendix A Temperature Profiles                                             | 61       |
|    | Appendix B Yields of Pyrolysis Products                                     | 78       |
|    | Appendix C Gas Yields (%)                                                   | 81       |
|    | Appendix D Chemical Compositions of Maltenes                                | 90       |
|    | Appendix E True Boiling Point Curve of Chemical                             | 92       |
|    | Compositions in Pyrolytic Oils                                              |          |
|    | Appendix F Coke Formation                                                   | 109      |

## CHAPTER

## PAGE

| Appendix I Pore Volume, Pore Size and Surface Area | 110 |
|----------------------------------------------------|-----|
| Appendix J Concentration of Light Mono-aromatics   | 111 |

## **CURRICULUM VITAE**

113

#### **LIST OF TABLES**

TABLE

#### 2.1 Structure of zeolites 2.2 Process characterisation of incineration, gasification, 3.1 Optimized compositions and volumes of mobile phases for maltene separation by using liquid chromatographic column 4.1 Physical properties of SAPO-34 loaded with 5 %Co 4.2 Petroleum cut 4.3 Average carbon number of maltenes and monoaromatics obtained from using SAPO-34 and 5 %Co/SAPO-34 4.4 Physical properties of different zeolites loaded with 5 %Co 4.5 Single-ring aromatic hydrocarbons in oil 4.6 Average carbon number of maltenes and monoaromatics obtained from using HY and 5 %Co/HY 4.7 Physical properties of binary catalysts with and

|     | without 5 %Co                                 | 45 |
|-----|-----------------------------------------------|----|
| Al  | Pyrolysis conditions: Non-catalytic Pyrolysis | 61 |
| A2  | Pyrolysis conditions: SAPO-34 Catalyst        | 62 |
| A3  | Pyrolysis conditions: 5 %Co/SAPO-34 Catalyst  | 63 |
| A4  | Pyrolysis conditions: 5 %Co/HY Catalyst       | 64 |
| A5  | Pyrolysis conditions: HBETA Catalyst          | 65 |
| A6  | Pyrolysis conditions: 5 %Co/HBETA Catalyst    | 66 |
| A7  | Pyrolysis conditions: 5 %Co/HMOR Catalyst     | 67 |
| A8  | Pyrolysis conditions: HZSM-5 Catalyst         | 68 |
| A9  | Pyrolysis conditions: 5 %Co/HZSM-5 Catalyst   | 69 |
| A10 | Pyrolysis conditions: HY/SAPO-34 Catalyst     | 70 |

PAGE

8

7

22

26

31

33

35

39

43

## TABLE

| A11 | Pyrolysis conditions: 5 %Co/(HY+SAPO-34) Catalyst   | 71 |
|-----|-----------------------------------------------------|----|
| A12 | Pyrolysis conditions: HMOR/SAPO-34 Catalyst         | 72 |
| A13 | Pyrolysis conditions: 5 %Co/(HMOR+SAPO-34)          |    |
|     | Catalyst                                            | 73 |
| A14 | Pyrolysis conditions: HBETA/SAPO-34 Catalyst        | 74 |
| A15 | Pyrolysis conditions: 5 %Co/(HBETA+SAPO-34)         |    |
|     | Catalyst                                            | 75 |
| A16 | Pyrolysis conditions: HZSM-5/SAPO-34 Catalyst       | 76 |
| A17 | Pyrolysis conditions: 5 %Co/(HZSM-5+SAPO-34)        |    |
|     | Catalyst                                            | 77 |
| Bl  | Yield of products obtained from from pyrolysis with |    |
|     | 5 %Co/SAPO-34                                       | 78 |
| B2  | Yield of products obtained from from pyrolysis with |    |
|     | 5 %Co/HY                                            | 78 |
| B3  | Yield of products obtained from from pyrolysis with |    |
|     | 5 %Co/HBETA                                         | 78 |
| B4  | Yield of products obtained from from pyrolysis with |    |
|     | 5 %Co/HMOR                                          | 78 |
| B5  | Yield of products obtained from from pyrolysis with |    |
|     | 5 %Co/HZSM-5                                        | 79 |
| B6  | Yield of products obtained from from pyrolysis with |    |
|     | 5 %Co/(HY+SAPO-34)                                  | 79 |
| B7  | Yield of products obtained from from pyrolysis with |    |
|     | 5 %Co/(HMOR+SAPO-34)                                | 79 |
| B8  | Yield of products obtained from from pyrolysis with |    |
|     | 5 %Co/(HBETA+SAPO-34)                               | 79 |
| B9  | Yield of products obtained from from pyrolysis with |    |
|     | 5 %Co/(HZSM-5+SAPO-34)                              | 80 |

## TABLE

| C1 | Yield of gas composition obtained from pyrolysis |    |
|----|--------------------------------------------------|----|
|    | with 5 %Co/SAPO-34                               | 81 |
| C2 | Yield of gas composition obtained from pyrolysis |    |
|    | with 5 %Co/HY                                    | 82 |
| C3 | Yield of gas composition obtained from pyrolysis |    |
|    | with 5 %Co/HMOR                                  | 83 |
| C4 | Yield of gas composition obtained from pyrolysis |    |
|    | with 5 %Co/HBETA                                 | 84 |
| C5 | Yield of gas composition obtained from pyrolysis |    |
|    | with 5 %Co/HZSM-5                                | 85 |
| C6 | Yield of gas composition obtained from pyrolysis |    |
|    | with 5 %Co/(HY+SAPO-34)                          | 86 |
| C7 | Yield of gas composition obtained from pyrolysis |    |
|    | with 5 %Co/(HMOR+SAPO-34)                        | 87 |
| C8 | Yield of gas composition obtained from pyrolysis |    |
|    | with 5 %Co/(HBETA+SAPO-34)                       | 88 |
| C9 | Yield of gas composition obtained from pyrolysis |    |
|    | with 5 %Co/(HZSM-5+ SAPO-34)                     | 89 |
| D1 | Effect of 5 %Co/SAPO-34                          | 90 |
| D2 | Effect of 5 %Co/HY                               | 90 |
| D3 | Effect of 5 %Co/HBETA                            | 90 |
| D4 | Effect of 5 %Co/HMOR                             | 90 |
| D5 | Effect of 5 %Co/HZSM-5                           | 91 |
| D6 | Effect of 5 %Co/(HY+SAPO-34)                     | 91 |
| D7 | Effect of 5 %Co/(HMOR+SAPO-34)                   | 91 |
| D8 | Effect of 5 %Co/(HBETA+SAPO-34)                  | 91 |
| D9 | Effect of 5 %Co/(HZSM-5+SAPO-34)                 | 91 |
| E1 | True boiling point curves: - non catalyst        | 92 |
| E2 | True boiling point curves: - SAPO-34             | 93 |

| E3  | True boiling point curves: - 5 %Co/SAPO-34         | 94  |
|-----|----------------------------------------------------|-----|
| E4  | True boiling point curves: - 5 %Co/HY              | 95  |
| E5  | True boiling point curves: - 5 %Co/HMOR            | 96  |
| E6  | True boiling point curves: - HBETA                 | 97  |
| E7  | True boiling point curves: - 5 %Co/HBETA           | 98  |
| E8  | True boiling point curves: - HZSM-5                | 99  |
| E9  | True boiling point curves: - 5 %Co/HZSM-5          | 100 |
| E10 | True boiling point curves: - HY/SAPO-34            | 101 |
| E11 | True boiling point curves: - 5 %Co/(HY+SAPO-34)    | 102 |
| E12 | True boiling point curves: - HMOR/SAPO-34          | 103 |
| E13 | True boiling point curves: - 5 %(HMOR+SAPO-34)     | 104 |
| E14 | True boiling point curves: - HBETA/SAPO-34         | 105 |
| E15 | True boiling point curves: - 5 %Co/(HBETA+         |     |
|     | SAPO-34)                                           | 106 |
| E16 | True boiling point curves: - HZSM-5/SAPO-34        | 107 |
| E17 | True boiling point curves: - 5 %Co/(HZSM-5+        |     |
|     | SAPO-34)                                           | 108 |
| F1  | Coke formation – 5 %Co/SAPO-34                     | 109 |
| F2  | Coke formation – 5 %Co supported on acid zeolites  |     |
|     | (HY, HMOR, HBETA, and HZSM-5)                      | 109 |
| F3  | Coke formation – 5 %Co supported on mixed supports |     |
|     | (HY/SAPO-34, HMOR/SAPO-34, HBETA/SAPO-34,          |     |
|     | and HZSM-5/SAPO-34)                                | 110 |
| I1  | Volume, Pore Size and Surface Area - 5 %Co/SAPO-   |     |
|     | 34                                                 | 110 |
| I2  | Pore Volume, Pore Size and Surface Area - 5 %Co    |     |
|     | supported on acid zeolites (HY, HMOR, HBETA, and   |     |
|     | HZSM-5)                                            | 110 |

## TABLE

| 13 | Pore Volume, Pore Size and Surface Area - 5 %Co  |     |
|----|--------------------------------------------------|-----|
|    | supported on binary-supports (HY/SAPO-34,        |     |
|    | HMOR/SAPO-34, HBETA/SAPO-34, and HZSM-5/         |     |
|    | SAPO-34)                                         | 110 |
| Jl | Concentration of light mono-aromatics            |     |
|    | - 5 %Co/SAPO-34                                  | 111 |
| J2 | Concentration of light mono-aromatics – 5 %Co    |     |
|    | supported on acid zeolites (HY, HMOR, HBETA, and |     |
|    | HZSM-5)                                          | 111 |
| J3 | Concentration of light mono-aromatics –          |     |
|    | binary-supports (HY/SAPO-34, HMOR/SAPO-34,       |     |
|    | HBETA/SAPO-34, and HZSM-5/SAPO-34)               | 111 |
| J4 | Concentration of light mono-aromatics - 5 %Co    |     |
|    | supported on binary-supports (HY/SAPO-34,        |     |
|    | HMOR/SAPO-34, HBETA/SAPO-34, and HZSM-5/         |     |
|    | SAPO-34)                                         | 112 |

#### **LIST OF FIGURES**

#### FIGURE

| 2.1 | Structure of benzene, toluene, and xylenes.                   | 4  |
|-----|---------------------------------------------------------------|----|
| 2.2 | Process characterisation of incineration, gasification, and   |    |
|     | pyrolysis.                                                    | 7  |
| 2.3 | Y zeolite structure.                                          | 9  |
| 2.4 | BETA zeolite structure.                                       | 10 |
| 2.5 | Mordenite zeolite structure.                                  | 11 |
| 2.6 | ZSM-5 zeolite structure.                                      | 12 |
| 2.7 | SAPO-34 zeolite structure.                                    | 13 |
| 3.1 | Schematic of the pyrolysis experiment Chemical.               | 20 |
| 3.2 | Pyrolysis products.                                           | 21 |
| 4.1 | Product distribution obtained from the catalytic pyrolysis of |    |
|     | waste tire using SAPO-34 and 5 %Co/SAPO-34.                   | 27 |
| 4.2 | Gas compositions obtained from waste tire pyrolysis using     |    |
|     | SAPO-34 and 5 %Co/SAPO-34.                                    | 28 |
| 4.3 | Light olefins production from using SAPO-34 and               |    |
|     | 5 %Co/SAPO-34.                                                | 28 |
| 4.4 | Cooking gas production from using SAPO-34 and                 |    |
|     | 5 %Co/SAPO-34.                                                | 29 |
| 4.5 | Chemical composition in maltenes obtained from using          |    |
|     | SAPO-34 and 5 %Co/SAPO-34.                                    | 29 |
| 4.6 | Weight fraction of asphaltenes in pyrolytic oils obtained     |    |
|     | from SAPO-34 and 5 %Co/SAPO-34.                               | 30 |
| 4.7 | Sulfur content in the oil product obtained from SAPO-34       |    |
|     | and 5 %Co/SAPO-34.                                            | 31 |
| 4.8 | Petroleum fractions in maltenes obtained from using           |    |
|     | SAPO-34 and 5 %Co/SAPO-34.                                    | 32 |

#### FIGURE

| 4.9  | Carbon number distribution of maltene from using SAPO-34      |    |
|------|---------------------------------------------------------------|----|
|      | and 5 %Co/SAPO-34.                                            | 33 |
| 4.10 | Carbon number distribution of mono-aromatics from using       |    |
|      | SAPO-34 and 5 %Co/SAPO-34.                                    | 34 |
| 4.11 | Product distribution obtained from the catalytic pyrolysis of |    |
|      | waste tire using acid zeolites and 5 %Co supported on acid    |    |
|      | zeolites.                                                     | 35 |
| 4.12 | Gas compositions obtained from waste tire pyrolysis using     |    |
|      | acid zeolites and 5 %Co supported on acid zeolites.           | 36 |
| 4.13 | Light olefins production from using acid zeolites and 5 %Co   |    |
|      | supported on acid zeolites.                                   | 37 |
| 4.14 | Cooking gas production from using acid zeolites and 5 %Co     |    |
|      | supported on acid zeolites.                                   | 37 |
| 4.15 | Chemical composition in maltenes obtained from using acid     |    |
|      | zeolites and 5%Co supported on acid zeolites.                 | 38 |
| 4.16 | Weight fraction of asphaltenes in the pyrolytic oils obtained |    |
|      | from usint acid zeolites and 5 %Co supported on acid          |    |
|      | zeolites.                                                     | 40 |
| 4.17 | Sulfur content in the oil products obtained from using acid   |    |
|      | zeolites and 5 %Co supported on acid zeolites.                | 40 |
| 4.18 | Petroleum fractions in maltenes obtained from using acid      |    |
|      | zeolites and 5 %Co supported on acid zeolites.                | 41 |
| 4.19 | Carbon number distribution of maltene from using acid         |    |
|      | zeolites and 5 %Co supported on acid zeolites.                | 43 |
| 4.20 | Carbon number distribution of mono-aromatics from using       |    |
|      | acid zeolites and 5 %Co supported on acid zeolites.           | 44 |
| 4.21 | Product distribution obtained from the catalytic pyrolysis of |    |
|      | waste tire using a) binary supports, and b) 5 %Co supported   |    |
|      | on binary supports.                                           | 46 |

## FIGURE

| 4.22 | Light olefins and cooking gas production from using a)        |    |
|------|---------------------------------------------------------------|----|
|      | binary supports, and b) 5 %Co supported on binary supports.   | 47 |
| 4.23 | Saturated hydrocarbons in maltenes obtained from using a)     |    |
|      | binary supports, and 5 %Co supported on binary supports.      | 48 |
| 4.24 | Mono-aromatics in maltenes obtained from using a) binary      |    |
|      | supports, and b) 5 %Co supported on binary supports.          | 49 |
| 4.25 | Weight fraction of asphaltenes in the pyrolytic oils obtained |    |
|      | from using a) binary supports, and b) 5 %Co supported on      |    |
|      | binary supports.                                              | 50 |
| 4.26 | Sulfur content in the oil products obtained from using a)     |    |
|      | binary supports, and b) 5 %Co supported on binary supports.   | 51 |
| 4.27 | Petroleum fractions in maltenes obtained from using a)        |    |
|      | binary supports, and b) 5 %Co supported on binary supports.   | 52 |
| 4.28 | Average carbon number of maltenes obtained from using         |    |
|      | binary supports, and 5 %Co supported on binary supports.      | 53 |
| 4.29 | Average carbon number of mono-aromatics obtained from         |    |
|      | using binary supports, and 5 %Co supported on binary          |    |
|      | supports.                                                     | 54 |
| Al   | Temperature profiles of non-catalytic pyrolysis.              | 61 |
| A2   | Temperature profiles of SAPO-34.                              | 62 |
| A3   | Temperature profiles of 5 %Co/SAPO-34.                        | 63 |
| A4   | Temperature profiles of 5 %Co/HY.                             | 64 |
| A5   | Temperature profiles of HBETA.                                | 65 |
| A6   | Temperature profiles of 5 %Co/HBETA.                          | 66 |
| A7   | Temperature profiles of 5 %Co/HMOR.                           | 67 |
| A8   | Temperature profiles of HZSM-5.                               | 68 |
| A9   | Temperature profiles of 5 %Co/HZSM-5.                         | 69 |
| A10  | Temperature profiles of HY/SAPO-34.                           | 70 |

## FIGURE

| A11 | Temperature profiles of 5 %Co/(HY+SAPO-34).                | 71 |
|-----|------------------------------------------------------------|----|
| A12 | Temperature profiles of HMOR/SAPO-34.                      | 72 |
| A13 | Temperature profiles of 5 %Co/(HMOR+SAPO-34).              | 73 |
| A14 | Temperature profiles of HBETA/SAPO-34.                     | 74 |
| A15 | Temperature profiles of 5 %Co/(HBETA+SAPO-34).             | 75 |
| A16 | Temperature profiles of HZSM-5/SAPO-34.                    | 76 |
| A17 | Temperature profiles of 5 %Co/(HZSM-5+SAPO-34).            | 77 |
| Cl  | Gas yields obtained from pyrolysis with 5 %Co/SAPO-34      |    |
|     | catalyst.                                                  | 81 |
| C2  | Gas yields obtained from pyrolysis with 5 %Co/HY catalyst. | 82 |
| C3  | Gas yields obtained from pyrolysis with 5 %Co/HMOR         |    |
|     | catalyst.                                                  | 83 |
| C4  | Gas yields obtained from pyrolysis with 5 %Co/HBETA        |    |
|     | catalyst.                                                  | 84 |
| C5  | Gas yields obtained from pyrolysis with 5 %Co/HZSM-5       |    |
|     | catalyst.                                                  | 85 |
| C6  | Gas yields obtained from pyrolysis with 5 %Co/(HY+         |    |
|     | SAPO-34) catalyst.                                         | 86 |
| C7  | Gas yields obtained from pyrolysis with 5 %Co/(HMOR+       |    |
|     | SAPO-34) catalyst.                                         | 87 |
| C8  | Gas yields obtained from pyrolysis with 5 %Co/(HBETA+      |    |
|     | SAPO-34) catalyst.                                         | 88 |
| C9  | Gas yields obtained from pyrolysis with 5 %Co/(HZSM-5+     |    |
|     | SAPO-34) catalyst                                          | 89 |