

REFERENCES

- Benallal, B., Roy, C., Pakdel, H., Chabot S., and Poirier, M. A. (1995). Characterization of pyrolytic light naphtha from vacuum pyrolysis of used tyres comparison with petroleum naphtha. <u>Fuel</u>, 74, 1589-1594.
- Bessell, S. (1995). Investigation of bifunctional zeolite supported cobalt Fischer-Tropsch catalysts. <u>Applied Catalysis A: General</u>, 126, 235-244.
- Boxiong, S., Chunfei, W., Rui, W., Binbin, G., and Cai, L. (2006). Pyrolysis of scrap tyres with zeolite USY. Journal of Hazardous Materials B137, 1065–1073.
- Boxiong, S., Chunfei, W., Rui, W., Binbin, G., and Cai, L. (2007). Pyrolysis of waste tyres: The influence of USY catalyst/tyre ratio on products. <u>Journal</u> <u>Analytical and Applied Pyrolysis</u>, 78, 243-249.
- Boxiong, S., Chunfei, W., Binbin, G. Rui, W., and Liangcai. (2007). Pyrolysis of waste tyres with zeolite USY and ZSM-5 catalyst. <u>Applied Catalysis B:</u> <u>Environmental</u>, 73, 150–157.
- Concepcion, P., Lopez, C., Martinez, A., and Puntes, V.F. (2004). Characterization and catalytic properties of cobalt supported on delaminated ITQ-6 and ITQ-2 zeolites for the Fischer-Tropsch synthesis reaction. <u>Journal of Catalysis</u>, 228, 321-332.
- Chae, H., Song, Y., Jeong, K., Kim, C., and Jeong, S. (2010). Physicochemical characteristics of ZSM-5/ SAPO-34 composite catalyst for MTO reaction. Journal of Physics and Chemistry of Solids, 71, 600–603.
- Choosuton A., (2007). Development of Waste Tire Pyrolysis for the Production of Commercial Fuels: Effect of Noble Metals and Supports .M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Cunliffe, A.M., and Williams, P.T. (1998). Composition of oils derived from the batch pyrolysis of tyres. Journal of Analytical and Applied Pyrolysis, 44, 131–152.
- Cunliffe, A.M., and Williams, P.T. (1999). Influence of process conditions on the rate of activation of chars derived from pyrolysis of used Tires. <u>Energy &</u> <u>Fuels</u>, 13, 166-175.

- De, D., Das, A., De, D., Dey, B., Debnath, S.C., and Roy, B.C. (2006). Reclaiming of ground rubber tire (GRT) by a novel reclaiming agent. <u>European Polymer</u> <u>Journal</u>, 42, 917–927.
- Dung, N.A., Wongkasemjit, S., and Jitkarnka, S. (2009). Effects of pyrolysis temperature and Pt-loaded catalysts on polar-aromatic content in tirederived oil. Applied Catalysis B: Environmental, 91,300–307.
- Elordi, G., Olazar, M., Lopez, G., Amutio, M., Artetxe, M., Aguado, R., and Bilbao, J. (2009). Catalytic pyrolysis of HDPE in continuous mode over zeolite catalysts in a conical spouted bed reactor. <u>J. Anal. Appl. Pyrolysis</u>, 85, 345– 351.
- Fan, Y., Bao, X., Lei, D., Shi, G., Wei, W., and Xu, J. (2005). A novel catalyst system based on quadruple silicoaluminophosphate and aluminosilicate zeolites for FCC gasoline upgrading. <u>Fuel</u>, 84, 435–442.
- Espinosa, G., Domínguez, J.M., Morales-Pacheco, P., Tobon, A., Aguilara, M., and Benítez, J. (2011). Catalytic behaviorofCo/(Nanoβ-Zeolite) bifunctional catalysts for Fischer–Tropsch reactions. Catalysis Today, 166, 47-52.
- Halgeri A.B. and Jagannath, D. (1999). Novel catalytic aspects of beta zeolite for alkyl aromatics transformation. <u>Applied Catalysis A: General</u>, 181, 347-354
- Ilkilic, C. and Aydin, H., (2011). Fuel production from waste vehicle tires by catalytic pyrolysis and its application in a diesel engine. <u>Fuel Processing</u> <u>Technology</u>, 92, 1129–1135.
- Jae, J., Tompsett, G.A., Foster, A.J., Hammond, K.D., Auerbach, S.M., Lobo, R.F., and Huber, G.W. (2011). Investigation into the shape selectivity of zeolite catalysts for biomass conversion. Journal of Catalysis, 279, 257–268.
- Kaliya, M.L. and Kogan, S.B. (2005). Highly effective oxidative cracking of nbutane in light olefins on a novel cobalt catalyst. <u>Catalysis Today</u>, 106, 95– 98.
- Khemthong, P., Klysubun, W., Prayoonpokarach, S., Roessner, F., and Wittayakun, J. Comparison between cobalt and cobalt-platinum supported on zeolite NaY: Cobalt reducibility and their catalytic performance for butane hydrogenolysis. <u>Journal of Industrial and Engineering Chemistry</u>, 16, 531– 538.

- Kumar, M., Saxena, A.K., Negi, B.S., and Viswanadham, N. (2008). Role of pore size analysis in development of zeolite reforming catalyst. <u>Catalysis Today</u>, 130, 501–508.
- Laresgoiti, M. F., Marco I., Torres A., Caballero B., Cabrero, M.A., and M. Jesus Chomón. (2000). Chromatographic analysis of the gases obtained in tyre pyrolysis. Journal of Analytical and Applied Pyrolysis, 55, 43–54.
- Laresgoiti, M.F., Caballero, B.M., Marco, I., Torres, A., Cabrero, M.A., and Chomón, M.J., (2004). Characterization of the liquid products obtained in tyre pyrolysis. J Journal of Analytical and Applied Pyrolysis, 71, 917–934.
- Liang, S.B, and Hao, Y.C. (2000). A novel cryogenic grinding system for recycling scrap tire Peels. <u>Advanced Powder Technolgy</u>, Vol. 11, No. 2, 187–197.
- Lin, Y.H., and Sharratt, P. N. (1988). Catalytic Conversion of Polyolefins to Chemicals and Fuels over Various Cracking Catalysts. <u>Energy & Fuels</u>, 12, 767-774.
- Leung, D.Y.C., Yin, X.L., Zhao, Z.L., Xu, B.Y., and Chen, Y. (2002). Pyrolysis of tire powder: influence of operation variables on the composition and yields of gaspus product. <u>Fuel Processing Technology</u>, 79, 141-155.
- Marcilla, A., Gomez, A., and Menargues, S. (2003). Effect of the use of the zeolite HBETA in the catalytic pyrolysis of a commercial ethylene-vinyl acetate.J. <u>Anal. Appl. Pyrolysis</u>, 68-69, 507-526.
- Miguel, G.S., Aguado, J., Serrano, D.P., and Escola, J.M. (2006). Thermal and catalytic conversion of used tyre rubber and its polymeric constituents using Py-GC/MS. <u>Applied Catalysis B: Environmental</u>, 64, 209–219.
- Nawaz, Z., Xiaoping, T., Jie, Z., Fei, W., and Naveed, S. (2009). Catalytic Cracking of 1-Hexene to Propylene Using SAPO-34 Catalysts with Different Bulk Topologies. Chiness Journal of Catalysis, 30(10), 1049–1057.
- Ngamcharussrivichai, C., Liu, X., Li, X., Vitidsant, T., and Fujimoto, K. (2007). An active and selective production of gasoline-range hydrocarbons over bifunctional Co-based catalysts. <u>Fuel</u>, 86, 50–59.
- Olazar, M., Aguado, R., Arabiourrutia, M., Lopez, G., Barona, A., and Bilbao, J. (2008). Catalyst effect on the composition of waste tire pyrolysis products. <u>Energy&Fuels</u>, 22, 2909-2916.

- Pedrosa, A.M. G., Souza, M.J.B., Melo, D.M.A., and Araujo, A.S. (2006^a). Cobalt and nickel supported on HY zeolite: Synthesis, characterization and catalytic properties. <u>Materials Research Bulletin</u>, 41, 1105–1111.
- Pedrosa, A.M. G., Souza, M.J.B., Silva, A.O.S., Melo, D.M.A., and Araujo, A.S. (2006^b). Synthesis, characterization and catalytic properties of the cobalt and nickel supported on HZSM-12 zeolite. <u>Catalysis Communications</u>, 7,791–796.
- Pinket, W. and Jitkarnka, S. (2010). The 2nd Research Symposium on Petroleum, Petrochemicals, and Advanced Materials and The 17th PPC Symposium on Petroleum, Petrochemicals, and Polymers, Queen Sirikit National Convention Center, Bangkok, Thailand.
- Pinket, W. (2010). Catalytic pyrolysis of waste tire over Rh, Ni, and Co supported on KL zeolite and their bimetallic catalyst. .M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Purcell, A.H. (1978). Tire recyling: Research trends and needs. <u>Conservation and</u> <u>Recycling</u>, 2, 137-143.
- Qu, W., Zhou, Q., Wang, Y., Zhang, J., Lan, W., Wu, Y., Yang, J., and Wang, D. (2006). Pyrolysis of waste tire on ZSM-5 zeolite with enhanced catalytic activities. Polymer Degradation and Stability ,91, 2389-2395.
- Roldan, R., Romero, F.J., Jimenez, C., Borau, V., and Marinas, J.M. (2004) Transformation of mixtures of benzene and xylenes into toluene by transalkylation on zeolites. <u>Applied Catalysis A: General</u>, 266, 203–210.
- Sebor, Gustav, Blazek, Josef and Nemer, M.F. (1999). Optimization of preparative separation of petroleum maltenes by liquid adsorption chromatography. <u>Journal of Chromatography A</u>, 847, 323-330.
- Uhde Company. "World aromatics Sources." Uhde Brochures. 23 April 2009. 10 June 2011 < http://www.uhde.eu>
- Williams, P.T., Bottrill, R.P., and Cunliffe, A.M. (1998). Combustion of tire pyrolysis oil. <u>Trans Inst Chem Engrs, Part B: Proc Safety Environ Protect</u>, 76, 291–301.

- Williams, P.T. and Brindle, A.J. (2003). Temperature selective condensation of tyre pyrolysis oils to maximise the recovery of single ring aromatic compounds. <u>Fuel</u>, 82, 1023–1031.
- Williams, P.T. (2005). Waste treatment and disposal (2nd edition). John Wiley and Sons Limited.
- Yin, D., Li, W., Yang, W., Xiang, H., Sun, Y., Zhong, B., and Peng, S. (2001). Mesoporous HMS molecular sieves supported cobalt catalysts for Fischer– Tropsch synthesis. <u>Microporous and Mesoporous Materials</u>, 47, 15-24.
- Zabaniotou, A.A. and Stavropoulos, G. (2003). Pyrolysis of used automobile tires and residual char utilization. Journal of Analytical and Applied Pyrolysis, 70, 711-722.
- Zhao, G.L., Teng, J.W., Xie, Z.K., Yang, W.M., Chen, Q.L., and Tang, Y. (2007).
 Catalytic cracking reactions of C4-olefin over zeolites H-ZSM-5,
 H-mordenite and H-SAPO-34. <u>Studies in Surface Science and</u> <u>Catalysis</u>,170, 1307-1312.
- Zola, A., Bidart, A., Fraga, A., Hori, C., Sousa-Aguiar, E., and Arroyo, P. (2007). Cobalt Supported on Different Zeolites for Fischer-Tropsch Synthesis. <u>Natural Gas Conversion</u>, 8, 129-134.

APPENDICES

Appendix A Temperature Profiles

 Table A1 Pyrolysis conditions: Non-catalytic Pyrolysis

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	Tl	T2	Time (min)	T1	Т2	Time (min)	TI	T2	Time (min)	T 1	T2
2	27.7	27.3	32	362.8	505.6	62	372.6	501.1	92	351.0	500.0
4	39.5	44.3	34	383.6	500.8	64	362.2	499	94	349.1	499.4
6	48.3	58.7	36	395.0	505.4	66	362.1	501.4	96	349.1	500.0
8	66.0	86.2	38	400.5	501.4	68	357.0	500.0	98	348.0	500.0
10	94.3	129.7	40	401.5	492.5	70	353.2	502.1	100	347.1	501.3
12	116.9	160.0	42	403.6	501.9	72	349.5	496.4	102	347.7	499.0
14	159.9	217.2	44	403.4	506.3	74	345.7	500.1	104	348.7	500.4
16	195.3	265.4	46	402.9	501.9	76	340.7	498.5	106	348.9	500.9
18	211.7	287.7	48	401.2	495.5	78	357.7	500.1	108	351.7	501.2
20	254.3	365.7	50	401.2	492.5	80	336.6	499.4	110	352.7	500.8
22	321.7	436.6	52	395.1	496.3	82	335.5	499.8	112	350.2	500.0
24	279.9	463.5	54	390.8	499.7	84	331.1	498.6	114	349.1	500.0
26	321.3	390.7	56	386.5	500.6	86	350.6	502.1	116	350.8	500.7
28	323.7	415.4	58	383.6	500.1	88	350.3	499.4	118	350.7	500.6
30	330.8	550.2	60	377.4	500.2	90	350.4	500.2	120	350.8	500.0

Figure A1 Temperature profiles of non-catalytic pyrolysis.

 Table A2
 Pyrolysis conditions: SAPO-34

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	T1	T2	Time (min)	T1	T2	Time (min)	T1	T2	Time (min)	T 1	Т2
2	30.2	31.5	32	361.0	500.0	62	378.5	494.0	92	362.2	500.9
4	60.5	62.4	34	359.6	500.4	64	371.1	495.9	94	360.7	499.7
6	68.7	85.2	36	360.8	499.7	66	351.1	499.8	96	375.8	499.8
8	71.5	102.8	38	368.2	496.8	68	349.7	500.5	98	356.5	500.8
10	81.2	131.5	40	371.9	500.8	70	348.9	499.9	100	359.2	500.2
12	119.9	178.5	42	381.1	501.2	72	347.0	500.6	102	360.2	499.7
14	150.2	228.9	44	379.8	496.5	74	346.8	499.7	104	359.9	499.8
16	170.1	300.2	46	383.0	497.5	76	342.8	500.0	106	351.7	500.1
18	190.4	320.4	48	382.1	500.5	78	341.1	499.0	108	351.2	498.3
20	131.1	391.5	50	379.8	501.1	80	342.8	500.2	110	349.3	500.8
22	292.6	438.6	52	380.1	500.3	82	341.1	500.7	112	350.0	500.6
24	327.1	478.8	54	379.5	505.0	84	364.1	500.5	114	351.1	499.1
26	334.6	500.3	56	378.5	502.4	86	365.5	501.0	116	348.9	499.6
28	343.6	489.8	58	371.8	502.0	88	363.7	502.5	118	347.1	499.7
30	350.5	500.2	60	373.3	499.5	90	362.2	499.0	120	346.9	500.1

Figure A2 Temperature profiles of SAPO-34.

Table A3 Pyrolysis conditions: 5 %Co/SAPO-34

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	Tl	T2	Time (min)	Т1	T2	Time (min)	ТІ	T2	Time (min)	TI	T2
2	25.0	25.1	32	337.9	492.9	62	368	501.7	92	360.4	500.0
4	30.7	35.6	34	349.5	495.2	64	369.3	499.5	94	360.2	501.1
6	40.7	53.7	36	359.8	489.2	66	367	500.1	96	360.6	500.6
8	55.4	78.2	38	366.7	482.9	68	368.3	499.9	98	356.8	500.1
10	76.2	109.3	40	371.9	476.0	70	366.4	500.4	100	351.8	499.1
12	105.3	150.6	42	375.2	463.9	72	365.4	500.4	102	351.1	501.6
14	137.5	193.6	44	372.9	488.7	74	363.4	501.1	104	350.0	500.3
16	174.9	241.2	46	374.2	455.9	76	361.9	500.0	106	349.8	499.8
18	213.7	295.7	48	371.7	476.8	78	361.1	500.0	108	350.0	500.0
20	250.6	349.1	50	370.0	501.5	80	360.4	500.3	110	350.3	499.9
22	303.2	412.5	52	369.5	505.7	82	360.0	500.0	112	351.2	499.8
24	321.2	445.0	54	366.1	499.7	84	360.2	499.3	114	350.2	499.4
26	320.9	480.4	56	366.8	500.8	86	359.7	498.2	116	351.1	500.4
28	309.1	498.4	58	367.8	500.1	88	357.8	500.0	118	350.4	500.0
30	327.2	492.5	60	366.7	500.0	90	367.7	500.1	120	350.8	500.4

Figure A3 Temperature profiles of 5 %Co/SAPO-34.

Table A4 Pyrolysis conditions: 5 %Co/HY

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	Tl	T2	Time (min)	T1	T2	Time (min)	T 1	T2	Time (min)	TI	T2
2	26.6	27.4	32	324.4	501.7	62	352.1	500.2	92	348.9	498.9
4	33.7	40.2	34	340.6	498.5	64	352.0	499.6	94	349.8	500.8
6	45.7	39.8	36	343.7	506.1	66	353.2	500.1	96	350.2	500.6
8	61.9	83.5	38	358.8	499.2	68	355.0	499.9	98	362.6	500.1
10	84.9	118.5	40	363.6	494.7	70	359.9	500.4	100	358.3	500.0
12	117.7	165.4	42	367.0	495.7	72	359.8	500.4	102	356.8	501.6
14	145.0	207.6	44	369.4	499.9	74	350.0	501.1	104	355.1	500.0
16	180.0	254.8	46	369.0	500.0	76	350.0	501.2	106	353.2	499.8
18	219.3	306.4	48	367.9	500.0	78	351.2	500.2	108	352.1	500.0
20	260.3	424.5	50	368.3	500.9	80	347.8	500.3	110	352.6	499.0
22	305.2	307.2	52	370.1	500.8	82	351.1	499.0	112	349.9	500.4
24	306.7	424.5	54	368.5	498.8	84	352.1	500.1	114	350.0	500.3
26	282.7	453.4	56	350.0	499.3	86	359.5	498.2	116	350.1	502.7
28	288.4	492.6	58	351.8	500.2	88	358.7	500.0	118	350.1	500.0
30	309.7	511.8	60	389.1	500.0	90	352.1	499.9	120	351.4	500.1

Figure A4 Temperature profiles of 5 %Co/HY.

 Table A5
 Pyrolysis conditions: HBETA

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	TI	T2	Time (min)	TI	T2	Time (min)	T1	T2	Time (min)	T1	T2
2	23.1	23.6	32	350.4	509.8	62	395.5	500.0	92	351.5	499.7
4	31.2	39.8	34	371.2	510.2	64	395.0	499.9	94	350.0	502.4
6	43.4	49.8	36	387.4	511.3	66	354.2	500.4	96	349.3	500.6
8	56.3	78.4	38	390.2	506.4	68	345.9	500.4	98	349.0	500.3
10	75.3	126.7	40	391.1	503.2	70	350.4	501.1	100	351.1	500.4
12	99.1	169.7	42	387.4	500.2	72	349.5	500.2	102	350.1	500.1
14	127.3	221.1	44	386.3	498.4	74	349.0	502.1	104	349.0	499.8
16	165.2	282.1	46	384.2	502.2	76	348.7	498.7	106	349.0	499.8
18	207.1	340.2	48	381.0	495.3	78	350.6	499.9	108	349.0	500.2
20	237.8	401.8	50	387.2	499.8	80	351.4	500.2	110	346.8	501.1
22	298.7	487.9	52	386.4	501.4	82	351.7	499.9	112	349.3	500.0
24	320.8	499.8	54	381.1	500.1	84	348.9	498.7	114	347.8	499.9
26	341.2	500.6	56	375.3	500.4	86	348.9	499.9	116	349.0	498 .2
28	356.7	509.8	58	369.1	499.6	88	349.0	499.5	118	350.2	500.2
30	358.6	510.0	60	361.7	498.9	90	348.0	499.2	120	349.0	501.2

Figure A5 Temperature profiles of HBETA.

 Table A6
 Pyrolysis conditions: 5 %Co/HBETA

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	T1	T2	Time (min)	T1	T2	Time (min)	TI	T2	Time (min)	T1	T2
2	28.0	27.4	32	364.4	509.6	62	354.4	498.6	92	363.2	500.3
4	33.7	39.9	34	381.3	510.2	64	355.9	500.9	94	361.2	500.0
6	44.2	59.8	36	382.3	503.3	66	355.5	498.8	96	359.6	499.8
8	62.8	91.8	38	358.6	498.6	68	361.1	500.4	98	355.9	501.5
10	94.1	135.2	40	356.7	499.8	70	362.2	499.8	_100	358.2	500.4
12	122.2	170.8	42	366.7	501.2	72	350.5	499.8	102	363.2	500.9
14	163.6	238.7	44	376.7	498.5	74	365.3	500.8	104	357.5	500.0
16	188.4	273.8	46	362.2	494.6	76	366.0	499.4	106	357.6	499.8
18	227.3	329.6	48	356.3	500.5	78	365.4	500.1	108	354.2	499.8
20	265.7	374.0	50	345.5	501.2	80	365.2	500.0	110	363.2	500.6
22	286.7	398.8	52	347.4	500.1	82	366.3	499.8	112	355.8	500.0
24	297.6	460.4	54	350.0	500.0	84	365.4	500.3	114	354.2	501.2
26	301.4	456.9	56	342.9	501.1	86	364.2	498.7	116	352.1	499.8
28	307.2	499.8	58	345.1	505.7	88	363.4	501.2	118	350.9	500.2
30	328.8	513.6	60	348.7	501.9	90	362.7	500.1	120	351.2	499.9

Figure A6 Temperature profiles of 5 %Co/HBETA.

 Table A7
 Pyrolysis conditions: 5 %Co/HMOR

Tire = 30 g, N₂ flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	TI	T2	Time (min)	T1	T2	Time (min)	Tl	T2	Time (min)	T1	T2
2	24.7	25.6	32	351.2	504.5	62	349.7	502.4	92	350.0	500.1
4	29.6	37.6	34	365.4	502.1	64	339.6	501.2	94	351.2	498.4
6	40.0	58.3	36	370.1	498.6	66	347.2	504.5	96	349.7	499.3
8	55.9	84.8	38	378.7	486.7	68	355.4	500.9	98	346.7	498.7
10	83.8	125.2	40	371.2	498.8	70	355.2	500.0	100	348.1	499.3
12	113.4	165.7	42	359.8	499.5	72	351.1	499.8	102	350.1	501.5
14	154.2	222.7	44	346.4	500.0	74	342.5	503.8	104	348.7	498.7
16	186.1	267.5	46	346.3	505.7	76	348.1	500.6	106	346.8	500.3
18	229.8	323.5	48	355.7	497.6	78	350.7	500.1	108	350.5	502.9
20	270.0	372.1	50	351.7	494.7	80	350.4	500.0	110	351.2	500.1
22	306.5	436.2	52	342.3	507.5	82	346.7	501.2	112	351.4	501.1
24	327.3	457.5	54	348.1	503.7	84	351.3	500.0	114	349.8	499.8
26	302.3	512.4	56	357.5	501.1	86	346.8	500.8	116	348.6	502.3
28	319.3	510.1	58	357.1	499.4	88	344.3	498.7	118	347.5	499.4
30	321.1	508.5	60	352.4	500.0	90	344.7	501.4	120	351.2	500.2

Figure A7 Temperature profiles of 5 %Co/HMOR.

 Table A8
 Pyrolysis conditions: HZSM-5

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	T1	T2	Time (min)	TI	T2	Time (min)	T 1	T2	Time (min)	T 1	T2
2	22.7	24.1	32	374.1	507.5	62	359.8	500.9	92	339.7	500.5
4	26.1	34.1	34	371.1	500.2	64	361.9	501.4	94	340.2	499.3
6	37.1	58.5	36	373.4	500.4	66	359.6	498.8	96	342.1	501.2
8	48.5	80.3	38	373.0	498.0	68	353.8	500.5	98	342.4	500.3
10	64.5	112.6	40	375.0	505.3	70	348.0	498.2	100	343.6	500.5
12	86.6	151.3	42	375.0	497.5	72	346.9	502.7	102	343.7	500.1
14	114.0	194.3	44	371.7	494.8	74	353.0	501.1	104	343.9	499.8
16	147.0	245.0	46	366.2	498.5	76	358.6	499.3	106	342.7	499.5
18	167.9	305.5	48	361.1	502.7	78	360.0	496.6	108	345.7	499.7
20	211.5	354.8	50	357.0	500.7	80	358.6	497.8	110	346.2	501.2
22	272.3	422.9	52	361.0	501.7	82	349.8	500.9	112	347.8	502.3
24	324.7	494.3	54	363.8	499.1	84	345.5	499.8	114	350.2	500.4
26	318.8	520.2	56	363.4	500.4	86	341.7	499.8	116	349.4	499.4
28	308.3	520.2	58	357.0	500.1	88	340.4	500.4	118	349.8	498.2
30	343.4	521.4	60	355.0	500.2	90	349.7	502.2	120	351.2	500.7

Figure A8 Temperature profiles of HZSM-5.

 Table A9
 Pyrolysis conditions: 5 %Co/HZSM-5

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	T 1	T2	Time (min)	TI	T2	Time (min)	T1	T2	Time (min)	T1	T2
2	31.2	34.9	32	345.8	517.0	62	359.5	500.3	92	358.0	500.7
4	37.0	47.9	34	351.3	510.6	64	355.1	499.4	94	357.6	499.8
6	53.4	67.9	36	368.1	499.6	66	358.7	499.7	96	358.6	499.9
8	78.2	110.9	38	378.2	491.0	68	357.7	501.1	98	355.3	500.3
10	93.5	139.8	40	384.5	506.7	70	357.2	500.0	100	355.4	501.6
12	135.1	199.8	42	390.1	503.6	72	356.2	500.2	102	356.2	500.7
14	158.2	233.7	44	391.1	500.0	74	356.9	500.1	104	356.6	499.8
16	195.7	289.3	46	388.3	501.4	76	357.7	501.2	106	355.3	498.9
18	236.8	343.6	48	382.1	495.3	78	358.2	500.3	108	354.3	500.2
20	248.7	402.4	50	381.1	499.2	80	356.8	499.4	110	352.1	500.6
22	321.2	444.1	52	375.1	500.0	82	359.2	500.1	112	350.2	499.8
24	326.1	497.6	54	374.2	499.5	84	358.7	499.9	114	350.4	500.8
26	349.8	501.3	56	371.7	500.7	86	357.8	501.5	116	352.3	498.2
28	356.7	505.2	58	365.5	499.6	88	358.7	502.1	118	353.4	500.2
30	331.9	524.1	60	361.1	501.0	90	359.3	500.4	120	354.2	499.6

Figure A9 Temperature profiles of 5 %Co/HZSM-5.

 Table A10
 Pyrolysis conditions: HY/SAPO-34

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = $500 \text{ }^{\circ}\text{C}$

Time (min)	TI	T2	Time (min)	Tl	T2	Time (min)	T1	T2	Time (min)	T1	T2
2	28.3	27.9	32	398.0	504.0	62	357.5	500.4	92	353.60	499.30
4	34.4	45.6	34	385.7	498.8	64	354.0	500.0	94	353.60	499.90
6	46.7	69.8	36	382.6	505.4	66	356.7	500.3	96	353.40	500.20
8	65.4	111.1	38	382.8	503.4	68	356.7	500.1	98	354.20	499.80
10	83.4	158.7	40	366.7	499.6	70	356.3	499.9	100	351.20	500.10
12	124.1	192.2	42	355.3	504.4	72	357.1	500.8	102	353.30	500.20
14	157.8	267.8	44	352.3	502.6	74	356.5	500.5	104	352.50	500.00
16	198.9	310.0	46	352.9	498.7	76	354.7	499.0	106	352.40	499.20
18	236.0	351.6	48	357.8	500.0	78	354.6	501.1	108	352.30	500.60
20	263.5	420.0	50	350.4	500.3	80	354.6	500.0	110	350.90	500.30
22	320.0	450.0	52	351.2	501.I	82	354.3	500.4	112	351.30	499.90
24	310.0	446.9	54	354.5	502.3	84	354.1	500.4	114	354.60	498.50
26	304.7	503.8	56	358.0	499.9	86	354.0	500.4	116	352.40	498.90
28	335.6	537.9	58	358.4	499.3	88	352.3	500.4	118	351.10	499.00
30	389.0	551.1	60	375.4	500.6	90	353.7	500.1	120	353.30	499.70

Figure A10 Temperature profiles of HY/SAPO-34.

Table A11 Pyrolysis conditions: 5 %Co/HY/SAPO-34

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = $500 \text{ }^{\circ}\text{C}$

Time (min)	T1	T2	Time (min)	T1	T2	Time (min)	Tl	T2	Time (min)	TI	Т2
2	26.1	27.8	32	378.9	500.2	62	367.2	500.8	92	350.1	499.8
4	31.6	37.9	34	372.8	479.1	64	367.8	499.8	94	351.0	501.2
6	49.5	71.2	36	357.9	479.0	66	364.3	499.5	96	354.2	502.3
8	62.9	104.1	38	325.7	482.2	68	364.1	500.2	98	351.3	501.3
10	97.2	151.5	40	320.0	495.0	70	357.7	500.3	100	349.7	499.8
12	126.0	192.5	42	338.5	501.7	72	354.4	500.5	102	350.1	500.0
14	167.7	250.4	44	345.6	502.6	74	354.5	498.7	104	349.9	501.2
16	207.8	303.4	46	351.0	497.8	76	344.7	499.0	106	351.0	499.8
18	232.0	350.8	48	367.0	500.6	78	350.8	500.0	108	351.3	503.2
20	227.0	416.7	50	371.5	497.0	80	349.1	500.2	110	353.2	503.2
22	320.3	477.0	52	361.0	495.8	82	350.0	500.1	112	358.7	499.8
24	324.0	494.2	54	345.8	499.4	84	349.9	502.3	114	354.3	501.5
26	325.0	503.3	56	350.0	501.2	86	352.3	500.8	116	359.8	500.1
28	351.1	527.0	58	359.8	500.9	88	352.5	503.2	118	355.4	500.3
30	367.8	515.9	60	358.1	499.8	90	353.1	500.1	120	354.1	499.7

Figure A11 Temperature profiles of 5 %Co/(HY+SAPO-34).

Table A12 Pyrolysis conditions: HMOR/SAPO-34

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	T1	T2	Time (min)	ТІ	T2	Time (min)	T1	T2	Time (min)	TI	T2
2	26.1	27.8	32	378.9	500.2	62	367.2	500.8	92	350.1	499.8
4	31.6	37.9	34	372.8	479.1	64	367.8	499.8	94	351.0	501.2
6	49.5	71.2	36	357.9	479.0	66	364.3	499.5	96	354.2	502.3
8	62.9	104.1	38	325.7	482.2	68	364.1	500.2	98	351.3	501.3
10	97.2	151.5	40	320.0	495.0	70	357.7	500.3	100	349.7	499.8
12	126.0	192.5	42	338.5	501.7	72	354.4	500.5	102	350.1	500.0
14	167.7	250.4	44	345.6	502.6	74	354.5	498.7	104	349.9	501.2
16	207.8	303.4	46	351.0	497.8	76	344.7	499.0	106	351.0	499.8
18	232.0	350.8	48	367.0	500.6	78	350.8	500.0	108	351.3	503.2
20	227.0	416.7	50	371.5	497.0	80	349.1	500.2	110	353.2	503.2
22	320.3	477.0	52	361.0	495.8	82	350.0	500.1	112	358.7	499.8
24	324.0	494.2	54	345.8	499.4	84	349.9	502.3	114	354.3	501.5
26	325.0	503.3	56	350.0	501.2	86	352.3	500.8	116	359.8	500.1
28	351.1	527.0	58	359.8	500.9	88	352.5	503.2	118	355.4	500.3
30	367.8	515.9	60	358.1	499.8	90	353.1	500.1	120	354.1	499.7

Figure A12 Temperature profiles of HMOR/SAPO-34.

Table A13 Pyrolysis conditions: 5 %Co/(HMOR+SAPO-34)

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	TI	T2	Time (min)	T1	T2	Time (min)	TI	T2	Time (min)	TI	T2
2	28.3	27.9	32	398.0	504.0	62	357.5	500.4	92	353.60	499.30
4	34.4	45.6	34	385.7	498.8	64	354.0	500.0	94	353.60	499.90
6	46.7	69.8	36	382.6	505.4	66	356.7	500.3	96	353.40	500.20
8	65.4	111.1	38	382.8	503.4	68	356.7	500.1	98	354.20	499.80
10	83.4	158.7	40	366.7	499.6	70	356.3	499.9	100	351.20	500.10
12	124.1	192.2	42	355.3	504.4	72	357.1	500.8	102	353.30	500.20
14	157.8	267.8	44	352.3	502.6	74	356.5	500.5	104	352.50	500.00
16	198.9	310.0	46	352.9	498.7	76	354.7	499.0	106	352.40	499.20
18	236.0	351.6	48	357.8	500.0	78	354.6	501.1	108	352.30	500.60
20	263.5	420.0	50	350.4	500.3	80	354.6	500.0	110	350.90	500.30
22	320.0	450.0	52	351.2	501.1	82	354.3	500.4	112	351.30	499.90
24	310.0	446.9	54	354.5	502.3	84	354.1	500.4	114	354.60	498.50
26	304.7	503.8	56	358.0	499.9	86	354.0	500.4	116	352.40	498.90
28	335.6	537.9	58	358.4	499.3	88	352.3	500.4	118	351.10	499.00
30	389.0	551.1	60	375.4	500.6	90	353.7	500.1	120	353.30	499.70

Figure A13 Temperature profiles of 5 %Co/(HMOR+SAPO-34).

Table A14 Pyrolysis conditions: HBETA/SAPO-34

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	TI	T2	Time (min)	T1	T2	Time (min)	T1	T2	Time (min)	Τ1	T2
2	26.3	29.2	32	376.8	523.4	62	357.5	494.5	92	354.7	500.3
4	30.8	42.5	34	379	522.1	64	355.4	500.7	94	355.4	499.9
6	40.8	65.6	36	386.6	500.7	66	356.6	502.4	96	349.9	503.4
8	56.5	98.5	38	356.7	503.4	68	356.6	500	98	352.2	500.6
10	81.8	145.8	40	341.9	500.8	70	357.7	499.9	100	351.7	503.4
12	103.0	192.1	42	351.8	503.3	72	358.7	498.8	102	352.3	499.9
14	135.6	252.1	44	363.7	501.5	74	357.5	501.2	104	349.9	500.2
16	143.6	289.3	46	366.7	503.2	76	356.7	499.9	106	351.5	501.7
18	218.5	413.9	48	359.8	485.8	78	346.6	500.7	108	355.7	503.2
20	320.0	445.6	50	352.2	501.1	80	354.7	503.4	110	350.7	499.9
22	348.6	478.2	52	349.9	501.6	82	349.9	502.4	112	349.9	500.8
24	356.7	475.1	54	345.7	500.7	84	357.5	503.2	114	351.9	500.6
26	353.7	478.7	56	354.7	505.5	86	357.7	500.7	116	353.5	500.7
28	347.8	497.5	58	365.7	495.6	88	365.7	499.9	118	350.6	501.5
30	351.7	509.9	60	366.7	494.6	90	349.9	501.1	120	351.4	499.9

Figure A14 Temperature profiles of HBETA/SAPO-34.

 Table A15
 Pyrolysis conditions: 5 %Co/(HBETA+SAPO-34)

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	TI	T2	Time (min)	TI	T2	Time (min)	T1	T2	Time (min)	Tl	Т2
2	26.0	32.9	32	392.0	498.7	62	366.0	499.6	92	353.3	499.5
4	31.0	45.9	34	371.2	495.7	64	364.0	500.5	94	353.2	499.2
6	40.5	65.6	36	341.0	503.1	66	360.7	498.8	96	350.1	501.2
8	58.9	99.2	38	330.5	505.7	68	357.8	500.8	98	356.5	499.6
10	83.3	140.0	40	341.7	496.3	70	350.7	499.9	100	351.3	498.7
12	121.4	199.0	42	359.3	493.6	72	348.6	499.0	102	356.4	498.5
14	153.4	247.3	44	368.3	500.0	74	345.1	501.4	104	357.0	498.8
16	182.1	328.7	46	363.2	495.4	76	343.7	507.5	106	356.2	499.9
18	213.7	354.7	48	350.0	497.7	78	343.1	509.5	108	350.0	501.6
20	273.4	431.8	50	345.8	499.4	80	346.7	500.4	110	351.2	499.9
22	336.7	458.1	52	337.0	502.7	82	347.9	499.3	112	353.4	502.1
24	313.0	470.1	54	364.2	502.0	84	350.0	501.0	114	352.2	499.0
26	362.7	456.0	56	370.0	501.1	86	351.1	499.8	116	356.8	500.7
28	383.7	523.4	58	360.0	499.8	88	351.1	500.2	118	354.2	501.4
30	390.1	521.0	60	368.8	500.1	90	353.0	499.3	120	352.1	500.4

Figure A15 Temperature profiles of 5 %Co/(HBETA+SAPO-34).

 Table A16
 Pyrolysis conditions: HZSM-5/SAPO-34

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	TI	T2	Time (min)	TI	T2	Time (min)	TI	T2	Time (min)	TI	Т2
2	25.6	26.0	32	356.7	535.7	62	355.1	500.7	92	344.2	492.2
4	31.9	39.6	34	378.5	523.0	64	352.1	511.3	94	348.7	496.8
6	42.7	60.4	36	380.9	495.0	66	369.0	521.5	96	350.0	500.3
8	62.1	96.2	38	393.1	479.8	68	350.5	522.3	98	350.4	500.4
10	84.7	134.6	40	377.3	465.7	70	367.3	520.1	100	350.1	500.1
12	110.9	178.0	42	345.7	456.7	72	375.1	521.5	102	347.5	500.1
14	143.0	227.5	44	342.3	445.2	74	376.1	519.4	104	349.8	499.7
16	179.6	282.4	46	356.7	457.3	76	364.3	509.1	106	352.3	489.9
18	211.1	340.5	48	375.3	442.1	78	364.1	502.5	108	352.1	499.8
20	250.5	372.3	50	356.7	453.1	80	350.9	501.1	110	352.1	499.9
22	318.7	439.4	52	345.3	456.2	82	357.3	499.8	112	344.7	501.2
24	308.7	492.1	54	353.4	466.8	84	363.2	489.4	114	345.9	502.1
26	341.1	452.3	56	363.0	470.0	86	357.3	476.9	116	351.2	500.0
28	344.2	468.7	58	355.7	499.7	88	344.7	476.0	118	348.9	501.3
30	349.5	473.8	60	350.1	500.0	90	338.9	490.5	120	349.1	500.7

Figure A16 Temperature profiles of HZSM-5/SAPO-34.

Table A17 Pyrolysis conditions: 5 %Co/(HZSM-5+SAPO-34)

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	TI	T2	Time (min)	TI	T2	Time (min)	TI	T2	Time (min)	Tl	Т2
2	26.7	28.5	32	361.2	502.1	62	351.1	499.1	92	348.1	499.5
4	32.2	43.8	34	371.2	509.5	64	348.5	498.7	94	351.2	500.1
6	47.1	75.0	36	355.4	502	66	351.2	499.9	96	350.5	499.8
8	63.4	102.1	38	345.7	504.3	68	352.3	501.1	98	349.6	500.2
10	92.4	146.1	40	345.5	502.3	70	355.1	500.9	100	350.3	500.1
12	123.7	197.0	42	362.2	498.3	72	349.8	501.1	102	349.9	500.2
14	158.6	255.4	44	372.3	492.4	74	348.5	499.9	104	350.3	501.1
16	204.1	323.8	46	360.3	496.1	76	349.8	500.1	106	350.2	499.8
18	238.5	366.5	48	350.5	498	78	343.7	499.4	108	349.8	498.8
20	257.5	420.3	50	348.7	499.7	80	343.5	499.5	110	351.1	499.9
22	311.2	463.2	52	356.9	500.4	82	351.7	501.3	112	349.6	501
24	295.2	433.1	54	361.1	501	84	351.2	502.3	114	350	501.1
26	317.7	537.3	56	359.1	500.4	86	351.5	501.4	116	349.5	499.7
28	351.1	527.7	58	358.7	502.3	88	350.4	500.5	118	351	500
30	351.5	503.3	60	351.2	500.9	90	351.5	500.8	120	351.2	499.8

Figure A17 Temperature profiles of 5 %Co//(HZSM-5+SAPO-34).

Samula	Yield (%)					
Sample	Gas	Liquid	Solid			
Non-Catalyst	17.0	40.0	43.7			
SAPO-34	22.1	34.6	43.5			
5 %Co/SAPO-34	24.2	34.1	41.9			

Table B1 Yield of products obtained from from pyrolysis with 5 %Co/SAPO-34

Table D2 Tield of products obtained from form pyrolysis with 5 7600/11	Table B2	Yield of	products	obtained	from f	from	pyrolysis	with 5	%Co/H
---	----------	----------	----------	----------	--------	------	-----------	--------	-------

Samuela	Yield (%)					
Sample	Gas	Liquid	Solid			
Non-Catalyst	17.0	40.0	43.7			
НҮ	22.4	34.1	43.5			
5 %Co/HY	21.6	36.3	42.2			

 Table B3
 Yield of products obtained from from pyrolysis with 5 %Co/HBETA

S		Yield (%)					
Sample	Gas	Liquid	Solid				
Non-Catalyst	17.0	40.0	43.7				
HBETA	17.9	40.1	42.4				
5 %Co/HBETA	22.4	37.3	41.4				

 Table B4
 Yield of products obtained from from pyrolysis with 5 %Co/HMOR

S		Yield (%)					
Sample	Gas	Liquid	Solid				
Non-Catalyst	17.0	40.0	43.7				
HMOR	18.7	37.4	43.8				
5 %Co/HMOR	20.5	35.1	45.5				

Sample		Yield (%)					
Sample	Gas	Liquid	Solid				
Non-Catalyst	17.0	40.0	43.7				
HZSM-5	23.3	33.2	43.9				
5 %Co/HZSM-5	23.8	32.7	44.1				

Table B5 Yield of products obtained from from pyrolysis with 5 %Co/HZSM-5

Table B6 Yield of products obtained from from pyrolysis with 5 %Co/(HY+SAPO-34)

Samula	Yield (%)					
Sample	Gas	Liquid	Solid			
Non-Catalyst	17.0	40.0	43.7			
HY/SAPO-34	16.9	38.2	45.1			
5 %Co/(HY+SAPO-34)	18.2	38.9	42.9			

Table B7 Yield of products obtained from from pyrolysis with 5 %Co/(HMOR+SAPO-34)

Samala	Yield (%)		
Sample	Gas	Liquid	Solid
Non-Catalyst	17.0	40.0	43.7
HMOR/SAPO-34	17.6	39.6	43.4
5 %Co/(HMOR+SAPO-34)	14.5	42.5	41.9

Table B8 Yield of products obtained from from pyrolysis with 5 %Co/(HBETA+SAPO-34)

Cl	Yield (%)		
Sample	Gas	Liquid	Solid
Non-Catalyst	17.0	40.0	43.7
HBETA/SAPO-34	14.3	43.9	42.1
5 %Co/(HETA+SAPO-34)	19.8	37.5	43.1

Samula	Yield (%)		
Sample	Gas	Liquid	Solid
Non-Catalyst	17.0	40.0	43.7
HZSM-5/SAPO-34	16.6	40.6	44.7
5 %Co/(HZSM-5+SAPO-34)	16.7	40.0	43.8

Table B9 Yield of products obtained from from pyrolysis with 5 %Co/(HZSM-5+SAPO-34)

Appendix C Gas Yield (%)

Sample	Non-	SAPO 34	5 % Co/SADO 24
Component	Catalyst	SAFU-34	5 70C0/SAPU-34
Methane	3.479	5.125	4.912
Ethylene	1.820	1.782	2.111
Ethane	2.987	4.370	4.504
Propylene	1.900	2.216	2.603
Propane	1.490	2.454	2.573
C4	3.012	4.434	5.163
C5	2.034	1.573	1.982
C6	0.237	0.473	0.421
С7	0.007	0.012	0.014
C8	0.000	0.089	0.001
Total	17.0	22.5	24.3

 Table C1
 Yield of gas composition obtained from pyrolysis with 5 %Co/SAPO-34

Figure C1 Gas yields obtained from pyrolysis with 5 %Co/SAPO-34 catalyst.

Sample	Non-	IIV	5.0/ C - (IIV
Component	Catalyst	НҮ	5 %C0/HY
Methane	3.479	4.192	5.156
Ethylene	1.820	2.011	2.119
Ethane	2.987	3.805	4.642
Propylene	1.900	2.807	2.724
Propane	1.490	2.277	2.636
C4	3.012	4.966	5.065
C5	2.034	2.058	2.460
C6	0.237	0.239	0.792
C7	0.007	0.016	0.067
C8	0.000	0.002	0.001
Total	17.0	22.4	25.7

 Table C2
 Yield of gas composition obtained from pyrolysis with 5 %Co/HY

Figure C2 Gas yields obtained from pyrolysis with 5 %Co/HY catalyst.

Sample	Non-	UMOD		5.%/Co/UMOD
Component	Catalyst	HMUK	5 % CO/HMUK	
Methane	3.479	4.109	4.597	
Ethylene	1.820	1.198	1.220	
Ethane	2.987	3.592	4.143	
Propylene	1.900	1.183	0.984	
Propane	1.490	3.504	3.399	
C4	3.012	3.605	4.094	
C5	2.034	1.266	1.587	
C6	0.237	0.275	0.460	
C7	0.007	0.033	0.015	
C8	0.000	0.000	0.002	
Total	17.0	18.8	20.5	

 Table C3 Yield of gas composition obtained from pyrolysis with 5 %Co/HMOR

Figure C3 Gas yields obtained from pyrolysis with 5 %Co/HMOR catalyst.

Sample	Non-		
Component	Catalyst	HBEIA	5 %CO/HBEIA
Methane	3.479	2.911	2.911
Ethylene	1.820	1.260	1.331
Ethane	2.987	2.539	2.770
Propylene	1.900	0.931	1.527
Propane	1.490	2.718	2.151
C4	3.012	5.061	5.556
C5	2.034	1.962	2.828
C6	0.237	0.504	1.401
C7	0.007	0.031	0.715
C8	0.000	0.000	0.127
Total	17.0	18.0	21.3

 Table C4
 Yield of gas composition obtained from pyrolysis with 5 %Co/HBETA

Figure C4 Gas yields obtained from pyrolysis with 5 %Co/HBETA catalyst.

Sample	Non-	U76M 5	5.9/ Co/1175M 5
Component	Catalyst	HZ2M-2	5 %C0/HZSIVI-5
Methane	3.479	3.758	4.520
Ethylene	1.820	1.276	1.782
Ethane	2.987	4.036	4.106
Propylene	1.900	1.414	0.925
Propane	1.490	4.278	4.925
C4	3.012	4.903	4.938
C5	2.034	1.879	1.804
C6	0.237	1.588	0.648
C7	0.007	0.134	0.106
C8	0.000	0.001	0.005
Total	17.0	23.3	23.8

 Table C5
 Yield of gas composition obtained from pyrolysis with 5 %Co/HZSM-5

Figure C5 Gas yields obtained from pyrolysis with 5 %Co/HZSM-5 catalyst.

Sample	Non-	HY/	5 %Co/(HY+
Component	Catalyst	SAPO-34	SAPO-34)
Methane	3.479	2.911	2.932
Ethylene	1.820	1.724	1.911
Ethane	2.987	4.162	4.235
Propylene	1.900	1.622	2.000
Propane	1.490	2.303	2.287
C4	3.012	3.222	3.504
C5	2.034	0.941	1.365
C6	0.237	0.000	0.000
C7	0.007	0.000	0.000
C8	0.000	0.000	0.000
Total	17.0	16.9	18.2

Table C6 Yield of gas composition obtained from pyrolysis with 5 Co/(HY+SAPO-34)

Figure C6 Gas yields obtained from pyrolysis with 5 %Co/(HY+SAPO-34) catalyst.

Sample	Non-	HMOR/	5 %Co/HMOR/
Component	Catalyst	SAPO-34	SAPO-34
Methane	3.479	2.538	8.207
Ethylene	1.820	1.782	0.805
Ethane	2.987	3.940	1.781
Propylene	1.900	1.481	0.815
Propane	1.490	2.850	0.972
C4	3.012	3.511	1.550
C5	2.034	1.470	0.408
C6	0.237	0.000	0.000
C7	0.007	0.000	0.000
C8	0.000	0.000	0.000
Total	17.0	17.6	14.5

Table C7 Yield of gas composition obtained from pyrolysis with 5 %Co/(HMOR+SAPO-34)

Figure C7 Gas yields obtained from pyrolysis with 5 %Co/HMOR/SAPO-34 catalyst.

Sample	Non-	HBETA/	5 %Co/(HBETA+
Component	Catalyst	SAPO-34	SAPO-34)
Methane	3.479	1.82	2.817
Ethylene	1.820	1.166	2.194
Ethane	2.987	2.640	4.031
Propylene	1.900	1.667	2.388
Propane	1.490	1.772	2.075
C4	3.012	3.958	4.645
C5	2.034	1.298	1.651
C6	0.237	0.000	0.000
C7	0.007	0.000	0.000
C8	0.000	0.000	0.000
Total	17.0	14.3	19.8

Table C8 Yield of gas composition obtained from pyrolysis with 5 %Co/(HBETA+SAPO-34)

Figure C8 Gas yields obtained from pyrolysis with 5 %Co/(HBETA+SAPO-34) catalyst.

Sample	Non-	HZSM-5/	5 %Co/(HZSM-5+
Component	Catalyst	SAPO-34	SAPO-34)
Methane	3.479	4.284	3.443
Ethylene	1.820	1.748	0.946
Ethane	2.987	3.876	3.794
Propylene	1.900	0.293	1.405
Propane	1.490	0.450	2.395
C4	3.012	4.710	3.520
C5	2.034	1.135	1.207
C6	0.237	0.000	0.000
C7	0.007	0.000	0.000
C8	0.000	0.000	0.000
Total	17.0	16.6	16.7

Table C9 Yield of gas composition obtained from pyrolysis with 5 %Co/(HZSM-5+SAPO-34)

Figure C9 Gas yields obtained from pyrolysis with 5 %Co/(HZSM-5+SAPO-34) catalyst.

Appendix D Chemical Compositions of Maltenes

Chemicals	Non-catalyst	SAPO-34	5%Co/SAPO-34
Saturated HCs	55.8	34.4	39.8
Mono-aromatics	7.1	20.6	24.3
Di-aromatics	10.7	11.3	4.7
Poly-aromatics	10.0	23.1	19.9
Polar-aromatics	16.5	10.5	11.3

 Table D1
 Effect of 5 %Co/SAPO-34

Table D2 Effect of 5 %Co/HY

Chemicals	Non-catalyst	HY	5%Co/HY	
Saturated HCs	55.8	63.1	28.1	
Mono-aromatics	7.1	15.8	22.8	
Di-aromatics	10.7	7.8	10.3	
Poly-aromatics	10.0	10.2	16.7	
Polar-aromatics	16.5	3.2	22.2	

Table D3 Effect of 5 %Co/HBETA

Chemicals	Non-catalyst	HBETA	5%Co/HBETA	
Saturated HCs	58.1	52.7	45.7	
Mono-aromatics	12.9	17.3	18.0	
Di-aromatics	9.0	10.2	15.1	
Poly-aromatics	9.7	14.5	12.0	
Polar-aromatics	9.1	5.3	9.1	

Table D4 Effect of 5 %Co/HMOR

Chemicals	Non-catalyst	HMOR	5%Co/HMOR	
Saturated HCs	55.8	59.1	50.2	
Mono-aromatics	7.1	16.0	18.7	
Di-aromatics	10.7	4.6	12.5	
Poly-aromatics	10.0	11.1	9.2	
Polar-aromatics	16.5	7.1	9.4	

Table D5Effect of 5 %Co/HZSM-5

Chemicals	Non-catalyst	HZSM-5	5 %Co/HZSM-5	
Saturated HCs	55.8	49.6	37.0	
Mono-aromatics	7.1	20.9	25.7	
Di-aromatics	10.7	11.4	11.7	
Poly-aromatics	10.0	10.0	10.5	
Polar-aromatics	16.5	8.1	15.2	

Table D7Effect of 5 %Co/(HY+SAPO-34)

Chemicals	Non-catalyst	HY/ SAPO-34	5 %Co/(HY+ SAPO-34)	
Saturated HCs	55.8	40.5	26.5	
Mono-aromatics	7.1	27.1	27.0	
Di-aromatics	10.7	12.6	7.0	
Poly-aromatics	10.0	12.6	13.5	
Polar-aromatics	16.5	7.2	26.1	

 Table D8
 Effect of 5 %Co/(HBETA+SAPO-34)

Chemicals	Non-catalyst	HBETA/ SAPO-34	5 %Co/(HBETA+ SAPO-34)	
Saturated HCs	55.8	32.4	27.2	
Mono-aromatics	7.1	29.1	24.0	
Di-aromatics	10.7	8.1	6.5	
Poly-aromatics	10.0	13.0	19.4	
Polar-aromatics	16.5	17.3	22.9	

 Table D9
 Effect of 5 %Co/(HZSM-5+SAPO-34)

Chemicals	Non-catalyst	HZSM-5/ SAPO-34	5 %Co/(HZSM-5+ SAPO-34)	
Saturated HCs	55.8	35.3	36.3	
Mono-aromatics	7.1	23.4	20.2	
Di-aromatics	10.7	28.2	5.7	
Poly-aromatics	10.0	1.5	7.3	
Polar-aromatics	16.5	11.6	30.6	

Appendix E True Boiling Point Curve of Chemical Compositions in Pyrolytic Oils

	Boiling Point					
% OFF	Maltana	Saturated	Mono-	Di-	Poly-	Polar-
	Waltene	Hydrocarbon	aromatics	aromatics	aromatics	aromatics
0	59.1	67.9	65.2	63.7	61.6	34.1
5	123.8	170.8	179.6	80.7	87.0	87.2
10	154.7	205.8	228.5	99.8	98.3	209.0
15	179.0	223.8	251.8	253.8	99.8	235.6
20	199.7	238.4	262.7	324.9	101.1	252.8
25	221.7	249.9	274.3	356.0	102.8	276.1
30	236.3	257.4	288.2	369.1	106.3	292.2
35	251.1	265.1	298.6	382.9	110.6	313.2
40	260.4	274.0	310.5	390.6	111.4	338.3
45	271.6	282.8	320.4	400.2	143.3	355.7
50	283.5	293.3	332.1	409.5	344.5	375.4
55	295.1	303.9	343.6	419.2	396.4	390.5
60	309.0	313.4	356.8	426.1	419.2	409.3
65	320.9	325.5	367.3	434.1	434.2	426.4
70	334.6	337.0	379.2	442.5	446.1	442.0
75	351.4	354.3	389.5	450.4	457.9	457.8
80	368.8	375.2	402.0	460.7	468.0	470.2
85	387.2	397.6	419.8	470.4	476.5	481.5
90	413.7	429.2	440.5	481.3	487.2	495.7
95	463.1	467.0	470.0	499.3	508.2	526.8
100	544.7	520.8	522.2	542.2	547.1	570.6

Table E1 True boiling point curves: - non catalyst

92

	Boiling Point					
% OFF	Maltana	Saturated	Mono-	Di-	Poly-	Polar-
	Ivianene	Hydrocarbon	aromatics	aromatics	aromatics	aromatics
0	71.4	67.3	67.1	67	61.4	54.2
5	112.1	72.5	72.4	71.9	71.9	71.8
10	113.1	73.3	77.7	72.8	83.1	185.1
15	142.9	78.4	86.0	77.8	83.5	214.7
20	143.4	87.2	163.9	83.6	83.7	218.7
25	148.2	148.7	206.2	84.2	84.0	219.4
30	161.3	174.3	226.9	85.0	84.2	233.4
35	173.0	192.4	238.7	100.1	84.5	251.1
40	191.5	207.5	254.7	192.9	84.8	261.5
45	208.9	217.7	270.0	278.5	175.3	276.4
50	223.2	228.8	286.3	334.3	234.7	293.6
55	235.7	236.6	297.2	360.8	262.5	307.8
60	250.4	245.4	311.2	386.5	300.9	326.1
65	266.9	256.8	325.9	411.8	332.5	345.0
70	288.1	271.0	342.2	435.0	371.0	379.1
75	307.8	287.7	368.5	445.8	411.7	411.6
80	338.0	305.3	397.4	457.8	443.0	437.6
85	385.8	333.4	434.0	471.9	464.3	458.9
90	441.3	398.0	455.8	486.6	485.1	483.2
95	478.4	462.3	486.4	505.4	508.6	510.1
100	528.8	525.0	531.1	540.6	544.5	547.1

 Table E2
 True boiling point curves: - SAPO-34

	Boiling Point						
% OFF	Maltene	Saturated	Mono-	Di-	Poly-	Polar-	
	wianche	Hydrocarbon	aromatics	aromatics	aromatics	aromatics	
0	52.7	66.7	65.2	58.6	62.9	60.8	
5	133.2	174.7	154.4	86.5	99.5	102.8	
10	153.7	210.6	198.4	121.0	101.4	218.9	
15	173.1	226.5	221.9	205.5	103.6	249.1	
20	192.6	239.1	238.8	234.1	106.3	277.6	
25	217.5	249.5	251.3	254.8	106.7	294.3	
30	231.3	256.3	258.1	269.7	110.2	320.2	
35	246.8	262.3	269.3	289.3	110.7	342.9	
40	255.5	270.2	277.6	315.9	110.9	356.1	
45	264.5	277.3	289.5	338.1	111.1	373.4	
50	274.6	287.0	303.0	356.8	111.3	384.3	
55	286.4	294.7	314.6	368.0	111.6	399.3	
60	298.0	306.7	325.9	380.1	112.2	415.4	
65	312.3	317.1	339.7	388.1	117.2	430.6	
70	325.8	328.4	356.7	397.5	127.3	443.8	
75	344.0	345.7	371.7	408.1	128.8	458.0	
80	365.9	368.2	387.2	422.1	136.3	469.7	
85	387.7	391.0	405.2	436.4	281.5	481.2	
90	415.8	424.6	430.7	458.3	396.4	495.8	
95	460.3	464.6	464.4	489.6	445.2	527.3	
100	546.6	517.4	515.6	565.3	509,7	569.2	

Table E3 True boiling point curves: - 5 %Co/SAPO-34

94

	Boiling Point							
% OFF	Maltene	Saturated	Mono-	Di-	Poly-	Polar-		
	wiancine	Hydrocarbon	aromatics	aromatics	aromatics	aromatics		
0	53.8	56.9	57.7	53.6	53.3	57.2		
5	54.8	79.6	96.2	74.5	78.4	208.1		
10	59.1	139.9	148.3	100.6	87.9	258.4		
15	104.0	157.7	164.4	183.5	91.4	282.0		
20	125.0	173.2	178.1	215.0	95.5	300.6		
25	134.0	187.8	194.4	235.2	99.9	314.2		
30	141.7	199.7	201.3	243.2	103.5	325.4		
35	152.4	211.1	211.1	245.9	241.5	337.1		
40	168.5	222.1	219.3	261.7	259.5	389.9		
45	187.9	232.8	225.7	266.1	268.4	390.3		
50	204.7	243.4	232.5	274.4	281.6	390.9		
55	220.5	254.1	242.8	283.0	294.7	408.7		
60	231.5	266.6	255.5	294.9	304.2	428.7		
65	247.7	282.0	269.3	304.4	312.2	438.5		
70	265.2	296.1	283.9	315.6	322.6	448.6		
75	283.3	314.1	298.2	329.2	334.9	459.1		
80	299.9	335.7	320.5	347.2	349.8	470.3		
85	320.9	372.5	389.9	369.5	368.5	482.1		
90	389.7	414.6	417.5	395.6	389.1	496.3		
95	399.5	454.6	460.5	438.7	427.4	512.9		
100	460.2	500.8	520.4	494.3	491.3	551.6		

Table E4 True boiling point curves: - 5 %Co/HY

	Boiling Point								
% OFF	Maltene	Saturated	Mono-	Di-	Poly-	Polar-			
	Ivianciic	Hydrocarbon	aromatics	aromatics	aromatics	aromatics			
0	54.4	69.2	67.5	59.5	59.9	34.7			
5	126.3	78.4	79.2	73.8	65.4	69.3			
10	148.3	79.9	86.1	78.2	70.0	177.6			
15	155.3	86.6	100.8	78.9	79.4	215.7			
20	174.8	149.4	205.8	79.4	86.7	234.5			
25	195.3	207.1	245.3	84.9	96.9	235.1			
30	219.5	231.1	265.3	86.4	98.1	249.7			
35	234.9	248.8	287.5	96.3	98.7	264.7			
40	249.9	259.4	307.8	99.1	99.7	279.5			
45	260.2	271.3	325.2	103.8	100.5	296.0			
50	272.6	284.8	343.9	155.0	101.4	317.9			
55	285.6	295.7	362.1	212.7	102.7	340.6			
60	297.6	310.6	377.4	245.7	104.0	360.8			
65	312.0	324.7	389.3	272.2	106.4	383.7			
70	325.8	340.0	404.0	319.2	110.2	414.1			
75	341.1	361.3	421.3	367.8	110.8	449.1			
80	362.3	383.0	436.9	395.0	111.2	472.5			
85	382.9	409.3	454.6	420.8	116.9	489.2			
90	408.0	440.6	472.3	444.2	470.2	514.3			
95	445.0	473.6	490.0	475.3	527.3	535.6			
100	503.5	524.4	530.6	559.7	575.9	577.3			

 Table E5
 True boiling point curves: - 5 %Co/HMOR

	Boiling Point							
% OFF	Maltana	Saturated	Mono-	Di-	Poly-	Polar-		
	wianche	Hydrocarbon	aromatics	aromatics	aromatics	aromatics		
0	51.0	71.4	65.0	59.3	89.5	52.5		
5	120.7	78.7	79.2	74.7	101.5	65.0		
10	147.1	81.2	86.4	78.4	105.8	77.5		
15	147.8	89.8	99.3	79.0	106.3	110.7		
20	159.5	178.2	110.4	85.1	106.6	197.2		
25	174.8	208.6	144.7	87.0	110.0	234.2		
30	193.4	226.9	171.3	99.3	110.5	235.2		
35	214.0	243.1	193.4	109.5	110.8	258.5		
40	228.1	254.5	218.0	118.0	111.0	281.6		
45	245.6	264.2	236.3	163.9	111.1	311.5		
50	256.4	275.9	255.2	204.0	111.4	341.9		
55	269.6	290.0	276.1	227.0	111.9	362.4		
60	285.5	306.0	307.1	248.9	115.2	383.7		
65	302.8	320.7	337.3	266.4	119.7	413.6		
70	320.2	338.1	368.2	297.2	127.0	454.4		
75	342.1	359.9	390.9	348.5	127.8	475.5		
80	367.6	381.8	413.9	386.7	131.6	490.1		
85	391.9	406.4	433.6	416.7	135.7	508.3		
90	425.2	438.9	454.6	440.8	135.7	527.5		
95	473.9	473.9	476.5	464.4	177.9	544.3		
100	513.9	524.6	521.9	487.4	462.2	582.6		

 Table E6
 True boiling point curves: - HBETA

	Boiling Point							
% OFF	Maltene	Saturated	Mono-	Di-	Poly-	Polar-		
		Hydrocarbon	aromatics	aromatics	aromatics	aromatics		
0	61.0	67.5	65.8	61.2	63.3	37.3		
5	148.0	180.7	207.4	72.7	80.0	67.9		
10	155.3	217.4	248.4	75.4	97.5	177.1		
15	179.1	231.1	263.0	78.4	99.2	234.2		
20	199.5	246.9	277.7	78.9	100.0	235.2		
25	220.7	254.8	293.8	79.3	101.2	254.4		
30	234.4	262.1	309.1	80.6	102.6	284.6		
35	249.6	272.3	323.4	85.9	104.0	317.8		
40	258.1	280.2	335.6	87.0	106.3	349.7		
45	270.7	291.2	348.6	97.8	106.7	371.8		
50	283.1	302.1	360.1	102.2	110.2	390.3		
55	297.2	312.5	371.7	110.5	110.6	415.5		
60	313.8	324.9	381.6	289.4	110.8	434.9		
65	330.5	337.1	389.8	355.5	111.1	450.5		
70	351.8	354.0	401.2	375.3	111.4	464.8		
75	373.2	372.8	414.8	389.1	112.6	476.2		
80	393.0	392.4	429.7	404.6	127.0	487.7		
85	419.7	419.7	445.7	423.6	311.3	502.7		
90	447.7	449.4	465.6	447.1	419.5	525.1		
95	476.1	478.9	483.7	479.4	455.0	541.0		
100	523.3	526.0	526.7	547.5	510.0	580.0		

 Table E7
 True boiling point curves: - 5 %Co/HBETA

	Boiling Point							
% OFF	Maltana	Saturated	Mono-	Di-	Poly-	Polar-		
	wrantene	Hydrocarbon	aromatics	aromatics	aromatics	aromatics		
0	52.9	70.1	66.3	62.2	59.1	38.5		
5	121.8	99.3	79.7	76.6	99.9	96.4		
10	148.3	172.0	81.0	88.8	140.9	120.2		
15	155.6	192.9	88.5	191.5	190.0	129.7		
20	179.3	214.1	172.5	246.6	237.0	168.7		
25	202.3	228.0	246.2	265.0	265.7	208.1		
30	223.5	242.0	261.2	290.4	292.8	234.0		
35	240.0	253.9	278.1	322.7	311.8	235.7		
40	254.5	260.4	296.4	357.4	328.5	245.0		
45	263.1	271.4	315.4	385.7	343.7	259.2		
50	275.5	282.1	334.4	410.4	344.4	277.3		
55	290.3	295.5	355.0	427.6	358.4	288.1		
60	306.7	311.4	372.3	440.9	372.7	310.9		
65	323.0	327.3	389.4	451.7	373.3	336.1		
70	342.9	346.3	406.8	462.5	373.8	360.5		
75	367.2	368.2	425.5	470.8	387.6	387.1		
80	391.3	389.4	441.8	477.8	405.6	420.0		
85	421.3	415.9	458.6	486.3	423.6	458.2		
90	453.0	444.8	473.6	497.1	443.2	483.7		
95	484.4	475.4	490.0	523,8	464.2	524.3		
100	554.6	525.0	529.6	556.1	487.1	572.4		

Table E8 True boiling point curves: - HZSM-5

99

	Boiling Point								
% OFF	Maltene	Saturated	Mono-	Di-	Poly-	Polar-			
	wianche	Hydrocarbon	aromatics	aromatics	aromatics	aromatics			
0	56.3	73.5	73.7	67.3	68.8	67.3			
5	124.4	80.0	80.4	79.2	87.1	218.0			
10	148.8	81.7	82.6	80.4	98.4	257.4			
15	154.7	88.5	91.9	87.3	99.3	305.6			
20	166.2	148.5	172.9	98.6	100.6	337.5			
25	180.8	189.2	221.3	152.3	102.3	356.8			
30	200.4	213.5	243.7	269.1	104.3	368.2			
35	222.3	228.9	255.5	290.4	110.8	380.2			
40	238.1	243.9	266.1	309.6	112.2	388.0			
45	254.0	254.9	275.5	320.0	222.9	397.9			
50	265.7	263.3	288.7	334.6	309.2	406.7			
55	280.3	275.2	300.7	347.4	334.3	417.4			
60	298.5	290.6	313.5	360.0	348.9	426.2			
65	318.1	306.1	326.0	371.4	362.8	435.5			
70	338.9	322.9	340.9	383.1	372.4	445.0			
75	363.3	341.1	359.1	395.0	385.0	454.8			
80	385.2	367.9	377.9	410.7	394.8	465.0			
85	409.8	393.8	397.4	428.4	406.9	473.7			
90	438.5	428.1	425.3	446.7	424.4	483.3			
95	469.9	465.6	458.1	470.6	447.8	499.0			
100	520.6	517.0	507.9	511.4	482.3	537.4			

 Table E9
 True boiling point curves: - 5 %Co/HZSM-5

	Boiling Point							
% OFF	Maltana	Saturated	Mono-	Di-	Poly-	Polar-		
	Ivialtelle	Hydrocarbon	aromatics	aromatics	aromatics	aromatics		
0	54.2	57.9	60.9	56.5	56.1	51.7		
5	58.5	66.9	65.0	60.9	64.5	57.8		
10	135.8	162.4	65.9	62.5	69.8	78.6		
15	139.0	198.2	70.3	63.9	76.0	183.7		
20	154.2	210.4	79.5	65.3	76.7	209.5		
25	171.3	221.6	192.9	65.6	77.3	209.8		
30	190.2	228.9	223.4	66.0	78.8	223.4		
35	204.3	237.5	242.2	66.4	79.4	251.3		
40	215.7	247.6	263.6	70.0	80.2	311.4		
45	227.0	260.5	282.9	70.5	81.5	332.2		
50	238.5	270.7	297.2	72.1	82.5	400.3		
55	252.4	282.9	312.9	77.7	84.0	489.9		
60	268.7	293.9	328.1	82.4	85.3	501.9		
65	286.7	303.7	342.7	499.8	89.8	509.2		
70	301.7	317.4	390.3	509.9	95.7	517.4		
75	322.6	333.7	394.0	521.5	97.9	524.9		
80	389.8	390.1	422.8	528.4	494.2	530.9		
85	395.6	397.3	441.4	536.2	514.8	538.1		
90	447.8	439.3	458.1	545.6	530.4	547.0		
95	501.5	472.8	479.9	558.0	546.8	558.9		
100	560.8	531.6	519.2	578.6	575.0	578.8		

Table E10 True boiling point curves: - HY/SAPO-34

	Boiling Point							
% OFF	Maltene	Saturated	Mono-	Di-	Poly-	Polar-		
	Wattene	Hydrocarbon	aromatics	aromatics	aromatics	aromatics		
0	58.3	59.5	63.2	61.0	68.8	162.6		
5	132.8	175.8	181.0	188.2	87.4	248.9		
10	155.0	206.0	204.9	217.5	237.3	280.5		
15	176.4	218.6	218.2	224.9	246.8	300.7		
20	197.2	229.1	226.9	234.1	261.3	316.3		
25	210.3	241.2	234.8	241.8	275.4	328.5		
30	222.8	252.6	245.0	250.6	283.7	342.4		
35	233.8	263.2	256.6	261.1	292.9	390.1		
40	247.0	270.6	267.8	270.5	303.7	390.8		
45	263.2	279.9	278.3	278.7	314.9	407.7		
50	278.3	290.4	288.1	287.2	331.3	429.3		
55	292.9	295.6	296.3	295.8	389.7	438.3		
60	308.3	309.0	308.8	305.5	390.5	448.3		
65	327.2	325.4	324.2	317.0	402.4	458.1		
70	389.9	389.7	340.2	331.7	427.6	468.0		
75	390.8	390.8	390.4	389.8	441.3	477.6		
80	423.2	422.6	409.4	390.7	453.2	488.3		
85	445.9	443.9	439.3	420.6	465.6	498.8		
90	466.2	461.7	460.2	446.8	480.5	509.9		
95	489.6	484.6	484.8	473.4	500.1	526.1		
100	533.5	530.4	532.4	523.6	539.9	560.8		

 Table E11
 True boiling point curves: - 5 %Co/(HY+SAPO-34)

	Boiling Point								
% OFF	Maltene	Saturated	Mono-	Di-	Poly-	Polar-			
	Ivianciic	Hydrocarbon	aromatics	aromatics	aromatics	aromatics			
0	53.6	60.5	57. 8	55.5	55.4	52.3			
5	54.6	72.8	72.2	63.4	64.9	169.9			
10	104.2	73.8	73.5	64.3	75.2	207.8			
15	133.4	78.3	77.0	67.9	77.7	222.0			
20	141.3	86.4	79.6	69.4	79.9	257.2			
25	151.7	142.5	91.1	75.9	83.0	289.3			
30	169.0	169.9	146.1	81.5	89.1	313.9			
35	189.5	193.9	179.2	97.0	141.7	331.4			
40	205.6	211.9	209.8	150.5	264.9	389.9			
45	221.5	227.3	235.1	181.6	306.3	390.7			
50	233.6	241.3	249.5	216.3	326.8	404.4			
55	251.2	251.8	267.2	256.8	341.9	423.5			
60	273.2	264.9	288.0	296.2	390.4	435.6			
65	292.1	280.8	305.9	318.5	391.0	439.9			
70	311.7	297.3	325.0	329.5	412.3	448.3			
75	334.5	314.5	346.1	341.9	431.1	456.9			
80	390.3	336.3	365.6	390.1	441.2	466.6			
85	416.6	366.6	385.9	390.9	451.9	477.6			
90	449.3	403.0	414.9	420.4	465.2	492.4			
95	480.7	448.4	453.1	449.0	484.0	511.2			
100	523.4	505.8	503.1	513.8	533.4	551.5			

 Table E12
 True boiling point curves: - HMOR/SAPO-34

	Boiling Point								
% OFF	Maltene	Saturated	Mono-	Di-	Poly-	Polar-			
	wianche	Hydrocarbon	aromatics	aromatics	aromatics	aromatics			
0	58.1	58.1	58.5	58.3	58.2	58.3			
5	124.8	68.9	75.9	74.1	74.7	191.1			
10	139.3	165.6	150.5	187.6	92.4	205.8			
15	150.4	188.7	180.4	217.5	261.9	243.1			
20	168.8	202.7	197.8	235.9	277.9	275.9			
25	192.5	213.7	213.9	254.7	293.1	296.1			
30	206.2	222.3	222.0	265.8	304.0	310.0			
35	220.1	230.1	229.5	277.6	311.6	319.7			
40	232.6	241.3	239.8	282.7	321.1	327.6			
45	248.1	253.3	249.1	292.9	330.7	338.0			
50	265.6	263.0	260.5	301.9	338.5	389.8			
55	282.7	274.5	272.7	310.1	389.8	390.2			
60	298.6	284.5	282.8	320.9	390.3	390.7			
65	319.8	293.6	293.4	331.9	390.8	402.3			
70	341.0	305.8	307.4	342.3	401.4	422.4			
75	390.6	322.5	326.9	390.2	421.0	436.0			
80	425.4	341.4	389.8	394.1	436.9	447.9			
85	450.1	390.9	400.3	425.3	449.7	461.2			
90	472.1	439.2	441.9	446.3	466.5	478.9			
95	498.4	479.2	474.2	475.7	497.3	504.1			
100	544.4	550.3	533.3	546.6	554.0	553.4			

 Table E13
 True boiling point curves: - 5 %Co/(HMOR+SAPO-34)

- Saturated Hydrocarbon
- Mono-Aromatics
- Di-Aromatics
- -Poly-Aromatics
- -Polar-Aromatics

	Boiling Point								
% OFF	Maltana	Saturated	Mono-	Di-	Poly-	Polar-			
	Maitelle	Hydrocarbon	aromatics	aromatics	aromatics	aromatics			
0	54.0	57.0	57.6	55.9	53.6	57.1			
5	59.9	133.6	83.2	154.3	90.0	238.3			
10	111.9	167.9	153.6	201.8	214.9	265.9			
15	133.7	183.1	171.3	221.9	242.3	285.3			
20	148.6	195.4	190.3	224.2	261.8	300.0			
25	169.5	205.5	199.3	226.5	266.6	311.4			
30	191.5	213.3	211.1	241.6	276.8	321.7			
35	207.3	221.9	220.2	243.8	283.7	331.6			
40	222.6	230.3	228.1	250.8	294.3	341.9			
45	234.6	239.4	235.3	261.4	300.2	390.1			
50	249.5	250.0	246.5	266.7	308.0	390.6			
55	265.9	263.0	259.4	277.2	319.2	397.9			
60	282.1	272.6	273.1	284.2	331.1	418.5			
65	296.5	284.3	285.4	293.2	344.4	434.7			
70	313.9	296.1	297.4	303.0	361.8	442.6			
75	334.1	312.8	315.6	315.3	380.2	453.4			
80	390.2	337.8	338.1	332.7	401.9	464.5			
85	410.1	393.4	390.7	390.0	423.3	476.8			
90	444.5	441.7	436.7	404.3	445.0	491.9			
95	473.2	471.8	470.4	447.8	469.2	509.5			
100	541.7	531.6	529.9	524.7	510.6	549.8			

Table E14 True boiling point curves: - HBETA/SAPO-34

	Boiling Point							
% OFF	Maltana	Saturated	Mono-	Di-	Poly-	Polar-		
	wianche	Hydrocarbon	aromatics	aromatics	aromatics	aromatics		
0	55.7	56.8	56.0	55.4	55.9	55.4		
5	130.9	152.7	159.6	63.6	67.7	161.8		
10	140.3	180.6	199.9	208.8	74.1	219.3		
15	159.9	195.5	216.6	240.0	75.0	284.0		
20	181.4	205.7	223.7	257.1	76.7	311.0		
25	198.8	215.4	232.7	272.8	78.3	321.8		
30	213.5	223.0	240.6	280.4	79.9	334.0		
35	223.7	229.9	248.6	289.5	82.0	343.0		
40	236.9	240.5	257.4	297.3	86.9	390.0		
45	250.0	252.4	264.9	304.9	97.7	390.5		
50	264.8	263.3	274.6	312.9	289.5	393.7		
55	279.9	276.4	281.6	322.5	307.2	411.3		
60	293.6	288.7	288.9	331.9	326.1	427.9		
65	309.5	300.4	297.2	341.4	341.8	434.9		
70	327.1	320.0	306.5	390.1	390.4	443.4		
75	389.7	341.8	318.6	390.7	396.6	453.0		
80	390.6	390.9	333.8	406.6	427.8	463.5		
85	419.5	433.6	390.0	432.8	444.0	476.0		
90	447.1	457.3	401.8	450.0	460.1	492.7		
95	476.8	484.9	499.3	476.3	482.1	512.9		
100	540.6	536.4	531.3	541.0	536.1	556.2		

 Table E15
 True boiling point curves: - 5 %Co/(HBETA+SAPO-34)

	Boiling Point							
% OFF	Maltana	Saturated	Mono-	Di-	Poly-	Polar-		
	Waltene	Hydrocarbon	aromatics	aromatics	aromatics	aromatics		
0	53.8	57.8	57.7	57.5	57.9	56.8		
5	103.6	62.6	75.7	64.5	76.5	175.8		
10	133.5	64.8	134.4	69.1	79.1	239.4		
15	141.5	65.4	154.8	75.6	81.2	269.5		
20	154.6	69.2	170.3	78.1	83.4	286.4		
25	171.1	70.9	185.8	80.8	88.6	302.6		
30	194.9	133.0	198.0	86.4	89.9	314.1		
35	208.4	169.7	207.2	95.5	96.4	324.6		
40	223.4	191.1	218.6	133.0	99.6	334.3		
45	236.2	206.9	225.3	141.2	141.4	389.7		
50	251.6	219.0	233.3	154.2	168.2	390.1		
55	269.7	230.1	245.2	170.5	202.6	390.6		
60	285.3	245.7	261.3	195.9	227.3	396.6		
65	298.5	236.6	276.9	208.5	250.9	416.9		
70	314.5	279.5	290.7	224.6	274.4	433.4		
75	332.2	295.9	305.4	242.2	289.3	442.8		
80	390.0	318.4	327.8	262.9	310.1	454.4		
85	399.0	389.9	390.0	290.1	337.3	467.1		
90	440.6	421.3	417.4	327.0	391.2	482.2		
95	474.4	461.4	460.9	415.3	453.8	502.2		
100	541.5	- 526.0	527.3	511.6	524.7	545.8		

 Table E16
 True boiling point curves: - HZSM-5/SAPO-34

	Boiling Point							
% OFF	Maltana	Saturated	Mono-	Di-	Poly-	Polar-		
	ivialicite	Hydrocarbon	aromatics	aromatics	aromatics	aromatics		
0	54.3	57.5	56.5	56.1	55.6	56.3		
5	103.6	72.3	64.5	65.4	56.9	206.7		
10	138.1	176.9	195.8	88.1	60.1	248.3		
15	153.4	197.8	219.9	225.4	75.3	291.6		
20	170.6	210.3	230.2	253.4	78.5	312.5		
25	194.0	219.7	240.6	270.7	84.3	324.2		
30	206.6	226.9	250.4	281.0	246.4	335.6		
35	219.9	236.2	259.5	291.7	279.7	389.7		
40	230.4	246.5	271.9	300.2	296.4	390.2		
45	245.2	259.7	279.8	310.4	307.2	390.7		
50	263.0	270.5	285.8	320.8	314.5	398.9		
55	280.1	281.6	295.4	330.3	324.5	416.0		
60	295.3	293.1	305.2	340.7	335.2	432.2		
65	315.1	304.9	317.1	390.0	342.7	438.0		
70	336.1	322.9	332.2	390.7	390.2	446.5		
75	390.3	342.2	389.8	406.4	390.7	455.4		
80	414.2	390.8	390.8	431.8	408.7	465.4		
85	444.6	428.7	427.5	445.5	436.6	476.8		
90	467.7	452.8	453.9	463.7	461.7	492.5		
95	496.6	480.4	495.2	489.6	515.0	512.3		
100	548.1	541.3	557.8	545.2	565.0	555.6		

 Table E17
 True boiling point curves: - 5 %Co/(HZSM-5+SAPO-34)

Appendix F Coke Formation

Table F1 Coke formation – 5 %Co/SAPO-34

Catalysts	Coke (g)	Coke (g/g cat.)	Coke (%)
SAPO-34	2.024	0.114	11.362
5 %Co/SAPO-34	2.261	0.138	13.786

Table F2 Coke formation – 5 %Co supported on acid zeolites (HY, HMOR,HBETA, and HZSM-5)

Catalysts	Coke (g)	Coke (g/g cat.)	Coke (%)
HY	3.066	0.171	17.093
5 %Co/HY	1.995	0.217	21.720
HMOR	3.355	0.148	14.751
5 %Co/HMOR	1.643	0.112	11.234
HBETA	2.330	0.210	21.034
5 %Co/HBETA	3.047	0.222	22.214
HZSM-5	2.502	0.198	19.780
5 %Co/HZSM-5	1.562	0.082	8.218

Table F2 Coke formation – 5 %Co supported on binary-supports (HY/SAPO-34,HMOR/SAPO-34, HBETA/SAPO-34, and HZSM-5/SAPO-34)

Catalysts	Coke (g)	Coke (g/g cat.)	Coke (%)
HY/SAPO-34	2.397	0.149	14.933
5 %Co/HY/SAPO-34	1.792	0.130	12.986
HMOR/SAPO-34	0.909	0.089	8.949
5 %Co/HMOR/SAPO-34	0.945	0.073	7.344
HBETA/SAPO-34	1.339	0.109	10.873
5 %Co/HBETA/SAPO-34	1.723	0.123	12.258
HZSM-5/SAPO-34	1.310	0.090	8.967
5 %Co/HZSM-5/SAPO-34	0.835	0.056	5.594

Appendix I Pore Volume, Average Pore Size and Surface Area

Catalysts	Pore structure	Average Pore size (Å)	Specific surface area (m²/g)	Total pore volume (cm ³ /g)
SAPO-34	3D	9.4	662.5973	0.4494
5%Co/SAPO-34	3D	8.0	220.663	0.0877

 Table I1
 Pore Volume, Pore Size and Surface Area - 5 %Co/SAPO-34

Table I2 Pore Volume, Pore Size and Surface Area - 5 %Co supported on acidzeolites (HY, HMOR, HBETA, and HZSM-5)

Catalysts	Pore structure	Average Pore size (Å)	Specific surface area (m ² /g)	Total pore volume (cm ³ /g)
HY	3D	7.4	590.4	0.6
5%Co/HY	3D	6.8	365.1	0.1
HMOR	1D	7.0	462.5	0.4
5%Co/HMOR	1D	6.3	382.0	0.3
HBETA	3D	7.3	604.3	0.5
5%Co/HBETA	3D	6.7	545.8	1.0
HZSM-5	3D	5.8	373.4	0.2
5%Co/HZSM-5	3D	6.9	251.8	0.2

Table I3 Pore Volume, Pore Size and Surface Area - 5 %Co supported on binary-supports (HY/SAPO-34, HMOR/SAPO-34, HBETA/SAPO-34, and HZSM-5/SAPO-34)

Catalysts	Average Pore structure	Pore size (Å)	Specific surface area (m ² /g)	Total pore volume (cm ³ /g)
HY/SAPO-34	3D	6.8	408.6	0.433
5%Co/HY/SAPO-34	3D	6.7	313.9	0.056
HMOR/SAPO-34	1D/3D	7.1	465.9	0.749
5%Co/HMOR/SAPO-34	1D/3D	7.4	178.9	0.437
HBETA/SAPO-34	3D	7.1	959.5	0.659
5%Co/HBETA/SAPO-34	3D	7.2	264.4	0.532
HZSM-5/SAPO-34	3D	6.0	283.3	0.166
5%Co/HZSM-5/SAPO-34	3D	4.6	157.6	0.159

Appendix J Concentration of Light Mono-aromatics

Carbon number	5 %Co/SAPO-34		
C6	0.011		
C7	0.077		
C8	0.337		
BTX	0.425		

Table J1 Concentration of light mono-aromatics - 5 %Co/SAPO-34

Table J2 Concentration of light mono-aromatics – 5 %Co supported on acid zeolites (HY, HMOR, HBETA, and HZSM-5)

Carbon number	5 %Co/HY	5 %Co/HMOR	5 %Co/HBETA	5 %Co/HZSM-5
C6	0.013	1.889	0.245	1.098
C7	0.293	2.081	0.388	1.541
C8	1.864	2.268	0.589	2.091
BTX	2.169	6.238	1.222	4.731

Table J3 Concentration of light mono-aromatics – binary-supports (HY/SAPO-34,HMOR/SAPO-34, HBETA/SAPO-34, and HZSM-5/SAPO-34)

Carbon number	HY/ SAPO-34	HMOR/ SAPO-34	HBETA/ SAPO-34	HZSM-5/ SAPO-34
C6	1.249	0.475	0.018	2.274
C7	3.064	0.714	0.292	3.871
C8	5.249	0.990	1.588	5.363
BTX	9.563	2.178	1.897	11.508

Table J4 Concentration of light mono-aromatics - 5 %Co supported on binary-supports (HY/SAPO-34, HMOR/SAPO-34, HBETA/SAPO-34, and HZSM-5/SAPO-34)

Carbon number	5 %Co/HY/ SAPO-34	5 %Co/HMOR/ SAPO-34	5 %Co/HBETA/ SAPO-34	5 %Co/HZSM-5/ SAPO-34
C6	1.248	0.009	0.000	0.000
C7	2.431	0.162	0.003	0.002
C8	3.757	1.016	0.045	0.062
BTX	7.437	1.187	0.047	0.062

CURRICULUM VITAE

Name:	Ms	Parisa	Sa	narak	nuny	va
Ivanic.	1412.	i ansa	Ja	μαιακ	pung	ya

Date of Birth: February 2, 1988

Nationality: Thai

University Education:

2006–2010 Bachelor Degree of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand

Work Experience:

2008	Position:	Student Internship
	Company name:	H.V. Plas Co., Ltd.

Presentations:

 Saparakpunya, P. and Jitkanka, S. (2012, April 24) Potential Use of Co-Supported Catalysts as a Tire Pyrolysis Catalyst for Production of Valuable Petrochemicals. Poster presented at the 3rd Research Symposium on Petroleum, <u>Petrochemicals, and Advanced Materials and the 18th PPC Symposium on</u> <u>Petroleum, Petrochemicals, and Polymers</u>, Queen Sirikit National Convention Centre, Bangkok, Thailand.

