HYDROGEN PRODUCTION FROM OXIDATIVE STEAM REFORMING OF METHANOL OVER Au/CeO₂-Fe₂O₃ CATALYSTS

Umpawan Satitthai

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2012

551755

Fattisteria.

Thesis Title:	Hydrogen Production from Oxidative Steam Reforming of
	Methanol over Au/CeO2-Fe2O3 Catalysts
By:	Umpawan Satitthai
Program:	Petrochemical Technology
Thesis Advisors:	Assoc. Prof. Apanee Luengnaruemitchai
	Prof. Erdogan Gulari

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

apau (

(Assoc. Prof. Apanee Luengnaruemitchai)

(Prof. Erdogan Gulari)

K amoch

(Assoc. Prof. Pramoch Rangsunvigit)

(Assoc. Prof. Vissanu Meeyoo)

ABSTRACT

5371033063:	Petrochemical Technology
	Umpawan Satitthai: Hydrogen Production from Oxidative Steam
	Reforming of Methanol over Au/CeO2-Fe2O3 Catalysts
	Thesis Advisors: Assoc. Prof. Apanee Luengnaruemitchai,
	And Prof. Erdogan Gulari
Keywords:	Oxidative Steam Reforming/ Methanol/ Gold Catalyst/ Hydrogen
	Production/ CeO ₂ -Fe ₂ O ₃

Oxidative steam reforming of methanol (OSRM) over a Au/CeO₂–Fe₂O₃ catalyst prepared by a deposition-precipitation (DP) method was investigated to produce hydrogen for proton exchange membrane fuel cell (PEMFC) applications. The supports (CeO₂, Fe₂O₃, and CeO₂–Fe₂O₃) were prepared by precipitation and coprecipitation methods. The 3%Au/CF(0.25) exhibited the highest activity under optimum conditions of temperatures from 200 °C to 400 °C. The reduction of Au_xO_y species and the reduction of Fe₂O₃ to Fe₃O₄ of 3%Au/CF(0.25) shifted to a lower temperature, resulting in strong metal-metal and metal-support interactions on the prepared catalysts. In addition, the O₂/H₂O/CH₃OH molar ratio of 0.6/2/1 gave the highest catalytic performance.

บทคัดย่อ

อำพวรรณ สถิตไทย : กระบวนการผลิตก๊าซไฮโครเจนจากปฏิกิริยาเปลี่ยนรูปเมทานอล ด้วยไอน้ำและก๊าซออกซิเจนโคยใช้ตัวเร่งปฏิกิริยาทองบนซีเรียออกไซด์และไอรอนออกไซด์ (Hydrogen Production from Oxidative Steam Reforming of Methanol over Au/CeO₂-Fe₂O₃ Catalysts) อ. ที่ปรึกษา : รศ. คร. อาภาณี เหลืองนฤมิตชัย และ ศ. คร. เออโด แกน กูลารี่

งานวิจัขนี้ศึกษากระบวนการผลิตก๊าซไฮโครเจนด้วยกระบวนการเปลี่ยนรูปเมทานอล ด้วยไอน้ำและก๊าซออกซิเจน โดยใช้ตัวเร่งปฏิกิริยาทองบนตัวรองรับชนิดซีเรียออกไซด์และ ใอรอนออกไซด์ ที่เตรียมด้วยวิธีการยึดเกาะควบคู่กับการตกผลึก (Deposition–precipitation) เพื่อนำไปประยุกต์ใช้ใน proton exchange membrane fuel cell (PEMFC) โดยตัวรับรอง (CeO₂, Fe₂O₃, and CeO₂–Fe₂O₃) เตรียมด้วยวิธีการตกผลึก ตัวแปรที่ศึกษาที่มีอิทธิผลต่อก่า การเปลี่ยนแปลงของเมทานอล (methanol conversion) เช่น อัตราส่วนโดยโมลของตัวรองรับ อุณหภูมิที่ใช้ในการเตรียมตัวเร่งปฏิกิริยา (calcination temperature) ปริมาณของทองที่ใช้ใน การเครียมตัวเร่งปฏิกิริยา และช่วงของอุณหภูมิที่ใช้ในการเกิดปฏิกิริยาในเตาปฏิกรณ์ขนาดเล็ก ผลการศึกษาพบว่าตัวเร่งปฏิกิริยา 3 wt% Au/CeO₂–Fe₂O₃ เตรียมที่อุณหภูมิ 300 °C ให้ผลใน การเกิดปฏิกิริยาสูงที่สุด ตลอดทุกช่วงอุณหภูมิที่ทดสอบ (200°C ถึง 400 °C) เนื่องจากที่สภาวะ นี้มีการยึดเกาะที่แข็งแรงของโลหะกับโลหะ และโลหะกับตัวรองรับ ยิ่งไปกว่านั่นอัตราส่วนโดย โมลของ O₂/H₂O/CH₃OH ที่ 0.6/2/1 เป็นสภาวะที่เหมาะสมที่สุดต่อการเกิดปฏิกิริยาดังกล่าว

ACKNOWLEDGEMENTS

The author gratefully acknowledge for the scholarship and funding of the thesis work provided by the Petroleum and Petrochemical College, and by the Center of Excellence on Petrochemicals and Materials Technology, Thailand.

I would like to thankfulness to my advisors and member group. Especially Assoc. Prof. Apanee Luengnaruemitchai that provides suggestion and gives me an idea to troubleshoot problem, I am so appreciate to intimacy for teaching and helping me to understand and get the knowledge. Also for special senior students in the Petroleum and Petrochemical College, Mr. Phatchanon Pipatpratanporn that I would like to thanks for his kind of teaching and helping in laboratory.

My sincere thank to Assoc. Prof. Pramoch Rangsunvigit and Assoc. Prof. Vissanu Meeyoo for being my thesis committee and comment. And this thesis would not have been possible without the knowledge received from all the lecturers and staffs at the Petroleum and Petrochemical College

Finally, I would like to thanks my family for spirit and finance during my study in the Petroleum and Petrochemical College along two years.

TABLE OF CONTENTS

D			F
r	А	U	Ľ

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	х
List of Figures	xi

CHAPTER

I	INTRODUCTION	1
II	THEORETICAL BACKGROUND AND LITERATURE	
	REVIEW	3
	2.1 Background	3
	2.2 Hydrogen Production from Methanol (CH ₃ OH)	3
	2.2.1 Steam Reforming of Methanol (SRM)	4
	2.2.1.1 Experimental Condition	6
	2.2.1.2 Mechanism and Kinetics	9
	2.2.2 Partial Oxidation of Methanol (POM)	11
	2.2.2.1 Catalytic Activity	12
	2.2.2.2 Experimental Condition	13
	2.2.3 Oxidative Steam Reforming of Methanol	14
	2.2.3.1 Experimental Condition	15
	2.2.3.2 Catalytic Activity	18
	2.3 Catalysts Development for SRM and OSRM	18
	2.3.1 Copper-based Catalysts	19
	2.3.2 Non Copper-based Catalysts	20
	2.4 Gold Catalyst	21
	2.5 Supported Catalyst	24

EXPER	IMENTAL	33
3.1 Mat	erials	33
3.1.	1 Reactants	33
3.1.	2 Gases	33
3.1.	3 Chemicals	33
3.2 Equ	ipment	34
3.2.	1 Liquid Feed System	34
3.2.	2 Gas Blending System	35
3.2.	3 Catalytic Reactor	35
3.2.	4 Analytical Instrument	35
3.3 Met	hodology	36
3.3.	1 Preparation of Catalyst and Support	36
	3.3.1.1 Support Preparation	36
	3.3.1.2 Catalyst Preparation	37
3.3.2	2 Catalyst Characterization	38
	3.3.2.1 BET Surface Area Measurement	38
	3.3.2.2 X-Ray Diffraction (XRD)	39
	3.3.2.3 Transmission Electron Microscopy	
	(TEM)	40
	3.3.2.4 Temperature-Programmed Reduction	
	(TPR)	41
	3.3.2.5 Temperature-Programmed Oxidation	
	(TPO)	41
	3.3.2.6 UV-vis Spectrophotometer	41
	3.3.2.7 X-ray Fluorescence (XRF)	42
	3.3.2.8 Fourier Transform Infrared	
	Spectroscopy (FT-IR)	42
3.4 Opt	imum Condition and Activity Measurement	42

CHAPTER

IV

	3.4.1 Effect of Support Composition (atomic ratio)	
	of Ce/(Ce+Fe)	42
	3.4.2 Effect of Calcination Temperature	43
	3.4.3 Effect of Au Content	43
	3.4.4 Effect of O ₂ Pretreatment	43
	3.4.5 Effect of Steam/Methanol	
	(S/M or H ₂ O/CH ₃ OH) Molar Ratio	43
	3.4.6 Effect of O ₂ /CH ₃ OH Molar Ratio	43
	3.4.7 Deactivation Test	44
3.5	Calculation	45
RE	SULTS AND DISCUSSION	46
4.1	Au/CeO ₂ , Au/ Fe ₂ O ₃ -CeO ₂ , and Au/Fe ₂ O ₃ Catalysts	46
	4.1.1 Effect of Type of Support on the Catalytic	
	Performance of 1% Au Catalyst	46
	6.1.1.1 X-ray Diffraction	48
	6.1.1.2 X-ray fluorescence	50
	6.1.1.3 Surface Area Measurement	51
	4.1.2 Effect of Calcination Temperature on	
	the Catalytic Performance	52
	4.1.2.1 Temperature-Programmed Reduction	54
	4.1.2.2 UV-visible Spectroscopy	55
	4.1.2.3 Transmission Electron Micrograph	56
	4.1.2.4 X-ray Diffraction	59
	4.1.2.5 X-ray fluorescence	60
	4.1.2.6 Surface Area Measurement	60
	4.1.3 Effect of Au Content on the Catalytic	
	Performance	61
	4.1.3.1 Temperature-Programmed Reduction	63
	4.1.3.2 UV-visible Spectroscopy	64

V

	4.1.3.3 Transmission Electron Micrograph	65
	4.1.3.4 X-ray Diffraction	68
	4.1.3.5 X-ray fluorescence	69
	4.1.3.6 Surface Area Measurement	69
	4.1.4 Effect of Catalyst Pretreatment	70
	4.1.5 Effect of H ₂ O/CH ₃ OH Molar Ratio on	
	the Catalytic Performance	72
	4.1.5.1 Fourrier Transform Spectroscopy	74
	4.116 Effect of O ₂ /CH ₃ OH Molar Ratio on	
	the Catalytic Performance	77
	4.1.7 Comparision of Stability between Catalyst	
	Unpretreated and Catalyst Pretreatment	79
	4.1.7.1 X-ray Diffraction	80
	4.1.7.2 Temperature-Programmed Oxidation	81
0	CONCLUSIONS AND RECOMMENDATIONS	83
5	.1 Conclusions	83
5	2.2 Recommendations	84
F	REFERENCES	85
A	APPENDICES	92
A	Appendix A Calibration Curve of Gas Products	92
A	Appendix B SEM-eds of 3 wt% Au/CF(0.25)	97
(CURRICULUM VITAE	99

LIST OF TABLES

TABLE

2.1	Physical properties of Au	23
4.1	CeO_2 and Au crystallite sizes of the 1%Au catalysts over	
	different supports	50
4.2	XRF of catalysts with calcinations temperature at 400 $^{\circ}$ C	51
4.3	BET surface areas of catalysts	51
4.4	CeO_2 and Au crystallite sizes of the 1% Au/CF(0.25) with	
	different calcination temperatures	59
4.5	XRF of 1%Au/CF(0.25) with various calcinations	
	temperature	60
4.6	BET surface areas of 1% Au/CF(0.25) with various	
	calcinations temperature	60
4.7	CeO_2 and Au crystallite sizes of the Au/CF(0.25) calcined at	
	300 °C with different Au loading	68
4.8	XRF results of Au/CF(0.25) calcined at 300 °C	
	with different Au content	69
4.9	BET surface areas of 1%Au/CF(0.25) with various	
	calcinations temperature	69
4.10	Frequency and assignment of carbonate, formate, and	
	intermediate bands of spent 3 wt% Au/CF(0.25) calcined	
	at 300 °C	76

LIST OF FIGURES

FIGUR	E	PAGE
2.1	Simplified process flow diagram for SRM	
2.2	Effect of reaction temperature in methanol steam	
	reforming reaction	7
2.3	Effect of reaction temperature on product profiles with	
	0.1 g of 5% Cu/GDC, (a) 210 °C, (b) 240 °C, and (c) 270 °C	8
2.4	The influence of the steam:methanol ratio on CO production	9
2.5	Partial oxidation of methanol over the catalyst $Cu_{40}Zn_{60}$	13
2.6	Rates of methanol conversion (Δ) and H ₂ (\circ) and CO ₂ (\Box)	
	formation at 497 K and copper metallic area (∇)	
	versus the copper content in the Cu-Zn catalysts	14
2.7	Effect of O ₂ /CH ₃ OH molar ratio on methanol conversion,	
	hydrogen selectivity and CO selectivity for POM over	
	Au-Ru/Fe ₂ O ₃ catalysts (calcination temperature, 673 °C;	
	reaction temperature, 523 °C; reaction time, 10 min)	15
2.8	Effect of the temperature on the gas effluent composition in	
	the SRM (a) and OSRM (b) reactions over $Zn_{10}Ti_{90}$	17
2.9	Methanol conversion (a) and hydrogen yield (b) as	
	a function of the temperature for Zn ₁₀ Ti ₉₀	18
2.10	Comparison of methanol conversion and hydrogen	
	production rate for different catalysts as a function of	
	temperature (W/F=15 kg _{cat} s ⁻¹ , O/M=0.15 M, S/M=1.5 M,	
	P=1 atm)	19
2.11	Methanol conversion and CO ₂ , H ₂ , CO selectivities as	
	functions of Cu/Zn ratios over Cu/Zn/SiO2 catalysts.	
	Reaction conditions: $T = 473K$; $CO_2/CH_3OH = 0.3$	21
2.12	Turn over frequencies and band-gap measure by STM as	
	a function of the diameter of Au islands deposited on TiO_2	25

FIGURE

2.13	Proposed reaction mechanism for SRM at the Cu/Ce	
	interface	26
2.14	Schematic model of oxidation of CO on as prepared (dried)	
	Au/Fe ₂ O ₃	28
2.15	XRD patterns (a) and Raman spectra (b) of different samples	
	of composited oxide catalysts	30
2.16	Ethanol conversion (a) and hydrogen concentration (b) in	
	the effluent of steam reforming of ethanol as a function of	
	reation temperature over different samples	31
2.17	Activity and selectivity towards CO ₂ production of	
	Au/CeO ₂ (\blacksquare), Au/Ce75Fe25 (\triangledown), Au/Ce50Fe50 (\square),	
	Au/Ce25Fe75 (\blacktriangle), and Au/Fe ₂ O ₃ (•) catalysts for	
	the PROX reaction at W/F=0.03gscm ⁻³	
	Feed: 1% CO, 1.25% O ₂ , 50% H ₂ , He	32
3.1	Schematic of oxidative steam reforming of methanol	
	experimental system	34
4.1	Effect of Ce/(Ce+Fe) atomic ratio on the methanol	
	conversion, and concentration of H ₂ , CO, and CO ₂ over	
	1 wt% of Au/CeO ₂ –Fe ₂ O ₃ catalysts calcined at 400 °C.	
	(Reaction conditions: $O_2/H_2O/CH_3OH$ molar ratio = 0.6:2:1)	47
4.2	XRD patterns of supported Au catalysts:	
	$(\mathbf{\nabla}) \operatorname{CeO}_2; (\bullet) \operatorname{Fe}_2 \operatorname{O}_3; (\bullet) \operatorname{Au}$	49
4.3	Effect of calcination temperature on the methanol	
	conversion, and concentration of H_2 , CO, and CO_2 over	
	1 wt% of Au/CF(0.25) catalysts. (Reaction conditions:	
	$O_2/H_2O/CH_3OH$ molar ratio = 0.6:2:1)	53
4.4	TPR profiles of 1 wt% Au/CF(0.25) with various	
	calcination temperatures	55
4.5	Diffuse reflectance UV-vis spectra of 1%Au/CF(0.25)	
	with various calcination temperatures	56

FIGURE

4.6	TEM image of 1% Au/CF(0.25) with various	
	calcination temperatures	58
4.7	XRD patterns of supported Au catalysts:	
	$(\mathbf{\nabla}) \operatorname{CeO}_2; (\bullet) \operatorname{Fe}_2 \operatorname{O}_3; (\bullet) \operatorname{Au}$	59
4.8	Effect of Au content on methanol conversion, and	
	concentration of H_2 , CO_2 , and CO over Au/CF(0.25).	
	(Reaction conditions: $O_2/H_2O/CH_3OH$ molar ratio = 0.6:2:1)	62
4.9	TPR profiles of Au/CF(0.25) calcined at 300 °C with	
	different Au loadings	64
4.10	Diffuse reflectance UV-vis spectra of Au/CF(0.25)	
	calcined at 300 °C with different Au loading	65
4.11	TEM image of Au/CF(0.25) calcined at 300 °C	
	with different Au loadings	67
4.12	XRD patterns of supported Au catalysts:	
	$(\mathbf{\nabla}) \operatorname{CeO}_2; (\bullet) \operatorname{Fe}_2 \operatorname{O}_3; (\bullet) \operatorname{Au}$	68
4.13	Effect of O_2 pretreatment on the methanol conversion, and	
	concentration of H_2 , CO_2 , and CO over 3 wt% Au/CF(0.25)	
	catalysts. (Reaction conditions: O2/H2O/CH3OH molar ratio	
	= 0.6:2:1)	71
4.14	Effect of H ₂ O/CH ₃ OH molar ratio on the methanol	
	conversion, and concentration of H ₂ , CO ₂ , and CO over	
	3 wt% Au/CF(0.25) catalysts calcined at 300 °C.	73
4.15	FTIR spectra of 3 wt% Au/CF(0.25) catalysts calcined at	
	300 °C after reaction. (a) and (b) (1) H_2O/CH_3OH	
	molar ratio of 1; (2) H_2O/CH_3OH molar ratio of 2;	
	(3) H_2O/CH_3OH molar ratio of 3; (4) H_2O/CH_3OH	
	molar ratio of 4	75
4.16	Effect of O ₂ /H ₂ O/CH ₃ OH molar ratio on methanol	
	conversion, and concentration of H ₂ , CO ₂ , and CO over	
	3 wt% Au/CF(0.25) catalysts calcined at 300 °C.	78

FIGURE

4.17	Stability testing of the 3 wt% Au/CF(0.25) at reaction	
	temperature of 350 °C. (Reaction conditions:	
	$O_2/H_2O/CH_3OH$ molar ratio = 0.6:2:1)	79
4.18	XRD patterns of supported Au catalysts:	
	$(\mathbf{\nabla})$ CeO ₂ ; (•) Fe ₂ O ₃ ; (•) Au	80
4.19	TPO profiles of spent 3 wt% Au/CF(0.25) after reaction	
	temperature 300 °C, and time on stream 12 hour	82