EFFECT OF SURFACTANT ADSORPTION ON MULTI-WALLED CARBON NANOTUBE DISPERSION

Wipawan Mattavakul

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2012

551767

Thesis Title:	Effect of Surfactant Adsorption on Multi-walled Carbon
	Nanotubes Dispersion
By:	Wipawan Mattavakul
Program:	Petrochemical Technology
Thesis Advisors:	Asst. Prof. Boonyarach Kitiyanan

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

College Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee:

B-Kityanan_

(Asst. Prof. Boonyarach Kitiyanan)

Sumaeth Chandy

(Prof. Sumaeth Chavadej)

Sout Fuguela

(Dr. Sarawut Phupaichitkun)

ABSTRACT

5371037063: Petrochemical Technology Program
Wipawan Mattavakul: Effect of Surfactant Adsorption on Multiwalled Carbon Nanotubes Dispersion.
Thesis Advisor: Asst. Prof. Boonyarach Kitiyanan 55 pp.
Keywords: Surfactant adsorption/ Dispersability/ Multi-wall carbon nanotubes/ Activated carbons

Carbon nanotubes (CNTs) have attracted particular concern of researchers throughout the world due to their exceptional electronic, thermal, optical and mechanical properties for many applications. To obtain advantages of these properties, CNTs should have a high degree of individualization as well as homogeneous distribution. However, CNTs normally form agglomerates and inhomogeneous dispersion because of strong van de Waals interactions. One of the approaches to disperse them is non-covalent modification by using surfactant adsorption. The purpose of this work was to relate the adsorption behaviour of surfactants on multi-walled carbon nanotubes (MWCNTs) and activated carbons, and MWCNTs dispersion. The effect of surfactant concentration and the molecular structure of surfactants on the carbonaceous adsorbent in solution were investigated. In this study, sodium dodecyl benzene sulfonate (SDBS), cetylpyridinium chloride (CPC) and polyoxyethylene octyl phenyl ether $(OP(EO)_{10})$ were used as anionic, cationic and non-ionic surfactants, respectively. The adsorbed amount of surfactants on MWCNTs and activated carbon showed an order of SDBS > $OP(EO)_{10}$ > CPCand $CPC > SDBS > OP(EO)_{10}$, respectively, as results from the different head group, tail length and charge. Moreover, the different dispersions of MWCNTs at various concentrations were also affected by the charge and alkyl chain length of surfactant.

บทคัดย่อ

วิภาวรรณ มัททวกุล: อิทธิพลการดูดซับของสารลดแรงตึงผิวในการกระจายตัวของ การ์บอนนาโนทิวบ์ (Effect of Surfactant Adsorption on Multi-walled Carbon Nanotubes Dispersion) อ. ที่ปรึกษา: ผศ.ดร.บุนยรัชต์ กิติยานันท์ 55 หน้า

คาร์บอนนาโนทิวบ์ได้รับความสนใจของนักวิจัยทั่วโลก อันเนื่องจากคุณสมบัติที่ดีเยี่ยม ทั้งในด้านไฟฟ้า ความร้อน แสง และเชิงกล ซึ่งสามารถนำไปประยุกต์ใช้งานในด้านต่างๆ สมบัติที่ จะพบได้เมื่อคาร์บอนนาโนทิวบ์อยู่ในสภาพที่มีความเป็นปัจเจกสูงพร้อมทั้งมีการ ดีเหล่านี้ กระจายตัวที่สม่ำเสมอ อย่างไรก็ตาม โดยทั่วไปแล้วการ์บอนนาโนทิวบ์จะอยู่ในรูปของกลุ่มก้อน และมีการกระจายตัวที่ไม่สม่ำเสมอเนื่องจากแรงวาล์เคอร์วาลล์ หนึ่งในบรรคาวิธีที่จะกระจาย คาร์บอนนาโนทิวบ์คือการปรับปรุงพื้นผิวแบบนอนโควาเลนท์ โดยการดูดซับของสารลดแรงตึง ้ผิว ด้วยเหตุนี้ จุดประสงค์ของงานวิจัยนี้คือเพื่อศึกษาถึงความสัมพันธ์ระหว่างการดูดซับของสาร ลดแรงตึงผิวบนการ์บอนนาโนทิวบ์ผนังหลายชั้นและถ่านกัมมันต์ และการกระจายตัวของ คาร์บอนนาโนทิวบ์ผนังหลายชั้น ภายใต้ความเข้มข้นและโครงสร้างของสารลดแรงตึงผิวที่ต่างกัน สารถคแรงตึงผิวที่ใช้ประกอบด้วย SDBS CPC และ OP(EO)_{เo}ผลการศึกษาพบว่า ลำดับการดูคซับ ของสารลดแรงตึงผิวบนการ์บอนนาโนทิวบ์ผนังหลายชั้นและถ่านกัมมันต์ คือ SDBS > OP(EO)₁₀ > CPC และ CPC > SDBS > OP(EO)₁₀ ตามลำคับ ซึ่งเป็นผลจากความแตกต่างของส่วนหัว ความ ยาวหาง และประจุของสารลดแรงตึงผิว นอกจากนี้ความแตกต่างในการกระจายตัวของการ์บอนนา โนทิวบ์ผนังหลายชั้นที่ความเข้มข้นต่างๆ เป็นผลจากอิทธิพลของประจุและความยาวสายโซ่ของ สารลดแรงตึงผิว

ACKNOWLEDGEMENTS

This work would not have been possible without the assistance of the following individuals.

First of all, I would like to express the deepest gratitude to Asst. Prof. Boonyarach Kitiyanan, my advisor, for his invaluable guidance, and kindly support throughout the course of this research work.

I would like to thank Prof. Sumaeth Chavadej and Dr. Sarawut Phupaichitkun for their kind advice and for being my thesis committee.

This thesis work is funded by the Petroleum and Petrochemical College, and by the Center of Excellence on Petrochemical and Materials Technology, Thailand.

For my friends at PPC, I would like to give special thanks for their friendly support, encouragement, cheerfulness and assistance. Without them, two years in the college will be meaningless for me. I had the most enjoyable time working with all of them.

Finally, I am deeply indebted to my parents and my beloved grandmother for their unconditionally support, love and understanding for me all the time.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	xi

PAGE

CHAPTER

Ι	INTRODUCTION	1
II	LITERATURE REVIEW	2
	2.1 Surfactants Characteristics	2
	2.2 Surfactants Adsorption at the Solid/Liquid Interface	3
	2.2.1 Mechanisms of Surfactant Adsorption	3
	2.2.2 Adsorption Isotherm	4
	2.2.3 Adsorption on Hydrophobic Surface	4
	2.2.3.1 Modification of the Bundles of	
	Nanotubes to Individual Carbon	
	Nanotubes	5
	2.2.4 Point of Zero Charge	10
III	EXPERIMENTAL	12
	3.1 Materials	12
	3.1.1 Chemicals	12
	3.1.2 Carbons	12
	3.2 Methodology	12
	3.2.1 Adsorption Experiment	12

	3.2.2 Dispersion Experiment	13
	3.2.3 Determination of Specific Surface Area	13
	3.2.4 Zeta Potential Measurement	13
IV	RESULTS AND DISCUSSION	14
	4.1 Specific Surface Area, Average Pore Diameter	
	and Pore Volume of Carbonaceous Adsorbents	
	of Carbonaceous Adsorbents	14
	4.2 Adsorption Isotherms of Surfactants on Activated	
	Carbon and Multi – walled Carbon Nanotubes	14
	4.2.1 Adsorption Isotherms of CPC, SDBS and	
	OP(EO)10 on Multi – walled Carbon	
	Nanotubes	17
	4.2.2 Adsorption Isotherms of CPC, SDBS and	
	OP(EO) ₁₀ on Activated Carbon	19
	4.3 Dispersability of MWCNTs in Aqueous Surfactants	
	Solutions	20
	4.4 Zeta Potential of MWCNTs in Surfactant Solution	25
V	CONCLUSIONS AND RECOMMENDATIONS	28
	5.1 Conclusions	28
	5.2 Recommendations	28
	REFERENCES	29
	APPENDICES	35
	Appendix A Adsorption Isotherms of Surfactant	
	Solution	35

CHAPTER

55

Appendix B UV-Vis Spectra of Surfactant Solutions		
Dispersed MWCNTs without Any Dilution	38	
Appendix C Zeta Potential Values of MWCNTs		
Appendix D Calibration Curve of Surfactant Solution		
Appendix E Example of Calculation for Surfactant		
Adsorption Isotherms	53	

CURRICULUM VITAE

viii

LIST OF TABLES

TABLE		PAGE
4.1	The specific surface area average pore diameter and pore	
	volume of activated carbon and multi-walled carbon	
	nanotube	14
4.2	Critical micelle concentration (CMC) and molecular weight	
	for OP(EO)10, CPC and SDBS surfactant at 25 °C	17
A1	Adsorption isotherm on activated carbons of CPC solution	35
A2	Adsorption isotherm on MWCNTs of CPC solution	36
A3	Adsorption isotherm on activated carbons of SDBS solution	37
A4	Adsorption isotherm on MWCNTs of SDBS solution	38
A5	Adsorption isotherm on activated carbons of OP(EO)10	
	solution	39
A6	Adsorption isotherm on MWCNTs of OP(EO) ₁₀ solution	40
B1	UV-Vis Spectra of MWCNTs dispersed with surfactant at	
	0.1 CMC and without surfactant at 25 °C.	41
B2	UV-Vis Spectra of MWCNTs dispersed with surfactant at	
	CMC and without surfactant at 25 °C.	42
B3	UV-Vis Spectra of MWCNTs dispersed with surfactant at	
	10 CMC and without surfactant at 25 °C.	43
B4	UV-Vis Spectra of MWCNTs dispersed with different	
	concentrations of CPC and without surfactant	44
B5	UV-Vis Spectra of MWCNTs dispersed with different	
	concentrations of SDBS and without surfactant	45
B6	UV-Vis Spectra of MWCNTs dispersed with different	
	concentrations of OP(EO)10 and without surfactant	46
C1	Zeta potential values of MWCNTs at natural pH of CPC	
	solution	47

TABLE

PAGE

C2	Zeta potential values of MWCNTs at natural pH of SDBS	
	solution	48
C3	Zeta potential values of MWCNTs at natural pH of	
	OP(EO) ₁₀ solution	49

LIST OF FIGURES

FIGURE		PAGE
2.1	Schematic representation of how surfactants may adsorb	
	onto the SWCNT surface	7
2.2	Model for the surfactant-nanotube interaction	9
2.3	Schematics of (a) single OP(EO) ₁₀ molecule; (b) a	
	MWCNT wrapped by OP(EO) ₁₀ molecules (1 CMC);	
	(c) a OP(EO)10 micelle; (d) a MWCNT wrapped by	
	OP(EO) ₁₀ micelles (10 CMC)	10
2.4	An explanation of point of zero charge of one mineral	11
4.1	Adsorption isotherm of CPC on activated carbons (\blacklozenge)	
	and multi-walled carbon nanotubes (\blacksquare)	15
4.2	Adsorption isotherm of SDBS on activated carbons (\blacklozenge)	
	and multi-walled carbon nanotubes (\blacksquare)	16
4.3	Adsorption isotherm of OP(EO)10 on activated carbons	
	(\blacklozenge) and multi-walled carbon nanotubes (\blacksquare)	16
4.4	Adsorption isotherm of CPC (\blacklozenge), SDBS (\blacksquare) and	
	$OP(EO)_{10}$ (\blacktriangle) on multi-walled carbon nanotubes.	18
4.5	Adsorption isotherm of CPC (\blacklozenge), SDBS (\blacksquare) and	
	$OP(EO)_{10}$ (\blacktriangle) on activated carbon	20
4.6	Colloidal stability of the dispersed MWCNTs with	
	different concentration of CPC and without surfactant at	
	25 °C	21
4.7	Colloidal stability of the dispersed MWCNTs with	
	different concentration of SDBS and without surfactant	
	at 25 °C	21

FIGURE

4.8	Colloidal stability of the dispersed MWCNTs with	
	different concentration of $OP(EO)_{10}$ and without	
	surfactant at 25 °C	22
4.9	Colloidal stability of the dispersed MWCNTs with	
	surfactant at 0.1 CMC and without surfactant at 25 $^{\circ}$ C	23
4.10	Colloidal stability of the dispersed MWCNTs with	
	surfactant at CMC and without surfactant at 25 $^{\circ}$ C	24
4.11	Colloidal stability of the dispersed MWCNTs with	
	surfactant at 10 CMC and without surfactant at 25 $^{\circ}\mathrm{C}$	25
4.12	Zeta potential of MWCNTs at natural pH of surfactant	
	solution	27
D1	Calibration curve of CPC solution	50
D2	Calibration curve of SDBS solution	51
D3	Calibration curve of OP(EO) ₁₀ solution	52