EFFECT OF MOLECULAR WEIGHT AND COMPATIBILIZER ON MISCIBILITY AND PROPERTIES OF LLDPE/NR BLENDS

1

Ms. Parichart Limsila

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case western Reserve University 1999 ISBN 974-331-932-8

I19337514 18 A.A. 2547

Thesis Title	:	Effect	of	Molecular	Weight	and	Compatibilizer	on				
		Miscib	ility	and Propert	ies of LL	DPE/1	NR Blends					
By	:	Ms. Pa	ls. Parichart Limsila									
Program	:	Polyme	olymer Science									
Thesis Advisors	s :	Prof. A	lexa	nder M. Jan	nieson							
		Dr. Rat	han	awan Magar	aphan							

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

(Prof. Somchai Osuwan)

Thesis Committee :

Horale C

(Prof. Alexander M. Jamieson)

R. Magarapha

(Dr. Rathanawan Magaraphan)

Animait Sornail 10/5/25

(Assoc. Prof. Anuvat Sirivat)

ABSTRACT

##972015 : POLYMER SCIENCE PROGRAM

KEY WORDS : Polymer Blends/Molecular Weight/Linear Low Density Polyethylene/ Natural Rubber/ Compatibilizer

Parichart : Effect of Molecular Weight and Compatibilizer on Miscibility and Properties of LLDPE/NR Blends. Thesis Advisor: Dr.Rathanawan Magaraphan and Prof. Alexander M. Jamieson, 150 pp ISBN 974-331-932-8

The effect of molecular weight (entropic mixing) and compatibilizer (enthalpic mixing) on linear low-density polyethylene (LLDPE) and natural rubber (NR) blends were studied. Maleic anhydride (MA) was added to the LLDPE/NR blends at different concentrations to form *in situ* compatibilizer. The techniques used to determine compatibility were scanning electron microscopy (SEM), differential scanning calorimetry (DSC). The addition of MA to the blends improved the dispersity of the LLDPE/NR blends. A single glass transition temperature (Tg) was obtained for blends with certain amount of MA indicating miscibility of two polymers. T_m and T_c were found to be rather independent of the blend composition and the M_w of NR, but the degree of crystallinity decreased with amount of NR. The blends exhibited enhanced tensile properties with the addition of MA, which was attributed to better adhesion between two phases and the reduction in dispersed particle size. Higher amounts of MA or higher M_W of NR caused reduction in melt flow index (MF1) but improved mechanical properties. The effects of M_W and compatibilizer are compared.

บทคัดย่อ

ปาริชาต ลิ่มศิลา : ชื่อหัวข้อวิทยานิพนธ์ (ภาษาไทย) การศึกษาอิทธิพลของน้ำหนัก โมเลกุลและตัวประสานที่มีผลของการผสมเข้าเป็นเนื้อเดียวกันและคุณสมบัติของโพลิเอททิลีชนิด ความหนาแน่นต่ำเชิงเส้นตรงที่ผสมกับยางธรรมชาติ (ภาษาอังกฤษ) (Effect of Molecular Weight and Compatibilizer on Miscibility and Properties of LLDPE/NR Blends) อ. ที่ปรึกษา : ศ. อเล็ก ซานเดอร์ เจมิสัน และ คร. รัตนวรรณ มกรพันธุ์ 150 หน้า ISBN 974-331-932-8

วิทยานิพนธ์นี้เป็นการศึกษาอิทธิพลของน้ำหนักโมเลกุลและตัวช่วยประสานที่มีค่อผล ของการผสมเข้าเป็นเนื้อเคียวกันและคุณสมบัติของโพลิเอททิลีนชนิคความหนาแน่นด่ำเชิงเส้น ตรงที่ผสมกับยางธรรมชาดิ โดยการเปลี่ยนแปลงปริมาณความเข้มข้นของมาเลอิกแอนไฮไคร์ซึ่ง ทำหน้าที่เป็นตัวช่วยประสานและปริมาณส่วนผสมของโพลิเอททิลีนชนิคความหนาแน่นด่ำเชิง เส้นตรงและยางธรรมชาติในสัดส่วนที่ผกผันกันจากการศึกษาโครงสร้างของสารผสมโดยใช้ เครื่องมือสแกนนิ่งอิเล็กตรอนไมโครสโคป(SEM) พบว่าการเติมตัวช่วยประสานทำให้การกระจาย ตัวของยางธรรมชาติกระจายตัวดีขึ้นซึ่งบอกให้ทราบว่ามีการเติมตัวช่วยประสานทำให้การกระจาย ตัวของยางธรรมชาติกระจายตัวดีขึ้นซึ่งบอกให้ทราบว่ามีการเพิ่มขึ้นของแรงกระทำระหว่างสารทั้ง สองที่เนื่องมาจากมาเลอิกแอนไฮไคร์ และปริมาณที่เหมาะสมของแต่ละสัดส่วนจะแสดงค่าของ อุณหภูมิการเปลี่ยนสถานะคล้ายแก้วเพียงจุดเดียว อุณหภูมิการหลอมเหลวและอุณหภูมิการกลาย เป็นผลึกไม่ขึ้นอยู่กับส่วนผสมของน้ำหนักโมเลกุลของยางธรรมชาติและสารผสมทั้งสองชนิด จาก ผลการทดสอบคุณสมบัติเชิงกล พบว่าการเติมปริมาณสารช่วยผสมทำให้คุณสมบัติเชิงกลของสาร ผสมดีขึ้นเนื่องมาจากการปรับปรุงคุณสมบัติของแรงกระทำระหว่างสารหว่างสารเร็จยนติจ

<u>ACKNOWLEDGEMENTS</u>

The author would like to gratefully acknowledge all professors who have taught her at the Petroleum and Petrochemical College, Chulalongkorn University, especially those in the Polymer Science Program. Sincere thanks Thai Polyethylene Co.Ltd., for providing raw material used in this work.

She greatly appreciates the efforts of her research advisors, Professor Alexander M. Jamieson, Department of Macromolecular Science, Case Wastern Reserve University, Cleveland, Ohio, USA and Dr. Rathanawan Magaraphan of the Petroleum and Petrochemical College, Chulalongkorn University for their constructive criticisms, suggestions and proof-reading of this manuscript. She would like to give thanks to Associate Professor Anuvat Sirivat who give advice and acts as a thesis committee member.

The author also thanks all of her friends and the staff at the PPC who encouraged her in carrying out the experiment and this thesis writing. Finally, the author is also deeply indebted to her mom: Malee Limsila for greatest love, encouragement, and financial support, which give her more encouragement for this research. And for her brother and sister: Sarayuth and Paveena Limsila, the author thanks for everything he and she did for the author.

TABLE OF CONTENTS

Title Page	i
Abstract	iii
Acknowledgements	v
List of Tables	ix
List of Figures	xi

CHAPTER

I	INT	RODUCTION	1
	1.1	Polymer Blends	2
		1.1.1 Miscibible Blends	3
		1.1.2 Immiscible Blends	3
	1.2	Reactive Compatibilizer as a	
		Compatibilizer for Immiscible Blends	4
II	LIT	ERATURE REVIEW	6
	2.1	Literature Work	6
	2.2	Microstructure	13
	2.3	Research Objectives	17
III	EXP	ERIMENTAL SECTION	18
	3.1	Materials	18
	3.2	Methodology	22
		3.2.1 Blend Preparation	22

IV

	3.2.2	Determination of % grafting of MA					
		onto LLDPE and NR	26				
	3.2.3	Molding	27				
	3.2.4	Melt Flow Index (MFI)	27				
	3.2.5	Differential Scanning Calorimetry (DSC)	27				
	3.2.6	Scanning Electron Microscope (SEM)	29				
	3.2.7	Instron Universal Testing Machine	31				
	3.2.8	Fourier Transform Infrared (FTIR)	33				
	3.2.9	Gel Permeation Chromatography (GPC)	33				
	3.2.10	Vicat Softening Temperature (VST)	34				
RESU	LTS A	AND DISCUSSION	35				
4.1	Materi	als Characterization	37				
4.2	Effect of M_W and Composition on						
	Compa	atibility and Physical Properties	38				
	4.2.1	Thermal Properties	38				
	4.2.2	Morphological Properties	44				
	4.2.3	Mechanical Properties	48				
	4.2.4	Vicat Softening Temperature	53				
4.3	Effect	of Compatibilizer and Composition					
	on Co	mpatibility and Physical Properties	55				
	4.3.1	Characterization of MA grafting on					
		LLDPE and NR	55				
	4.3.2	Thermal Properties	61				
	4.3.3	Morphological Properties	65				
	4.3.4	Mechanical Properties	71				
	4.3.5	Vicat softening Temperature	75				

118

CHAPTER		H	PAGE		
	4.4	Effect of NR on Melt Flow Index of			
		LLDPE/NR blends	77		
V	CONCLUSIONS				
REFERENCES					
	APPENDIX A Characteraization Data of Molecular Weight		93		
			93		
	В	Determination of Melt Strength	99		
	С	Thermal Properties Data	101		
	D	Mechanical Properties Data	105		
	E	Vicat Softening Temperature (VST) Data	108		
	F Possible Reactions of MA onto NR and LL		PE110		
	G	Peak Area Data from Fitting Curve Technique	e 114		
	Η	Melt Flow Index Data	115		

CURRICULUM VITAE

LIST OF TABLES

TABLE

3.1	Physical properties of LLDPE	19
3.2	Specification for standard thai rubber (STR 5L)	20
3.3	Physical properties of MA	21
3.4	Properties of toluene	21
3.5	Characterization of molecular weight of natural rubber	22
3.6	Dimension of tensile testing specimen as shown in Figure 3.7	32
4.1	Data obtained from GPC to determine molecular weight	
	of LLDPE's	37
4.2	Data obtained from GPC to determine molecular weight of NR	37
4.3	Glass transition temperature of LLDPE/NR ₁₀ blends	38
4.4	Melting temperature, crystallization temperature, and degree of	
	crystallinity of LLDPE/NR ₁₀ blends	39
4.5	Melting temperature, crystallization temperature, and degree of	
	crystallinity of LLDPE/NR ₂₅ blends	40
4.6	Melting temperature, crystallization temperature, and degree of	
	crystallinity of LLDPE/NR5 blends	41
4.7	The percent grafting of MA onto LLDPE and NR	59
4.8	Glass transition temperature of blends with compatibilizer	61
4.9	Melting temperature, crystallization temperature, and degree of	
	crystallinity of LLDPE/NR ₁₀ blends with various	
	MA concentrations	63
Al	Retention time of standard polystyrene with known	
	molecular weight at 35.2 °C	95
A2	Retention time of standard polystyrene with known	
	molecular weight at 140 °C	97

PAGE

TABLE

Cl	Glass transition temperature of LLDPE	101
C2	Glass transition temperature of LLDPE/NR ₁₀ blends	102
C3	Melting temperature, crystallization temperature, degree	
	of crystallinity and heat of fusion data of LLDPE	102
C4	Melting temperature, crystallization temperature, degree	
	of crystallinity and heat of fusion data of LLDPE/NR $_{10}$ blends	
	with MA	103
C5	Melting temperature, crystallization temperature, degree	
	of crystallinity and heat of fusion data of LLDPE/NR $_{10}$ blends	
	without MA	104
C6	Melting temperature, crystallization temperature, degree	
	of crystallinity and heat of fusion data of LLDPE/NR $_{25}$ blends	104
C7	Melting temperature, crystallization temperature, degree	
	of crystallinity and heat of fusion data of LLDPE/NR $_5$ blends	104
Dl	Mechanical properties of LLDPE	105
D2	Mechanical properties of LLDPE/NR5 blends	106
D3	Mechanical properties of LLDPE/NR ₂₅ blends	106
D4	Mechanical properties of LLDPE/NR ₁₀ blends	107
Gl	Peak area data of purified and crude of LLDPE	114
G2	Peak area data of purified and crude of NR	114
HI	Melt flow index of LLDPE	115
H2	Melt flow index of LLDPE/NR ₅ blends	115
H3	Melt flow index of LLDPE/NR ₂₅ blends	116
H4	Melt flow index of LLDPE/NR ₁₀ blends	117

LIST OF FIGURES

FIGURE

3.1	Chemical structure of LLDPE	18
3.2	Chemical structure of cis-1,4-polyisoprene	19
3.3	Chemical structure of MA	20
3.4	Condition of the twin-screw kneader	24
3.5	Schematic of DSC: (a) configuration of DSC technique;	
	(b) thermogram obtain from DSC	28
3.6	Schematic diagram of a scanning electron microscope	30
3.7	Dimension of tensile testing specimen	32
4.1	Temperature of LLDPE/NR blends	40
4.2	The variation of crystallization temperature of	
	LLDPE/NR blends	41
4.3	The variation of degree of crystallinity LLDPE/NR blends	42
4.4	SEM micrographs of LLDPE/NR ₁₀ blends:	
	(a) 90/10 : LLDPE/NR ₁₀ ; (b) 80/20 : LLDPE/NR ₁₀ ;	
	(c) 70/30 : LLDPE/NR ₁₀ ; (d) 50/50 : LLDPE/NR ₁₀	44
4.5	SEM micrographs of LLDPE/NR ₂₅ blends:	
	(a) 90/10 : LLDPE/NR ₂₅ ; (b) 80/20 : LLDPE/NR ₂₅ ;	
	(c) 70/30 : LLDPE/NR ₂₅ ; (d) 50/50 : LLDPE/NR ₂₅	45
4.6	5 SEM micrographs of LLDPE/NR ₅ blends:	
	(a) 90/10 : LLDPE/NR ₅ ; (b) 80/20 : LLDPE/NR ₅ ;	
	(b) 70/30 : LLDPE/NR ₅ ; (d) 50/50 : LLDPE/NR ₅	46

PAGE

PAGE

xii

Effect of M _w and composition on mechanical properties of	
LLDPE/NR blends: (a) tensile strength; (b) yield strength;	
(c) modulus; (d) elongation at break	50
Morphological model of LLDPE/NR blends for	
failure phenomena	51
Effect of composition on vicat softening temperature of	
LLDPE/NR ₁₀ blends	53
Grafted MA onto LLDPE	56
Grafted MA onto NR	56
FTIR spectrum of MA grafted LLDPE	58
FTIR spectrum of MA grafted NR	58
SEM micrographs (2000x magnification) of cryogenically	
fractured surfaces of the $90/10$ LLDPE/NR ₁₀ blends with	
various MA amount: (a) 0% wt MA; (b) 1% wt MA;	
(c) 3% wt MA; (d) 5% wt MA; (e) 7% wt MA	67
SEM micrographs (2000x magnification) of cryogenically	
fractured surfaces of the $80/20$ LLDPE/NR ₁₀ blends with	
various MA amount: (a) 0% wt MA; (b) 1% wt MA;	
(c) 3% wt MA; (d) 5% wt MA; (e) 7% wt MA	68
SEM micrographs (2000x magnification) of cryogenically	
fractured surfaces of the 70/30 LLDPE/NR ₁₀ blends with	
various MA amount: (a) 0% wt MA; (b) 1% wt MA;	
(c) 3% wt MA; (d) 5% wt MA; (e) 7% wt MA	69
	Effect of M _w and composition on mechanical properties of LLDPE/NR blends: (a) tensile strength; (b) yield strength; (c) modulus; (d) elongation at break Morphological model of LLDPE/NR blends for failure phenomena Effect of composition on vicat softening temperature of LLDPE/NR ₁₀ blends Grafted MA onto LLDPE Grafted MA onto LLDPE Grafted MA onto NR FTIR spectrum of MA grafted LLDPE FTIR spectrum of MA grafted NR SEM micrographs (2000x magnification) of cryogenically fractured surfaces of the 90/10 LLDPE/NR ₁₀ blends with various MA amount: (a) 0% wt MA; (b) 1% wt MA; (c) 3% wt MA; (d) 5% wt MA; (e) 7% wt MA SEM micrographs (2000x magnification) of cryogenically fractured surfaces of the 80/20 LLDPE/NR ₁₀ blends with various MA amount: (a) 0% wt MA; (b) 1% wt MA; (c) 3% wt MA; (d) 5% wt MA; (e) 7% wt MA

GUR	E	PAGE
4.17	SEM micrographs (2000x magnification) of cryogenically	
	fractured surfaces of the 50/50 LLDPE/NR ₁₀ blends with	
	various MA amount: (a) 0% wt MA; (b) 1% wt MA;	
	(c) 3% wt MA; (d) 5% wt MA; (e) 7% wt MA	70
4.18	Effect of compatibilizer on mechanical properties of	
	LLDPE/NR ₁₀ blends: (a) tensile Strength; (b) yield Strength;	
	(c) modulus; (d) elongation at break	73
4.19	Effect of composition on vicat softening temperature of	
	LLDPE/NR ₁₀ blends with various MA	75
4.20	The variation of melt flow index of LLDPE/NR blends	77
4.21	The variation of melt flow index of LLDPE/NR ₁₀ blends	
	with various MA	78

4.22	Compa	rison	the e	ffect	of	`M _w	of NR	and	MA	conce	ntratio	on	
	of LLD	PE/N	IR: 9	0/10	ble	ends	on the	melt	t flov	w inde	x		79
4.00	0		. 1	cc .	c		CND						

4.23	Comparison the effect of M_w of NR and MA concentration	
	of LLDPE/NR: 90/10 blends on the elongation at break	80
4.24	Comparison the effect of M_w of NR and MA concentration	
	of LLDPE/NR: 90/10 blends on the degree of crystallinity	81
4.25	Comparison the effect of M _w of NR and MA concentration	

of LLDPE/NR: 90/10 blends on the tensile strength 82 The calibration curve of standard polystyrene in THF AL At 35.2 °C and flow rate 1.0 ml/min 96 The calibration curve of standard polystyrene in THF $\Lambda 2$

At 140 °C and flow rate 1.0 ml/min								98		
		0			,	,	N 41		100	

The picture of melt strength tester as shown by Micic et al. (1996) 100 B1

F1

F2

Possible reaction of NR and MA to obtain NR-g-MA:	
(a) MA present at the middle of NR chain; (b) MA present	
at the end of NR chain	110
Possible reaction of NR and MA to obtain LLDPE-g-MA:	
(b) MA present at the middle of LLDPE chain; (b) MA present	
at the end of LLDPE chain	111
Grafting reaction to obtain graft copolymer of NR and LLDPE	

at the end of LLDPE chain111F3Grafting reaction to obtain graft copolymer of NR and LLDPE
with MA linkage (LLDPE-MA-NR): (a) reaction between
F1(a) and F2(b); (b) reaction between F1(b) and F2(a);
(c) reaction between F1(a) and F2(a)112F4Block copolymer of NR and LLDPE with MA linkage
(LLDPE-b-MA-NR)113

PAGE