CHAPTER V

CONCLUSIONS

From the results discussed in the previous chapter. It can be concluded that:

- 1. The higher ethylene content results in a significant decrease of isotacticity of copolymer. The same effect is also found in commercial plants.
- 2. An increase in electron donor (CHMDMS) in the catalyst system causes an increase in isotactic index. High levels of electron donor can improve the isotacticity of copolymer.
- 3. Increasing of ethylene content significantly affect the melting temperature. While a reduction in crystallization temperature, affected from the presence of ethylene, can be seen at ethylene content above 2.3 mol%.
- 4. Addition of electron donor only slightly affects the melting temperature and crystallization temperature.
- 5. The copolymer produced with ethylene content below 2.3 mol% has rather the same quality in terms of weight average molecular weight, number average molecular weight, polydispersity.
- 6. A broader molecular weight distribution is achieved at anethylene content above 2.3 mol%.