SYNTHESIS AND CHARACTERIZATION OF VINYL CHLORIDE/ VINYLIDENE CHLORIDE COPOLYMERS

Ms. Warawan Prasithphol

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnerships with

The University of Michigan, The University of Oklahoma
and Case Western Reserve University

1999

ISBN 974-331-941-7

Thesis Title : Synthesis and Characterization of Vinyl chloride/

Vinylidene chloride Copolymers

By : Ms. Warawan Prasithphol

Program : Polymer Science

Thesis Advisors: Prof. Hatsuo Ishida

Asst. Prof. Sujitra Wongkasemjit

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

.....Director of the College

(Prof. Somchai Osuwan)

Thesis Committee

(Prof. Hatsuo Ishida)

(Asst.Prof. Sujitra Wongkasemjit)

(Dr. Kawporn Sussangkarn)

(Dr. Mania Nittitananukul)

ABSTRACT

##972023 : POLYMER SCIENCE PROGRAM

KEY WORDS: Copolymerization/ Copolymers/ Vinyl chloride - Vinylidene chloride Copolymers.

(Ms.Warawan Prasithphol): (Synthesis And Characterization Of Vinyl chloride/ Vinylidene chloride Copolymers). Thesis Advisors: Prof. Hatsuo Ishida And Asst. Prof. Sujitra Wongkasemjit, 42 pp. ISBN 974-331-941-7

The synthesis of vinyl chloride (VCM)/vinylidene chloride (VDC) copolymers by free radical polymerization in a suspension system is described. This research is involved with the study of the factors affecting synthesis, physical, chemical and mechanical properties of copolymer by varying of comonomer loading, polymerization temperature and initiator concentration. The effect of stirring speed on particle size of the product was also observed. Characterization of the resulting copolymer was conducted with FTIR, ¹³C-NMR, DSC, GPC and particle size analyzer. It was found that characteristics, thermal properties and particle size of the copolymers depended on copolymer composition and speed of stirring, respectively. In terms of mechanical properties, PVC showed better tensile properties for the same conditions studied, which was influenced by molecular weight and copolymer composition.

วราวรรณ ประสิทธิ์ผล : ชื่อหัวข้อวิทยานิพนธ์ (ภาษาไทย) การสังเคราะห์ และการ พิสูจน์เอกลักษณ์ของสารไวนิลคลอไรค์/ไวนิลิคีนคลอไรค์ โคพอลิเมอร์ (Synthesis and Characterization of Vinyl chloride/ Vinylidene chloride Copolymers) อาจารย์ที่ปรึกษา : ศ. ดร. ฮัสสุโอะ อิชิคะ (Prof. Hatsuo Ishida) และ ผู้ช่วยศาสตราจารย์ คร. สุจิตรา วงศ์เกษมจิตต์ (Asst. Prof. Sujittra Wongkasemjit) 42 หน้า ISBN 974-331-941-7

การสังเคราะห์สารไวนิลคลอไรค์/ไวนิลิคีนคลอไรค์ โคพอลิเมอร์ ทำได้จากการทำ ปฏิกิริยาของสารตั้งต้น คือ ไวนิลคลอไรค์ และไวนิลิคีนคลอไรค์ มอนอเมอร์ โดยอาศัยกระบวน การแขวนลอย ซึ่งมีสารก่อแรคคิคัลเป็นตัวเร่งปฏิกิริยา กระบวนการที่ใช้ในการทำปฏิกิริยานี้เรียก ว่า ฟรีแรคคิคัล โพลิเมอไรเซชัน (Free radical polymerization) งานวิจัยนี้ได้ทำการศึกษาวิธีการ สังเคราะห์โคพอลิเมอร์รวมถึงปัจจัยที่มีผลต่อสมบัติของพอลิเมอร์ โดยการเปลี่ยนแปลงค่าความ เข้มข้นของสารเร่งปฏิกิริยา, อุณหภูมิที่ใช้ในการทำปฏิกิริยา และอัตราส่วนของสารตั้งต้นที่ใช้ทำ ปฏิกิริยา นอกจากนี้ ยังศึกษาถึงผลของอัตราการกวนที่มีต่อขนาดของอนุภาคพอลิเมอร์ โคพอลิ เมอร์ที่สังเคราะห์ได้จะถูกนำไปวิเคราะห์ เพื่อศึกษาสมบัติเชิงกายภาพ เชิงเคมี และเชิงกล จาก การเปรียบเทียบสมบัติเชิงกลของโคพอลิเมอร์ที่สังเคราะห์ได้กับพีวีซี พบว่าปัจจัยต่างๆที่ได้ทำการ ศึกษา และความว่องไวในการเกิดปฏิกริยา (reactivity) ของมอนอเมอร์ที่ใช้ มีผลต่อสมบัติของโค พอลิเมอร์ที่สังเคราะห์ได้ พีวีซีแสดงสมบัติเชิงกลดีกว่าโคพอลิเมอร์ สาเหตุเนื่องจากน้ำหนัก โมเลกุลของพีวีซีมีมากกว่าโคพอลิเมอร์

ACKNOWLEDGMENTS

I greatly appreciates all professors who have tendered invaluable knowledge to me at the Petroleum and Petrochemical College, Chulalongkorn University.

I would like to give special thanks to my U.S. advisor, Prof. Hatsuo Ishida who gave some recommendation on the research. I am also deeply indebted to my Thai advisor, Asst. Prof. Sujitra Wongkasemjit, who not only provided intensive counseling, constructive criticism, suggestions and proof reading this manuscript, but also motivated me to complete my thesis work. I would like to give sincere thanks to Dr.Kawporn Sussangkarn and Thai Plastic and Chemicals Co.Ltd. for their generosity in helpful suggestions and donation of many chemicals.

I would like to thank Dr. Anuvat Sirivat and Mr. John W. Ellis for their help. I wish to extend my appreciation to the entire college members, staff, and all my best friends at the Petroleum and Petrochemical College for their assistance and warm supports throughout this research.

Finally, sincerest appreciation goes to my family for their love, understanding, encouragement and financial support for my education.

TABLE OF CONTENTS

CHAPTER			
	Title Page		
	Abstract		
	Acknowledgments		
	List of Tables		
	List	of Figures	ix
I	INTRODUCTION		
	3.1	Copolymer synthesis	1
	3.2	The influence of copolymerization on properties of	
		copolymers	2
II	LITE	ERATURE SURVEY	3
III	EXPERIMENTAL		6
	3.1	Materials	6
	3.2	Equipments	7
		3.2.1 Differential Scanning Calorimetry	7
		3.2.2 Fourier Transform Infrared Spectroscopy	7
		3.2.3 Nuclear Magnetic Resonance Spectroscopy	7
		3.2.4 Size Exclusion Spectroscopy	7
		3.2.5 Particle Size Analyzer	8
		3.2.6 Universal Testing Machine	8
	3.3	Methodology	8
		3.3.1 Preparation of PVA Suspending Agent	8
		3.3.2 Preparation of MHPC Suspending Agent	8
		3.3.3 VDC Purification	9
		3.3.4 Copolymerization	9

CHA	HAPTER		PAGE
		3.3.5 Specimen Preparation for Tensile	
		Property Testing	9
IV	RESULTS AND DISCUSSION		
	4.1	Copolymerization	11
	4.2	FTIR Characterization of Copolymers	18
		4.2.1 FTIR Spectra of VCM/VDC Copolymers	19
	4.3	¹³ C-NMR Characterization of Copolymers	20
	4.4	Thermal Behavior of VCM/VDC Copolymers	23
	4.5	Particle Size	24
	4.6	Molecular Weight	25
	4.7	Mechanical Property Study	26
V	CON	ICLUSIONS	30
	REF	ERENCES	31

LIST OF TABLES

TABLE		PAGE
4.2.1	Absolute and relative intensities and intensity ratios of PVC,	20
	PVDC and its copolymers	
4.4.1	Tg value of PVC, PVDC and copolymers.	25
4.5.1	Particle sizes of 75%VCM/25%VDC copolymers by	25
	variation of stirring speed at 0.4 mmol initiator, 0.2 phm	
	suspending agent, 50°C polymerization temperature.	
4.6.1	Molecular weight of PVC and VCM/VDC copolymers.	27

LIST OF FIGURES

FIGU	RE	PAGE
4.1.1	Pressure-time profiles of 75%VCM/25%VDC copolymers	12
	at various initiator concentrations, 30°C polymerization	
	temperature, 0.2 phm suspending agent and 800 rpm stirring sp	eed
4.1.2	Pressure-time profiles of 75%VCM/25%VDC copolymers	13
	at various initiator concentrations, 50°C polymerization	
	temperature, 0.2 phm suspending agent and 800 rpm stirring sp	peed
4.1.3	Pressure-time profiles of 75%VCM/25%VDC copolymers	14
	at various initiator concentrations, 65°C polymerization	
	temperature, 0.2 phm suspending agent and 800 rpm stirring sp	eed
4.1.4	Relationships between initiator concentration and	15
	reaction time of 75%VCM/25%VDC copolymers synthesized	
	at various polymerization temperatures, 0.2 phm suspending	
	agent and 800 rpm stirring speed.	
4.1.5	Relationships between initiator concentration and	16
	%conversion of 75%VCM/25%VDC copolymers synthesized	
	at various polymerization temperatures, 0.2 phm suspending	
	agent and 800 rpm stirring speed.	
4.1.6	Pressure-time profiles of VCM/VDC copolymers	17
	at different composition, synthesized at 50°C, 0.4 mmol	
	initiator, 0.4 phm suspending agent, 800 rpm stirring speed	
4.2.1.	FTIR spectra of PVC, PVDC and its copolymers,	19
	polymerized at 50°C, 0.4 mmol initiator, 0.2 phm suspending	
	agent and 800 rpm stirring speed.	
4.3.1	¹³ C-NMR spectrum of poly(vinyl chloride)	21

FIGURE		PAGE
4.3.2	¹³ C-NMR spectrum of poly(vinylidene chloride)	21
4.3.3	¹³ C-NMR spectrum of 50%VCM/50%VDC copolymers	22
4.3.4	¹³ C-NMR spectrum of 75%VCM/25%VDC copolymers	22
4.4.1	DSC thermograms of PVC and its copolymers,	24
	polymerized at 50°C, 0.4 mmol initiator, 0.2 phm	
	suspending agent and 800 rpm stirring speed.	
5.1	Relationships between initiator concentrations and	28
	stress at break of PVC and copolymers at 30°C	
	polymerization temperature.	
5.2	Relationships between initiator concentrations and	28
	strain at break of PVC and copolymers at 30°C	
	polymerization temperature.	
5.3	Relationships between initiator concentrations and	29
	toughness of PVC and copolymers at 30°C	
	polymerization temperature.	
5.4	Relationships between initiator concentrations and	29
	stress at break of PVC and copolymers at 50°C	
	polymerization temperature.	
5.5	Relationships between initiator concentrations and	30
	strain at break of PVC and copolymers at 50°C	
	polymerization temperature.	
5.6	Relationships between initiator concentrations and	30
	toughness of PVC and copolymers at 50°C polymerization	
	temperature.	