CHAPTER III

RESULTS

For cloning and sequencing of the structural gene encoding gene CGTases from 2 strains of Paenibacillus sp., the RB01 and T16. E. coli JM109 and pGEM ${ }^{\otimes}$-Teasy vector were used as host and plasmid. CGTase genes were expressed in the transformed E. coli. Both recombinant enzymes were purified and characterized in comparison to their native enzymes.

3.1 Cloning of CGTase genes from Paenibacillus sp.RB01 and Paenibacillus sp.T16

3.1.1 PCR amplification of CGTase gene

From the amino acid and nucleotide sequences of the previous study on Paenibacillus sp. All (Bacillus circulans Al1) (63), several pairs of oligonucleotide were designed from the conserved amino acid sequences of the CGTase gene and used as probes for the screening of CGTase gene of Bacilli. From the analysis of the hybridization blot, nucleotide sequences of RB01 and T16 yielded up to 98% similarity to B. circulans A11. Therefore, in this study, new pair of oligonucleotides was designed from the sequences upstream and downstream of the CGTase gene of B. circulans A11 to cover the whole CGTase gene. The annealing sites and the sequences of oligonucleotides were shown in Figure 4 (a) and (b). They were used to amplify the CGTase gene fragment from the chromosomal DNA of Paenibacillus sp.RB01 and Paenibacillus sp.T16. One major band of 2.4 kb which was band of expected size was observed (Figure 4 (c)). Bacillus liceniformis, a non-CGTase producing bacillus used as a negative control. The PCR products which contained the CGTase gene could be obtained with this pair of primers for both Paeinibacillus sp. RB01 and T16.

3.1.2 DNA cloning and selection of positive colony

The PCR products contained the CGTase genes were run on the 0.7% agarose gel, and the expected band of 2.4 kb was eluted, ligated with the pGEM-Teasy vector and transformed into E. coli JM 109. The vector which was inserted with CGTase gene generated white colonies on the culture plate. Clones were analyzed further by techniques, such as expression of their enzymes activities on the selective plate. By incubating for 24 hours, the replica plate of white colony which contains the CGTase gene showed clear zone on the LB plate containing 1% soluble starch after treating with iodine solution or phenolphthalein-methyl orange solution (Figure 6 (a) and (b)). The resulting transformants of Paenibacillus sp.RB01 and Paenibacillus sp. T16 were named pRB and pT , respectively. The transformants were kept in LB medium containing 30\% glycerol at $-80^{\circ} \mathrm{C}$ as stock for the re-cultivation for the expression of CGTase gene and extraction of the plasmid for DNA sequencing. The plasmids were kept at $-20^{\circ} \mathrm{C}$.

(a)

(b)

Primer A
Primer B
Primer B
5'- GGCTATGCTTTCCTTACCTTACCC - ${ }^{\prime}$ ’
5'-ATAGCACCTTTCCCCCACATAACG -3’
(c)

จุฬาลงกรณ์มหาวิทยาลัย

Figure 4 Amplification of the CGTase genes.
(a) The drawing shows the approximate locations of PCR primer annealing sites.
(b) Oligonucleotide primers designed for the amplification of the CGTase genes.
(c) The PCR products were amplified from the reactions using DNA template as followed: Lane 2; no template represented the negative control, Lane 3; pVR316 (a plasmid containing the CGTase gene from Bacillus circulans All) represented the positive control, Lane 4; Paenibacillus sp. RB01; Lane 5 Paenibacillus sp. T16; Lane 6 Bacillus licheniformis SK-1 (a chitinase producing bacteria) represented the negative control. Lanes 1 and 7 were DNA marker, $\lambda /$ /Hind III

Figure 5 Restriction map of Plasmid pGEM $^{(}-\mathrm{T}$ Easy

Figure 6 Identification of CGTase producing bacteria
(a) pRB, pTand pVR316 (a transformant containing CGTase gene from Paenibacillus sp. A11) on phenolphthalein plates. (b) the recombinant colony of pRB on starch - agar plate containing x - gal and ampicillin after treating with iodine solution. (c) pRB on phenolphthalein - methyl orange plates.

3.2 DNA sequencing

The DNA sequencing was done using the primer M13 forward, primer M13 reverse, primers 1-5 and primer B were used to design additional primers in order to sequence the whole gene. Their annealing sites were shown in Figure7. The DNA sequence showed an open reading frame of 2194 bp encoding 732 amino acid residues for pRB and an open reading frame of 2139 bp encoding 713 amino acid residues for pT (Figures 8 and 9).

Alignment of the deduced amino acid of CGTase from pRB and pT were compared with various published CGTase sequences. The phylogenic tree was built by the neighbor joining method, implemented in the CLUSTALW program (79). The results were shown in Figures 10 and 11. The accession number and abbreviation of each published CGTase were listed in Table 4. The amino acid sequences of pRB and pT showed 97% homology among those Bacilli used for the alignment. pRB gave 97% identities to the CGTases from A11, 95% to Bacillus sp. $\# 1011$ and Bacillus sp. Strain no. $38-2,85 \%$ to B. circulans strain 251. pT gave 99% identities to the CGTases from A11, 98% to Bacillus sp. \#1011, 97% to Bacillus sp. Strain no. $38-2$ and 85% to B. circulans strain 251.

Figure 7 Approximate annealing sites of the sequencing primers along the cloned CGTase gene.

The top arrow indicates the orientation and size of CGTase.
The small arrows locate the primers used for recombinant plasmid sequencing.

Figure 8 Nucleotide and deduced amino acid sequence of recombinant CGTase of pRB. The nucleotides were numbered. The initiator codon (ATG) of the deduced amino acid residues and the terminator codon (TAG) were also bold letter.


```
GGCTATGCTTTCCTTACTTACCCCGGTATGGAACAACCCCGGTATCTCTATTAGAGACGCCGGGGTTTTTTATGTAG
-71 [-61 - -51 <rlllll
CCGAGATGAAGGAGGTGATCCCCAAAGCGACGGACAGGCCTGTTATCCCCAAGCATTGTATACGATGAGGAGGTATAT 
GTATGAAAAGATTTATGAAAACTAACAGCCGTATGGACACTCTGGTTATCCCTCACGCTGGGGCCTCTTGAGCCCGGTCC 
```



```
TCTCGGACGGCAATCCGGCCAACAATCCGACCGGCGCGGCATTTGACGGATCATGTACGAATCTTCGCTTATACTGCG
```



```
GCGGCGACTGGCAAGGCATCATCAACAAAATCAACGACGGTTATTTGACCGGCATGGGCATTACGGCCATCTGGATTT
    G
CACAGCCTGTCGAGAATATCTACAGCGTGATCAACTACTCCGGCGTCCATAATACGGCTTATCACGGCTACTGGGCGC
```



```
GGGACTTCAAGAAGACCAATCCGGCCTACGGAACGATGCAGGACTTCAAAAACCTGATCGACACCGCGCATGCGCATA 
```



```
ACATAAAAGTCATCATCGACTTTGCACCGAACCATACATCTCCGGCTTCTTCGGATGATCCTTCCTTTGCAGAGAACG
```



```
GTCGCTTGTACGATAACGGCAACCTGCTCGGCGGATACACCAACGATACCCAAAATCTGTTCCACCATTATGGCGGCA
    R L }\mp@subsup{}{6}{632
CGGATTTCTCCACCATTGAGAACGGCATTTATAAAAACCTGTACGATCTGGCTGACCTGAATCATAACAACAGCAGCG
    D Frllllllllllllllllllllllll
TCGATGTGTATCTGAAGGATGCCATCAAAATGTGGCTCGACCTCGGGGTTGACGGCATTCGCGTGGACGCGGTCAAGC
```



```
ATATGCCATTCGGCTGGCAGAAGAGCTTTATGTCCACCATTAACAACTACAAGCCGGTCTTCACCTTCGGCGAATGGT
```



```
TCCTTGGCGTCAATGAGATTAGTCCGGAATACCATCAATTCGCTAACGAGTCCGGGATGAGCCTGCTCGATTTCCGCT
```



```
TTGCCCAGAAGGCCCGGCAAGTGTTCAGGGACAACACCGACAATATGTACGGCCTGAAAGCGATGCTGGAGGGCTCTG
```



```
AAGTAAACTATGCCCAGGTGAATGACCAGGTGACCTTCATCGACAATCATGACATGGAGCGTTTCCACACCAGCAATG
```



```
GCGACAGACGGAAGCTGGAGCAGGCGCTGGCCTTTACCCTGACTTCACGCGGTGTGCCTGCCATCTATTACGGCAGCG
```



```
AGCAGTATATGTCTGGCGGGAATGATCCGGACAACCGTGCTCGGATTCCTTCCTTCTCCACGACGACGACCGCATATC
    Q Y M S S G G N N D P D D N N R R A N R I I P
```



```
AAGTCATCCAAAAGCTCGCTCCGCTCCGCAAATCCAACCCGGCCATCGCTTACGGTTCCACACAGGAGCGCTGGATCA
    V Incrlllllllllllllllll
ACAACGATGTGATCATCTATGAACGCAAATTCGGCAATAACGTGGCCGTTGTTGCCATTAACCGCAATATGAACACAC
```



```
CGGCTTCGATTACCGGCCTTGTCACTTCCCTCCCGCAGGGCAGCTATAACGATGTGCTCGGCGGAATTCTGAACGGCA
```



```
CAACCGATGCCACAGCTCCGATCATCGGCAATGTCGGCCCGATGATGGCCAAGCCAGGGGTCACGATTACGATTGACG
```



```
GCCGCGGCTTCGGCTCCGGCAAGGGAACGGTTTACTTCGGTACAACGGCAGTCACTGGCGCGGACATCGTAGCTTGGG
    R
AAGATACACAAATCCAGGTGAAAATCCCTGCGGTCCCTGGCGGCATCTATGATATCAGAGTTGCCAACGCAGCCGGAG
```



```
CAGCCAGCAACATCTACGACAATTTCGAGGTGCTGACCGGAGACCAGGTCACCGTTCGGTTCGTAATCAACAATGCCA
```



```
CAACGGCGCTGGGACAGAATGTGTTCCTCACGGGCAATGTCAGCGAGCTGGGCAACTGGGATCCGAACAACGCGATCG
```



```
GCCCGATGTATAATCAGGTCGTCTACCAATACCCGACTTGGTATTATGATGTCAGCGTTCCGGCAGGCCAAACGATTG
    P
AATTTAAATTCCTGAAAAAGCAAGGCTCCACCGTCACATGGGAAGGCGGCGCGAATCGCACCTTCACCACCCCAACCA
    F
GCGGCACGGCAACTATGAATGTGAACTGGCTAGCCTAATAGGCACTTGCAAGGTAAGCAAGCGGCTCCGGGTAGAGGC
```



```
TCGGGGCCGCTTGTTACGTTATGTGGGGGGAAAGGTGCTAT
```

Figure 9 Nucleotide and deduced amino acid sequence of recombinant CGTase of pT. The nucleotides were numbered. The initiator codon (ATG) of the deduced amino acid residues and the terminator codon (TAA) were also bold letter.
PT
pRB
A11
B382
B1011
B1018
BC251
BLICH
BCIR8
THETU
BMACE
BOHB
BREV
BF290
KLEPN

PT
PRB
A11
B382
B1011
B1018
BC251
BLICH
BCIR8
THETU
BMACE
BOHB
BREV
BF290
KLEPN

PT
PT
PRB
A11
B382
B1011
B1018
BC251
BLICH
BCIR8
THETU
BMACE
BOHB
BREV
BF290
KLEPN
PRB
PRB
A11
B382
B1011
B1018
BC251
BLICH
BCIR8
THETU
BMACE
BOHB
BREV
BF290
KLEPN

Abstract

-----MKRFMKLTAVWTLWLSLTLGLL--SPVHAAPDTSVSNKQNFSTDVIYQIFTDRFS -----MKRFMKLTAVWTLWLSLTLGLL--SPVHAAPDTSVSNKQNFSTDVIYQI FTDRFS -----MKRFMKLTAVWTLWLSLTLGLL--SPVHAAPDTSVSNKQNFSTDVIYQIFTDRFS -----MKREMKLTAVWTLWLSLTLGLL--SPVHAAPDTSVSNKQNFSTDVIYQIFTDRFS -----MKRFMKLTAVWTLWLSLTLGLL--SPVHAAPDTSVSNKQNFSTDVIYQIFTDRFS -----MKKFLKMTAAFSLGLSLAFGLF--SPAQAAPDTSVSNKQNFSTDVIYQIFTDRFS -----MKKFLKSTAALALGLSLTFGLF--SPAQAAPDTSVSNKQNFSTDVIYQIFTDRFS MFQMAKRVLLSTTLTFSLLAGSALPFLPASAIYADADTAVTNKQNFSTDVIYQVFTDRFL MFQMAKRAFLSTTLTLGLLAGSALPELPASAVYADPDTAVTNKQSFSTDVIYQVFTDRFL -----MKKTFKLILVLMLSLTLVFGLT--APIQAASDTAVSNVVNYSTDVIYQIVTDRFV -----MKSRYKRLTSLALSLSMALGIS--LPAWASPDTSVDNKVNFSTDVIYQIVTDRFA ---MKNLTVLLKTIPLALLLFILLSLP------TAAQADVTNKVNYTRDVIYQIVTDRFS ------------MITPSEIISSFLSLP------TVVEASVTNKVNYSKDVIYQIVTDRES -----MIRRLSFSLVVLFLISFLVIVN---PEYTEANENLDN-VNYAQEIIYQIVTDRFY ---MKRNRFFNTSAAIAISIALNTFFCS---MQTIAAEPEETYLDFRKETIYFLFLDRFS

 :DGNPANNPTGAAFDGSCTNLRLYCGGDWQGIINKINDGYLTGMGITAIWISQPVENIYSV DGNPANNPTGAAFDGSCTNLRLYCGGDWQGIINKINDGYLTDMGITAIWISQPVENIYSV DGNPANNPTGAAFDGSCTNLRLYCGGDWQGI INKINDGYLTGMGITAIWISQPVENIYSV DGNPANNPTGAAFDGSCTNLRLYCGGDWQGI INKINDGYLTGMGITAIWISQPVENIYSV DGNPANNPTGAAFDGSCTNLRLYCGGDWQGIINKINDGYLTGMGITAIWISQPVENIYSV DGNPANNPTGAAFDGTCTNLRLYCGGDWQGI INKINDGYLTGMGVTAIWISQPVENIYSI DGNPANNPTGAAFDGTCTNLRLYCGGDWQGI INKINDGYLTGMGVTAIWISQPVENIYS I DGNPSNNPTGAAFDGTCSNLKLYCGGDWQGLVNKINDNYFSDLGVTALWI SQPVENI FAT DGNPSNNPTGAAYDATCSNLKLYCGGDWQGLINKINDNYFSDLGVTALWISQPVENIFAT DGNTSNNPTGDLYDPTHTSLKKYFGGDWQGIINKINDGYLTGMGVTAIWISQPVENIYAV DGDRTNNPAGDAFSGDRSNLKLYFGGDWQGI IDKINDGYLTGMGVTALWISQPVENITSV DGDPSNNPTGAIYSQDCSDLHKYCGGDWQGI IDK INDGYLTDLGITA IWISQPVENVYAL DGNPANNPSGAIFSQNCSDLHKYCGGDWQGI INKMNDGYLTDLGITALWISQPVENVYAL DGDPTNNPEGTLFSPGCLDLTKYCGGDWQGVIEKIEDGYLPDMGITAIWISPPIENVMEL DGDPSNNAGFNSATYDPNNLKKYTGGDLRGLINKLP--YLKSLGVTSIWITPPIDNVNNT
120113113111102111112

IN--YSGVH-NTAYHGYWARDFKKTNPAYGTMQDFKNLIDTAHA--HNIKVIIDFAPNHT 168 IN--YSGVH-NTAYHGYWARDFKKTNPAYGTMQDFKNLIDTAHA--HNIKVIIDFAPNHT IN--YSGVH-NTAYHGYWARDFKKTNPAYGTMQDFKNLIDTAHA--HNIKVIIDFAPNHT IN--YSGVH-NTAYHGYWARDFKKTNPAYG-MQDEKNLIDTAHA--HNIKVI IDFAPNHT IN--YSGVN-NTAYHGYWARDFKKTNPAYGTMQDFKNLIDTAHA--HNIKVI IDFAPNHT IN--YSGVN-NTAYHGYWARDFKKTNPAYGTIADFQNLIAAAHA--KNIKVIIDFAPNHT IN--YSGVN-NTAYHGYWARDFKKTNPAYGTIADFQNLIAAAHA--KNIKVIIDFAPNHT IN--YSGVT-NTAYHGYWARDFKKTNPYFGTMTDFQNLVTTAHA--KGIKIIIDFAPNHT IN--YSGVT-NTAYHGYWARDFKKTNPYFGTMADFQNLITTAHA--KGIKIVIDFAPNHT LP--DSTFGGSTSYHGYWARDFKRTNPYFGSFTDFQNLINTAHA--HNIKVIIDFAPNHT IK--YSGVN-NTSYHGYWARDFKQTNDAFGDFADFQNLIDTAHA--HNIKVVIDFAPNHT HPSGYT------SYHGYWARDYKRTNPFYGDFSDFDRLMDTAHS--NGIKVIMDFTPNHS HPSGYT------SYHGYWARDYKKTNPYFGNFSDFDRLVSTAHN--KGIKIIMDFTPNHS HP----- -GGFASYHGYWGRDFKRTNPAFGSLADFSRLIETAHN--HDIKVIIDFVPNHT DA------AGNTGYHGYWGRDYFRIDEHFGNLDDFKELTSLMHS PDYNMKLVLDYAPNHS .:*: : :*: .***:

SPASSDDPSFAENGRLYDNGNLLGGYTN---DTQNLFHHYGGTD-FSTIENGIYKNLYDL 224 SPASSDDPSFAENGRLYDNGNLLGGYTN---DTONLFHHYGGTD-FSTIENGIYKNLYDL SPASSDDPSFAENGRLYDNGNLLGGYTN---DTQNLFHHYGGTD-FSTIENGIYKNLYDL SPASSDDPSFAENGRLYDNGNLLGGYTN---DTQNLFHHYGGTD-FSTIENGIYKNLYDL SPASSDDPSFAENGRLYDNGNLLGGYTN---DTQNLFHHYGGTD-ESTIENGIYKNLYDL SPASSDQPSFAENGRLYDNGTLLGGYTN---DTQNLFHHNGGTD-FSTTENGIYKNLYDL SPASSDQPSFAENGRLYDNGTLLGGYTN---DTQNLFHHNGGTD-FSTTENGIYKNLYDL SPAMETDTSFAENGKLYDNGNLVGGYTN---DTNGYFHHNGGSD-ESTLENGIYKNLYDL 231 SPAMETDTSFAENGRLYDNGTLVGGYTN---DTNGYFHHNGGSD-FSSLENGIYKNLYDL 231 SPASETDPTYAENGRLYDNGTLLGGYTN---DTNGYFHHYGGTD-FSSYEDGIYRNLFDL 225 SPADRDNPGFAENGGMYDNGSLLGAYSN---DTAGLFHHNGGTD-FSTIEDGIYKNLYDL 224 SPALETDPSYAENGAVYNDGVLIGNYSN---DPNNLFHHNGGTD-FSSYEDSIYRNLYDL 219 SLALETNPNYVENGALYNNGALLGNYSN---DRNKLFHHNGGTD-FSSYEDSIYRNLYDL 210 SPVD------IENGALYDNGRLVGHYSN---DSEDYFYTNGGSD-FSSYEDSIYRNLYDL 213 NANDEN-----EFGALYRDGVFITDYPTNVAANTGWYHHNGGVTNWNDFFQVKNHNLFNL 221

Figure 10 Comparison of the deduced amino acid sequences of CGTase from pRB and pT . The amino acid residues indicated by asterisks $\left(^{*}\right)$ were completely identical or conserved in all CGTases. The amino acid residues indicated by colon (:) were conserved and dot (.) among the CGTase. Dashes (--) denote gaps. Underline letters denote the signal (leader region) of CGTase.
pT pRB A11 B382 B1011
B1018
BC251
BLICH
BCIR8
THETU
BMACE
BOHB
BREV
BF290
KLEPN
pT
pRB
B382
B1011
B1018
BC251
BLICH
BCIR8
THETU
BMACE
BOHB
BREV
BF290
KLEPN

Abstract

ADLNHNNSSVDVYLKDAIKMWLDLGVDGIRVDAVKHMPEGWQKSFMSTINN------YKP ADLNHNNSSVDVYLKDAI KMWLDLGVDGIRVDAVKHMPFGWQKS FMST INN------YKP ADLNHNNSSVDVYLKDAIKMWLDLGVDGIRVDAVKHMPFGWQKSFMSTINN------YKP 278 ADLNHNNSSVDVYLKDA KMWLDLGVDGIRVDAVKHMPFGWQKSFMSTINN------YKP 277 ADLNHNNSSVDVYLKDAIKMWLDLGVDGIRVDAVKHMPFGWQKSFMATINN------YKP 278 ADLNHNNSTSDVYLKDAIKMWLDLGIDGIRMDAVKHMPFGWQKSFMAAVNN-..----YKP 278 ADLNHNNSTVDVYLKDAIKMWLDLGIDGIRMDAVKHMPFGWQKS FMAAVNN------YKP 278 ADLNHNNSTIDTYFKDAIKLWLDMGVDGIRVDAVKHMPQGWQKNWMSSIYA------HKP 285 ADFNHNNATIDKYFKDAIKLWLDMGVDGIRVDAVKHMPLGWQKSWMSSIYA------HKP 285 ADLNQQNSTIDSYLKSAIKVWLDMGIDGIRLDAVKHMPFGWQKNFMDSILS------YRP 279 ADINHNNNAMDAYFKSAIDLWLGMGVDGIRFDAVKHMPFGWQKSFVSSIYGG-----DHP 279 ADYDLNNTVMDQYLKESIKLWLDKGIDGIRVDAVKHMSEGWQTSLMSDIYA------HEP 273 ADYDLNNKVVDQYLKESIKLWLIK-IDGIRVDAVKHMSEGWQTSLMSDIYT------YKP 263 ASLNQQNSFIDRYLKESIQMWLDLGIDGIRVDAVAHMPVGWQKNFVSSIYD------YNP 267 SDLNQSNTDVYQYLLDGSKFWIDAGVDAIRIDAIKHMDKSFIQKWTSDIYDYSKSIGREG 281

VFTFGEWFLGVN----EISPEYHQFANESGMSLLDFRFAQKARQVFRDNT-DNMYGLKAM VFTFGEWFLGVN----EISPEYHQFANESGMSLLDFRFAQKARQVFRDNT-DNMYGLKAM VFTFGEWFLGVN----EISPEYHQFANESGMSLLDFRFAQKARQVFRDNT-DNMYGLKAM VFNFGEWFLGVN----EISPEYHQFANESGMSLLDFPFAQKARQVFRDNT-DNMYGLKAM VFTFGEWFLGVN----EISPEYHQFANESGMSLLDFRFAQKARQVFRDNT-DNMYGLKAM VFTFGEWFLGVN----EVGPENHKFANESGMSLLDFRFAQKVRQVFRDNT-DNMYGLKAM VFTFGEWFLGVN----EVSPENHKFANESGMSLLDFRFAQKVRQVFRDNT-DNMYGLKAM VFTFGEWFLGSA----APDADNTDFANESGMSLLDFRFNSAVRNVFRDNT-SNMYALDSM VFTFGEWFLGSA----ASDADNTDFANKSGMSLLDFRFNSAVRNVFRDNT-SNMYALDSM VFTFGEWFLGTN----EIDVNNTYFANESGMSLLDFRFSQKVRQVFRDNT-DTMYGLDSM VFTFGEWYLGAD----QTDGDNIKFANESGMNLLDFEYAQEVREVFRDKT-ETMKDLYEV VFTFGEWFLGSG---EVDPQNHHFANESGMSLLDFQFGQTIRDVLMDGS-SNWYDENEM VFTFGEWFLGTG----EVDPQNHHFANESGMSLLDFQFGQTIRSVLKDRT-SNWYDFNEM VFTFGEWFTGAG----GSD-EYHYFINNSGMSALDFRYAQVVODVLRNND-GTMYDLETV FFFFGEWFGASANTTTGVDGNAIDYANTSGSALLDFGFRDTLERVLVGRSGNTMKTLNSY 341
pT
pRB
A11
B382
B1011
B1018
BC251
BLICH
BCIR8
THETU
BMACE
BOHB
BREV
BF290
KLEPN
pT
pRB
A11
B382
B1011
B1018
BC251
BLICH
BCIR8
THETU
BMACE
BOHB
BREV
BF290
KLEPN

LEGSEVNYAQVNDQVTFIDNHDMER----------------------EFHTSNGDRRKLEQA 372
LEGSEVDYAQVNDQVTFIDNHDMER-------------------------FHTSNGDRRKLEQA
LEGSEVDYAQVNDQVTFIDNHDMER-------------------------FHTSNGDRRKLEQA
LEGSEVDYAQVNDQVTFIDNHDMER-------------------------EHTSNGDRRKLEQA
LEGSEVDYAQVNDQVTFIDNHDMER----------------------- FHTSNGDRRKLEQA LEGSAADYAQVDDQVTFIDNHDMER-------------------------FHASNANRRKLEQA LEGSAADYAQVDDQVTFIDNHDMER--------------------------FHASNANRRKLEQA LTATAADYNQVNDQVTFIDNHDMDR---------------------- FKTSAVNNRRLEQA INSTATDYNQVNDQVTFIDNHDMDR------------------------FKTSAVNNRRLEQA IQSTASDYNEINDMVTEIDNHDMDR----------------------- FYN-GGSTRPVEQA
 IASTEEDYDEVIDQVTEIDNHDMSR-------------------------- FSEEQSSNRHTDIA IKSTEKDYDEVIDQVTFIDNHDMSR------------------------FSMVVFN-FQTDIA LRETESVYEKPQDQVTFIDNHDINR------------------------- FSRNGHSTRTTDLG LIKRQTVFTSDDWQVVFMDNHDMARIGTALRSNATTFGPGNNETGGSQSEAFAQKRIDLG : .

LAFTLTSRGVPAIYYGSEQYMS---------GGNDPDNRARIPSESTTTTAYQVIQKLAP LAFTLTSRGVPAIYYGSEQYMS---------GGNDPDNRARIPSFSTTTTAYQVIQKLAP LAFTLTSRGVPAIYYGSEQYMS--------GGNDPDNRARI PSFSTTTTAYQVIQKLAP LAFTLTSRGVPAIYYGSEQYMS--------GGNDPDNRARIPSFSTTTTAYQVIQKLAP LAFTLTSRGVPAIYYGSEQYMS---------GGNDPDNRARLPSFSTTTTAYQVIQKLAP LAFTLI LARVPAIYYGTEQYMS---------GGTDPDNRARI PSFSTSTTAYQVIQKLAP LAFTLTSRGVPAIYYGTEQYMS--------GGTDPDNRARIPSFSTSTTAYQVIQKLAP LAFTLTSRGVPAIYYGTEQYLT---------GNGDPDNRGKMPSFSKSTTAFNVISKLAP LAFTLTSRGVPAIYYGTEQYLT---------GNGDPDNRAKMPSFSKSTTAFNVISKLAP LAFTLTSRGVPAIYYGTEQYMT---------GNGDPYNRAMMTSFNTSTTAYNVIKKLAP LALTLTSRGVPAIYYGTEQYMT---------GDGDPNNRAMMTS FNTGTTAYKVIQALAP LAVLLTSRGVPTIYYGTEQYLT---------GGNDPENRKPMSDFDRTTNSYQIISTLAS LAVLLTSRGVPTIYYGTEQYLT---------GGNDPDNRKPMKTFDRSTNSYKITSKLAS LAFLLTSRGVPTIYYGTE IYMT----------GDGDPDNRKMMNTFDQSTVAYQIIOQISS $\underset{\star}{\text { LVATMTVRGIPAIYYGTEHYAANFTSNSFGQVGSDPYNREKMPGFDTESEAFSIIKTLGD }} \underset{\star}{*} 461$

LRKSNPAIAYGSTQERWINNDVI IYERKFGNNVAVVAINRNMNTPASITGLVTSLPQGSY LRKSNPAIAYGSTQERWINNDVI IYERKFGNNVAVVAINRNMNTPASITGLVTSLPQGSY LRKSNPAIAYGSTQERWINNDVI Y YRKKG LRKSNPAIAYGSTQERWINNDVIIYERKFGNNVAVVAINRNMNTPASITGLVTSLPQGSY LRKSNPAIAYGSTHERWINNDVIIYERKFGNNVAVVAINRNMNTEASITGLVTSLRRASY LRKSNPAIAYGSTQERWINNDVLIYERKFGSNVAVVAVNRNLNAPASISGLVTSLPQGSY LRKCNPAIAYGSTQERWINNDVLIYERKFGSNVAVVAVNRNLNAPASISGLVTSLPQGSY LRKSNPAIAYGSTQQRWINNDVYI YERKFGKSVAVVAVNRNLTTPTSITNLNTSLPSGTY LRKSNPAIAYGSTQQRWINNDVYVYERKFGKSVAVVAVNRNLSTSASITGLSTSLPTGSY LRKSNPAIAYGTTQQRWINNDVYIYERKFGNNVALVAINRNLSTSYNITGLYTALPAGTY LRKSNPAIAYGTTTERWVNNDVLI IERKFGSSAALVAINRNSSAAYPISGLLSSLPAGTY LRQNNPALGYGNTSERWINSDVYIYERSFGDSVVLTAVNSG-DTSYTINNLNTSLPQGQY LRQRNSALGYGNTTERWINSDVYIYERKFGNSIVLTAVNSS-NRNQTISNLNTSLPQGNY LRQENRAIAYGDTTERWINEDVFIYERSFNGEYALIAVNRSLNHSYQISSLVTDMPSQLY $\underset{\star \star}{\operatorname{LRKSSPAIQNGTYTELWVNDDILVFERRSGNDIVIVALNRGEANTINVK--NIAVPNGVY~}} \underset{\star}{*}$ NDUGGILNGNTLTVGAGGAASNFTLAPGGTAVWQYTT-DATAPIIGNVGPMMAKPGVTI NDVLGGI LNGNTLTVGAGGAASNFTLAPGGTAVWQYTT-DATAPI IGNVGPMMAKPGVTI NDVLGGI LNGNTLTVGAGGAASNFTLAPGGTAVWQYTT-DATAPINGNVGPMMAKAGVTI NDVLGGI LNGNTLTVGAGGAASNFTLAPGGTAVWQYTT-DATTPI IGNVGPMMAKPGVTI NDVLGGLLNGNTLTVGSGGAASNFTLAAGGTAVWQYTA-ATATPTIGHVGPMMAKPGVT I NDVLGGLLNGNTLSVGSGGAASNFTLAAGGTAVWQYTA-ATATPTIGHVGPMMAKPGVTI TDVLGGVLNGNNITS-SGGNISSFTLAAGATAVWQYTA-SETTPTIGHVGPVMGKPGNVV TDVLGGVLNGNNITS-TNGSINNFTLAAGATAVWQYTT-AETTPT IGHVGPVMGKPGNVV TDVLGGLLNGNSISVASDGSVTPFTLSAGEVAVWQYVS-SSNSPLIGHVGPTMTKAGQTI SDVLNGLLNGNSITVGSGGAVTNFTLAAGGTAVWQYTA-PETSPAIGNVGPTMGQPGNIV TDELQQLLDGNEITVNSNGAVDSFQLSANGVSVWQITE-EHASPLIGHVGPMMGKHGNTV TDELQQLLDGNT ITVNANGSANSPQLQANSVAVWQVTK-ESTSPLIGHVGPMIGKTGNTV EDELSGLLDGQSITVDQNGSIQPFLLAPGEVSVWQYSNGQNVAPEIGQIGPPIGKPGDEV PSLIG------NNSVSVANKRTTLTLMQNEAVVIRSQSDDAENPTVQSIN

TIDGRGFGSGKGTVYFGTTAVTGADIVAWEDTQIQVKIPAVPGGIYDIRVANAAGAASNI TIDGRGFGSGKGTVYFGTTAVTGADIVAWEDTOIQVKIPAVPGGI YDIRVANAAGAASNI TIDGRGFGSGKGTVYFGTTAVTGADIVAWEDTQIQVKIPAVPGGIYDIRVANAAGAASNI TIDGR-ASARQGTVYFGTTAVTGADIVAWEDTQIQVKILRVPGGI YDIRVANAAGAASNI TIDGRGFGSGKGTVYFGTTAVTGADIVAWEDTQIQVKIPAVPGGIYDIRVANAAGAASNI TIDGRGFGSSKGTVYFGTTAVSGANITSWEDTQIKVKI PAVAGGIYNIKVANAAGTASNV TIDGRGFGSSKGTVYFGTTAVSGADITSWEDTQIKVKI PAVAGGNYNIKVANAAGTASNV TIDGRGFGSAKGTVYFGTTAVTGSAITSWEDTQIKVTIPPVAGGDYAVKVA-ANGVNSNA TIDGRGFGSTKGTVYFGTTAVTGAAITSWEDTQIKVTIPSVAAGNYAVKVA-ASGVNSNA TIDGRGFGTTSGQVLFGSTAGT---IVSWDDTEVKVKVPSVTPGKYNISLKTSSGATSNT TIDGRGFGGTAGTVYFGTTAVTGSGIVSWEDTQIKAVIPKVAAGKTGVSVKTSSGTASNT TITGEGFGDNEGSVLFDS---DFSDVLSWSDTKIEVSVPDVTAGHYDISVVNAGDSQSPT TVSGEGFGDKKGSVLFGS---TSAEIVSWSNTEIQVKVPNVTAGHYNLSVVNATNTKSPA RIDGSGFGSSTGDVSFAG---STMNVLSWNDDTIIAELPEHNGGKNSVTVTTNSGESSNG

YDNFEVLTGDOVTVRFVINNATTALGONVFLTGNVSELGNWDP-NNAIGPMYNOVVYOYP 66 YDNFEVLTGDQVTVRFVINNATTALGQNVFLTGNVSELGNWDP-NNAIGPMYNQVVYQYP 661 YDNFEVLTGDQVTVRFVINNATTALGQNVFLTGNVSELGNWDP-NNAIGPMYNQVVYQYP YDNFEVLTGDQVTVRFVINNATTALGQNVFLTGNVSELGNWDP-NNAIGPMYNQVVYQYP YDNFEVLTGDQVTVRFVINNATTALGQNVFLTGNVSELGNWDP-NNAIGPMYNQVVYQYP YDNFEVLSGDQVSVRFVVNNATTALGQNLYLTGNVSELGNWDP-AKAIGPMYNQVVYQYP YDNFEVLSGDQVSVRFVVNNATTALGQNVYLTGSVSELGNWDP-AKAIGPMYNQVVYQYP YNDFTILSGDQVSVRFVINNATTALGENIYLTGNVSELGNWTTGAASIGPAFNOVIHAYP YNNFTILTGDQVTVRFVVNNASTTLGQNLYLTGNVAELGNWSTGSTAIGPAFNQVIHQYP YNNINILTGNQICVRFVVNNASTVYGENVYLTGNVAELGNWDT-SKAIGPMFNQVVYQYP FKS FNVLTGDQVTVRFLVNQANTNYGTNVYLVGNAAELGSWDP-NKAIGPMYNQVIAKYP YDKFEVLTGDQVSIRFAVNNATTSLGTNLYMVGNVNELGNWDP-DQAIGPMFNQVMYQYP YEKFEVLSGNQVSVRFAVNNATTNSGTNVYIVGNVSELGNWDP-NKAIGPMFNQVMYKYP

TWYYDVSVPAGQTIEFKFLKKQ----GSTVTWEGGANRTFTTPTSG--TATDECELASLN
TWYYDVSVPAGQTIEFKELKKQ----GSTVTWEGGCESHLSPPQPAGYWLTDECELASLN
TWYYDVSVPAGQTIEFKFLKKQ----GSTVTWEGGANRTFTTPTSG--..-----TATMN TWYYDVSVPAGQTIEFKFLKKQ----GSTVTWEGGANRTFTTPTSG---.-.-.--TATVN TWYYDVSVPAGQTIEFKFLKKQ----GSTVTWEGGANRTETTPTSG----------TATVN NWYYDVSVPAGKTIEFKFLKKQ----GSTVTWEGGSNHTFTAPSSG---------TATIN NWYYDVSVPAGKT IEFKFLKKQ----GSTVTWEGGSNHTFTAPSSG----------TATIN TWYYDVSVPAGKQLEFKFFKKN----GATITWEGGSNHTFTTPTSG---------TATVT TWYYDVSVPAGKQLEFKFFKKN----GSTITWESGSNHTETTPASG---------TATVT TWYYDVSVPAGTTIQFKFIKKN----GNTITWEGGSNHTYTVPSSS----------TGTVI SWYYDVSVPAGTKLDFKFIKKG----GGTVTWEGGGNHTYTTPASG---------VGTVT TWYYDISVPAEENLEYKFIKKDS---SGNVVWESGNNHTYTTPATG---------TDTVL TWYYDISVPAGKNLEYKYIKKDH---NGNVTWQSGNNRTYTSPATG---------TDTVI TWYYDVSVPANQDIEYKYIMKDQ---NGNVSWESGNNHIYRTPENS---------TGIVE
54

Figure 10 (cont'd)

Figure 11 Phylogenetic tree of the sequence alignment of various published CGTase sequences. The tree was built by the neighbor joining method, implemented in the CLUSTALW program (79). The accession number and abbreviation of each CGTase were listed in Table 4

Table 4 List of CGTases used in the sequence alignment and phylogenic tree construction.

Abbreviation	Accession number	Source	Main Product	Reference
KLEPN	P08704	K. pneumoniae strain M5al	α	(39)
BMACE	P04380	B. macerans strain NRRL B388	α	(80)
BLICH	P14014	B. licheniformis	α / β	(81)
B1011	P05618	Alkalophilic B. sp. strain 1011	β	(37)
BCIR8	AA4840	B. circulans strain 8	β	(82)
B1018	P17692	Bacillus sp. strain B1018	β	(83)
B382	P09121	Alkalophilic B. sp. strain 38.2	β	(38)
BC251	P43379	B. circulans strain 251	β	(84)
BOHB	BAA14289	B. ohbensis (strain C-1400)	β (no α)	(85)
THETU	P26827	T. thermosulfurigenes EM1	β / α	(86)
BREV	AAB65420	Brevibacillus brevis strain CD162	γ / β	(87)
BF290	A18991	B. firmus/lentus strain 290-3	γ / β	(88)
Al1	AAG31622	Paenibacillus sp.A11	β	(69)

3.3 Expression of CGTases in the original cell isolates and recombinant cells

In preliminary experiments, the wild types and the transformants were checked for the optimum conditions for culturing such as type of medium and incubation time. Two kinds of medium, Horikoshi pH 10.0 and LB medium pH 7.0 were chosen. The results showed that the wild types preferred the Horikoshi medium but the transformants could not grow at alkaline pH of Horikoshi medium.

The cells from RB01, pRB, T16 and pT were taken from the stocks and prepared for cultivation by inocutation in an appropriate medium and follwed steps of preparation as described in sections 2.5, 2.6.1 and 2.10. The cultivated media from each strain was collected for the determination of the absorbance at 660 nm and enzyme assayed at time interval of $6,12,18,24,36,48$ and 72 hours. For the enzyme assay, cells were removed from the media by centrifugation $(3,000 \mathrm{~g})$ at $4^{\circ} \mathrm{C}$ for 30 minutes, and the supernatant fraction containing CGTase was collected and dextrinizing activity was assayed determined as described in the section 2.9.1. .

Figure $12(\mathrm{a}, \mathrm{b}$ and c$)$ showed that rapid growth was observed in both of the original cells and the transformant from 12 hour of incubation. However, the transformant showed the highest dextrinizing activity around 18-24 hours incubation, while the wild type needed the longer incubation time of 60-72 hours to reach the highest dextrinizing activity. The specific activity of the transformant pT was about 3 times higher than that of the wild type.

Therefore, RB01 and T16 were cultivated in Horikoshi medium containing 1.0% soluble starch, at $\mathrm{pH} 10.0,40^{\circ} \mathrm{C}, 250 \mathrm{rpm}$ for 72 hours which was optimum condition determined by Tesana, 2001 and Pranomitra, 2001. While, the transformants, pRB and pT were cultivated in LB medium containing 1.0% soluble starch, at pH 7.0 , $37^{\circ} \mathrm{C}, 250 \mathrm{rpm}$ for 24 hours.

Figure 12 Growth and CGTase activity profiles of RB01, pRB, T16 and pT.
(a) Growth profile (b) total dextrinizing activity (c) specific activity.

RB01 and T16 were cultivated in Horikoshi medium containing 1.0% soluble starch, at $\mathrm{pH} 10.0,40^{\circ} \mathrm{C}, 250 \mathrm{rpm}$ for 72 hours. While, pRB and pT were cultivated in LB medium containing 1.0% soluble starch and $100 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin, at $\mathrm{pH} 7.0,37^{\circ} \mathrm{C}, 250$ rpm for 24 hours.

3.4 Purification of CGTases

Purification of CGTases were carried out for enzyme from both the isolates and recombinant cells of RB01 and T16.

3.4.1 Purification of CGTase from RB01 and pRB

The wild type, RB01 was cultivated in $1,000 \mathrm{ml}$ of Horikoshi and 1% soluble potato starch at $40^{\circ} \mathrm{C}$ with 250 rpm shaking for 72 hours. The recombinant, pRB , was cultivated in $1,200 \mathrm{ml}$ of LB broth containing $100 \mathrm{mg} / \mathrm{ml}$ of ampicillin and 1% soluble potato starch at $37^{\circ} \mathrm{C}$ with 250 rpm shaking for 24 hours. After cultivation, bacterial cell mass was removed by centrifugation at $4,500 \mathrm{rpm}$ for 15 minutes at $4^{\circ} \mathrm{C}$. Culture broth with crude enzyme was collected and kept at $4^{\circ} \mathrm{C}$ for activity assay and determination of protein content before the next step of purification. Crude enzyme was purified by starch adsorption as described in method section 2.11.1, followed by DEAE-cellulose chromatography column as described in method section 2.11.2.

The crude enzyme contained the total protein of 388.9 mg with 59,500 units of CGTase in the total volume of $1,000 \mathrm{ml}$ for RB01 and 293.9 mg with 210,200 units of CGTase in the total volume of $1,150 \mathrm{ml}$ for pRB , respectively. Thus, the specific activity of RB01 and pRB were 153 and 715 units/mg, respectively. The crude enzyme solution was further purified by starch adsorption. In this step, the purification fold and recovery of CGTase obtained were 29 folds and 72% yield for RB01, 3 folds and 22% yield for pRB. The specific activities of the enzymes from this step were 4,435 units $/ \mathrm{mg}$ for RB01 and 2,283 units/mg for pRB .

For RB01 and pRB the enzymes from the starch adsorption step were concentrated with the ultrafiltration (Viva-Flow 50) and dialyzed against 10 mM TrisHCl buffer, pH 8.5 (TB2). Each enzyme solution was applied onto DEAE-cellulose column as described in the section 2.11.2. The chromatographic profile of RB01 and
pRB were shown in Figures 13 (a) and (b). The unbound proteins were eluted from the column with TB2 buffer. The bound proteins were eluted with linear salt gradient of 0 to 0.3 M sodium chloride in TB2 buffer. Both enzymes were eluted at approximately 0.1 M NaCl as indicated in the profile. The fractions with CGTase activity were pooled, concentrated by aquasorb to reduce enzyme volumes and dialyzed against TB2 buffer. The proteins remained in this step were 5.59 mg with 30,770 units of enzyme and specific activity of 5,504 units $/ \mathrm{mg}$ protein for RB 01 and 0.8 mg with 14,688 units of enzyme and specific activity of 18,360 units/mg protein for pRB (Table 5).

Figure 13 DEAE-cellulose column profiles of CGTases from RB0land pRB. The column size was $1.5 \times 28 \mathrm{~cm}$. The enzyme solution was applied to the DEAE-cellulose column and washed with 10 mM TB2 buffer, pH 8.5, until the A_{280} decreased to the baseline. Elution of bound proteins was performed by $0-0.3 \mathrm{M} \mathrm{NaCl}$ in the same buffer at the flow rate of $45 \mathrm{ml} / \mathrm{h}$. Fractions of 4 ml were collected. The arrow indicates where the gradient started. The fractions of high protein peak and high CGTase activity were pooled.
(a) RB01
(b) pRB

Table 5 Purification of CGTase from Paenibacillus sp. strain RB01 and the transformant, pRB.

Step	Volume (ml)		Total activity* (Units)		Total protein (mg)		Specific activity (U / mg)		Purification Fold		Yield(\%)	
	RB01	pRB										
Crude	1000	1150	59500	210200	388.9	293.9	153	715	1	1	100	100
Starch adsorption	85	250	42840	47250	9.66	20.7	4435	2283	29	3	72	22
DEAEcellulose	362	48	30770	14688	5.59	0.8	5504	18360	36	26	52	7

* Dextrinizing activity

จุพาลงกรณ์มหาวิทยาลัย

> Chulatovekonn Unvensity

3.4.2 Purification of CGTase from T16 and pT

The wild type T16 was cultivated in $1,600 \mathrm{ml}$ of Horikoshi and 1% soluble potato starch at $40^{\circ} \mathrm{C}$, shaking 250 rpm for 72 hours. The recombinant, pT was cultivated in $1,200 \mathrm{ml}$ of LB broth containing $100 \mathrm{mg} / \mathrm{ml}$ of ampicillin and 1% soluble potato starch at $37^{\circ} \mathrm{C}$ for 24 hours. After cultivation, bacterial cell mass was removed by centrifugation at $4,500 \mathrm{rpm}$ for 15 minutes at $4^{\circ} \mathrm{C}$. Culture broth with crude enzyme was collected and kept at $4^{\circ} \mathrm{C}$ for activity assay and determination of protein content before the next step of purification. Crude enzyme was purified by starch adsorption as described in method section 2.11.1, followed by phenyl sepharose chromatography column as described in method section 2.11.3.

The crude enzyme contained a total protein of 465.6 mg with 44,750 units of CGTase in the total volume of $1,600 \mathrm{ml}$ for T 16 and 188.71 mg with 181,900 units of CGTase in the total volume of $1,130 \mathrm{ml}$ for pT , respectively. Thus, the specific activities of T16 and transformant, pT were 96 and 964 units $/ \mathrm{mg}$, respectively.

The crude enzyme solution was further purified by starch adsorption. The purification fold and recovery of CGTase obtained were 32 folds and 61% yield for T16 and 33 folds and 19% yield for pT , respectively. The specific activities of the enzymes from this step were 3,105 units $/ \mathrm{mg}$ and $31,818 \mathrm{units} / \mathrm{mg}$ for pT .

The enzyme solutions from starch adsorption of T 16 and pT were applied onto a phenyl sepharose column as described in the section 2.11.3. The chromatographic profiles were shown in Figure 14 (a) and (b). The unbound proteins were eluted from the column with the TB2 buffer containing 1 M ammonium sulfate. The bound proteins were eluted with decreasing concentration of ammonium sulfate linear gradient from 1 M to 0 M in buffer TB2. The enzyme was eluted at 0.05 M ammonium sulfate as indicated in the profiles. The fraction with CGTase activity were pooled, concentrated by aquasorb
to reduce enzyme volumes and dialyzed against buffer TB2. The proteins remained from this step were 0.98 mg with 9,486 units of enzyme and specific activity of 9,680 units $/ \mathrm{mg}$ protein for T16 and 0.9 mg with 80,700 units of enzyme and specific activity of 89,667 units/mg protein for pT , respectively (Table 6).

The dextrinizing activity and specific activity of CGTase from wild-types, RB01 and T16 and their transformants, pRB and pT , respectively were compared in Table 7. The transformants produced about 3 times higher CGTase in pRB and 10 times higher enzyme in pT comparing with their repective wild type.

(a)

(b)

Figure 14 Phenyl sepharose column profiles of CGTases from T16 and pT. Column size was $1.3 \times 10 \mathrm{~cm}$, elution was by $1-0 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ in TB2 buffer (10 mM Tris buffer, pH 8.5). Fractions of 2 ml were collected. The enzyme solution was applied to phenyl-Sepharose CL-4B column and washed with TB2 buffer containing 1 M ammonium sulfate until A_{280} decreased to baseline. Elution of bound proteins was then performed by a decreasing linear gradient of ammonium sulfate from 1 to 0 M at the flow rate of 20 $\mathrm{ml} /$ hour. The arrow indicates where gradient started. The fractions of high protein peak and high CGTase activity were pooled.
(a) T 16
(b) pT

Table 6 Purification of CGTase from Paenibacillus sp. strain T16 and the transformant, pT.

Step	Volume (ml)		Total activity* (Units)		Total protein (mg)		Specific activity (U/mg)		Purification Fold		Yield $(\%)$	
	T 16	pT										
Crude	1600	1130	44750	181900	465.6	188.71	96	964	1	1	100	100
Starch adsorption	400	250	27320	35000	8.8	1.1	3105	31818	32	33	61	19
Phenyl Sepharose	21	23	9486	80700	0.98	0.9	9680	89667	101	93	21	44

* Dextrinizing activity

Chulaloygiorin University

Table 7 Comparison the dextrinizing activity and specific activity between wild-type and transformant CGTase

Fraction	Dextrinizing activity (U/ml)				Specific activity (U/mg)			
	RB 01	pRB	T 16	pT	RB 01	pRB	T 16	pT
Crude	60	183	28	161	153	715	96	964
Starch Adsorption	504	189	68	140	4435	2283	3105	31818
Purified column*	85	306	452	3509	5504	18360	9680	89667

* DEAE-cellulose column for purification of RB01 and pRB,
* Phenyl sepharose column for purification of T16 and pT

3.5 Characterization of purified CGTases

3.5.1 Determination of enzyme purity and protein pattern on non-denaturing and SDS-PAGE

The purified enzyme from each source was analyzed for purity and protein pattern by non-denaturing polyacrylamide gel electrophoresis. The activity stain was performed in comparison with protein stain. The result in Figure 15 showed many protein bands in the crude enzyme from pRB but only 2-3 band with one major band in the purified form. Iodine stain showed a positive clear band in all samples. SDS-PAGE of purified CGTase from RB01 and pRB showed only a single band in SDS-PAGE as presented in Figure 16. From the mobility on SDS-PAGE, the molecular weight of CGTase from pRB was estimated to be 65 kDa (Figure 19 (a)).

Similar pattern of native and SDS-PAGE analysis were obtained with pT (Figures 17,18), the molecular weight of pT on SDS-PAGE was estimated to be 77 kDa (Figure 19 (b)).

Coomassie blue staining Dextrinizing activity staining

Figure 15 Non-denaturing PAGE analysis of pRB-CGTase from different purification steps.

Lane 1 Crude, lane 2 Starch adsorbed, lane 3 DEAE cellulose column

Figure 16 SDS-PAGE analysis of pRB-CGTase from different purification steps.
Lane 1 Crude, Lane 2 Starch adsorbed, Lane 3 DEAE cellulose column,
Lane 4 Starch adsorbed from Wild type, Lane 5 BSA, M = Low
Molecular weight markers

Figure 17. Non-denaturing PAGE analysis of pT-CGTase from different purification steps. (lane 1-3) Lane 1 Crude, Lane 2 Starch adsorbed, Lane 3 DEAE cellulose column

Figure 18 SDS-PAGE analysis of pT-CGTase from different purification steps.
(lane 2-4) Lane 1 Crude from wild type, Lane 2 Crude from pT, Lane 3 Starch adsorbed. Lane 4 Phenyl Sepharose column

Figure 19 Molecular weight calibration curve of standard proteins by SDS-PAGE

Myosin	205	kDa
β-galactosidase	116	kDa
Phosphorylase B	97	kDa
Bovine serum albumin	66	kDa
Ovalbumin	45	kDa

Arrow indicated the molecular weight of CGTase from this study were in range of 65 kDa from RB01 (a) and 77 kDa from T 16 (b)

3.5.2 Determination of pI

Purified CGTases were analyzed for their isoelectric points by separation on IEF gel electrophoresis, comparing to standard pI markers. Ampholine pH range 3-10 was used and relative mobility against pI was plotted. Sample from pRB and pT showed one major band at pI 5.85. pRB also showed 2 faint bands at pI 5.74, 5.34. Sample from wild type RB01 showed very faint bands at $5.74,5.64,5.34$ and T 16 at $5.74,5.54,5.34$.

3.5.3 Optimum conditions for enzyme activity

3.5.3.1 Effect of pH on CGTase activity

The effect of pHs on the enzyme activity was studied at various pH 's as mentioned in section $2 \cdot 12.3 .1$, taking the pH with highest enzyme activity as 100%. The results showed that the wild type and the transformant of both RB01 and T16 had the same pattern of pH -activity profiles of dextrinizing activity (Figures 22, 23) and cyclization activity (Figures 24,25). The optimum pH for dextrinizing activity and cyclization was 5.5-9.5 and 6.5-7.0, respectively. The enzyme lost activities at extreme acidic and alkaline pH 's.

3.5.3.2 Effect of temperature on the enzyme activity

The effect of temperature on the purified enzymes were investigated by incubating the reaction mixtures at various temperatures as mentioned in section 2.12.3.2 and determined for both dextrinizing and cyclization activities. The optimum temperature for dextrinizing activity of CGTase from RB01 and T16 were $70^{\circ} \mathrm{C}$, and $60^{\circ} \mathrm{C}$, respectively. However, pRB and pT showed broader optimum temperatures. At $50-70^{\circ} \mathrm{C}$, pRB still exhibited dextrinizing activity at higher than 90% while pT retained activity at greater than 90% in the temperature range of $40-75^{\circ} \mathrm{C}$ (Figures 26,27). The optimum temperatures for cyclization activity of all strains were quite similar in the range of 50 $70^{\circ} \mathrm{C}$, although the transformants showed slightly higher activities.

Figure 20 Isoelectric focusing gel with ampholyte solution (pH 3.0-10.0) of purified CGTase
(a) Lane 1: Purified CGTase from RB01

Lane 2 : Purified CGTase from pRB
(b) Lane $1:$ Purified CGTase from T16

Lane 2 : Purified CGTase from pT
Lane M Standard pI markers; Amyloglucosidase (3.50), Soybean trypsin inhibitor (4.55), β-lactoglobulin (5.20), bovine carbonic anhydrase B (5.85), human carbonic anhydrase B (6.55), myogloblin-acidic band (6.85), myoglobin-basic band (7.35), lentil lectin-acidic band (8.15), lentil lectin-middle band (8.45), lentil lectin-basic band (8.65), trypsinogen (9.30).

Figure 21 Standard curve of pI determination
$\boldsymbol{\Delta}=$ Standard proteins $\quad \bullet=\operatorname{CGTase}(\mathrm{pRB}, \mathrm{pT}(\mathrm{a}), \mathrm{RB} 01$ (b), T16 (c))

Figure 22 Effect of pH on dextrinizing activity of CGTase from RB01 and pRB at $40^{\circ} \mathrm{C}$

Figure 23 Effect of pH on dextrinizing activity of CGTase from T16 and pT at $40^{\circ} \mathrm{C}$

Figure 24 Effect of pH on cyclization activity of CGTase from RB and pRB at $60^{\circ} \mathrm{C}$

Figure 25 Effect of pH on cyclization activity of CGTase from T16 and pT at $60^{\circ} \mathrm{C}$

Figure 26 Effect of temperature on dextrinizing activity of CGTase from RB01 and pRB at pH 6.0

Figure 27 Effect of temperature on dextrinizing activity of CGTase from T16 and pT at pH 6.0

Figure 28 Effect of temperature on cyclization activity of CGTase from RB01 and pRB at $60^{\circ} \mathrm{C}$

Figure 29 Effect of temperature on cyclization activity of CGTase from T 16 and pT at $60^{\circ} \mathrm{C}$

3.5.4 Stability of purified CGTase

3.5.4.1 pH stability

The effect of pH on enzyme stability was investigated on the cyclization activity by incubating 20 units of enzyme for one hour at $55^{\circ} \mathrm{C}$ for all four enzymes which were their optimum temperatures in buffers of varying pH prior to determination of cyclization activity under standard assay conditions as described in section 2.9.2. As shown in Figures 30-33, the cyclization activity of all strains remained stable between pH 6 and 9 at $60^{\circ} \mathrm{C}$. At pH 5 , the cyclization activity of all strains except pT rapidly lost activity after preincubation for 20 minutes. The cyclization activity of CGTase from pT at pH 5 slowly declined and retained 60% activity after preincubation at $55^{\circ} \mathrm{C}$ for one hour. The cyclization activities of all strains retained up to 60% relative activity after preincubation at pH 6 to 10 , at $55^{\circ} \mathrm{C}$ for 40 minutes. However, CGTase from T 16 preincubated at pH 6.0 to 10 , completely lost the cyclization activity after 40 minutes, excepted for pH 7. The cyclization activity of CGTase from pT was quite stable at all pH 's up to 40 minutes after which its activity slowly declined and retained around 50% after preincubation for one hour.

3.5.4.2 Temperature stability

Each purified CGTase (20 units of enzyme) was preincubated at the designated temperature at pH 7.0 up to one hour. Samples were taken at 5 minutes intervals and assayed for cyclization activity as described in section 2.9.2. For RB01, the temperature stability pattern of the wild type and recombinant were similar. CGTases from RB01 and pRB retained 80% or more of their activities at $40-60^{\circ} \mathrm{C}$ up to one hour. At $65^{\circ} \mathrm{C}$, they were relatively stable up to 30 minutes (Figures 34,35). At $70^{\circ} \mathrm{C}$, their activity declined rapidly from the start of incubation to a minimum around 20 minutes. The presence of
2% starch at $70^{\circ} \mathrm{C}$ stabilized the enzymes which retained activity at 40% for RB and 60% for pRB after 60 minutes.

Cyclization activity of pT (Figure 36) seemed to be more stable, retaining its activity up to 80% after 60 minutes while activity of T16 (Figure 37) dropped to 20% at $65^{\circ} \mathrm{C}$. At $70^{\circ} \mathrm{C}$, cyclization activity in pT slowly declined to lower than 20% at 25 minutes while T16 lost most of its activity at 10 minutes (Figures 36, 37). Both enzymes could be stabilized at $70^{\circ} \mathrm{C}$ in the presence of 2% starch, retaining up to 50% after 60 minutes.

Figure 30 pH stability of cyclization activity of CGTase from RB01.

Figure 31 pH stability of cyclization activity of CGTase from $\mu R B$.

The purified CGTase was preincubated in various pH 's at $55^{\circ} \mathrm{C}$ for one hour prior to the cyclization assay.

Figure 32 pH stability of cyclization activity of CGTase from T16.

Figure 33 pH stability of cyclization activity of CGTase from pT.

The purified CGTase was preincubated in various pH 's at $55^{\circ} \mathrm{C}$ for one hour prior to the cyclization assay.

Figure 34 Thermostability of cyclization activity of CGTase from RB at pH 7.0

Figure 35 Thermostability of cyclization activity of CGTase from pRB at pH 7.0
The purified CGTase was preincubated in various temperature from 40 to $70^{\circ} \mathrm{C}$ for one hour prior to the cyclization assay with 200 units of enzyme at $60^{\circ} \mathrm{C}$ for 30 minutes.

Figure 36 Thermostability of cyclization activity of CGTase from T16 at pH 7.0

Figure 37 Thermostability of cyclization activity of CGTase from pT at pH 7.0

The purified CGTase was preincubated in various temperature from 40 to $70^{\circ} \mathrm{C}$ for one hour prior to the cyclization assay with 200 units of enzyme at $60^{\circ} \mathrm{C}$ for 30 minutes.

3.5.5 Substrate specificity of CGTase

Different types of substrate were incubated with CGTase for 30 min at $60^{\circ} \mathrm{C}$, and the cyclization activity was measured. Enzymes from RB01, pRB, T16 and pT showed similar substrate specificity (Figure 38). Maximum activity was observed with $6 \% \mathrm{w} / \mathrm{v}$ of soluble starch and 1.5% amylopectin was a better substrate than 6% amylose. Pullulans, glucose and maltose (all at 6\%) were the poorest substrates. Only $1.5 \% \mathrm{w} / \mathrm{v}$ concentration of amylopectin was used in this experiment because of its low solubility but it attended 80% relative activity compared to 6% soluble starch. Among the oligosaccharides used (G2-G7), G6 was the best substrate followed by G5 and G7, and G4. Dextrin was as compatible as amylopectin as substrate for CGTase.

Figure 38 Substrate specificity of purified CGTases.
(a) RB01 and pRB
(b) T 16 and pT

Cyclization activity was measured with 200 units of enzyme. Substrates were used at $6.0 \% \mathrm{~W} / \mathrm{V}$ (except for amylopectin of which 1.5%) in acetate buffer, pH 6.0 incubated at $60^{\circ} \mathrm{C}$ for 30 minutes.

Study of some kinetics parameters

Kinetics parameters of the coupling reaction catalyzed by the four CGTase were determined and compared. Based on previous study on the coupling reactions, cellobiose was the only one among the natural occurring sugars tested that acted as a good sugar acceptors. Cellobiose was, therefore, employed as the glycosyl acceptor for the study on kinetic parameters of the coupling reactions with several cyclodextrins as oligosaccharide donors. Experiments were performed in the excess amount of cellobiose $(10 \mathrm{mM})$ and varying concentrations of several CDs ($\alpha-, \beta-, \gamma-\mathrm{CD}$, glucosyl- $\alpha-\mathrm{CD}$ (G- $\alpha-\mathrm{CD}$), glucosyl- $\beta-C D$ (G- $\beta-C D$), and hydroxypropyl- $\beta-C D$ (HP- $\beta-C D$). The reaction was performed and monitored as described in section 2.15 . The results were subjected to Lineweaver-Burk plot and $K_{\mathrm{m}}, \mathrm{V}_{\text {max }}, K_{\text {cat }}$ were determined.

The Lineweaver-Burk Plot and kinetic parameters of coupling reaction of CGTases from RB01 and pRB were shown in Figure 39 and Table 8. The K_{m} values for the wild type enzyme were in the order HP- $\beta-\mathrm{CD}>\alpha-\mathrm{CD}>\mathrm{G}-\alpha-\mathrm{CD}>\gamma-\mathrm{CD}>\mathrm{G}-\beta-\mathrm{CD}$ $>\beta-\mathrm{CD}$. The $k_{\mathrm{cat}} / K_{\mathrm{m}}$ rate were in the order HP- $\beta-\mathrm{CD}>\mathrm{G}-\beta-\mathrm{CD}>\beta-\mathrm{CD}>\mathrm{G}-\alpha-\mathrm{CD}>\gamma-$ $\mathrm{CD} \cong \alpha-\mathrm{CD}$. The transformant enzyme showed improved K_{m} for most of the CDs tested except γ-CD which did not change much and much higher K_{m} for $\alpha-\mathrm{CD} . K_{\mathrm{m}}$ values for CDs of the transformant, pRB were in the order $\alpha-\mathrm{CD}>\gamma-\mathrm{CD}>\beta-\mathrm{CD}>\mathrm{G}-\alpha-\mathrm{CD}>\mathrm{HP}-\beta-$ $\mathrm{CD}>\mathrm{G}-\beta-\mathrm{CD}$ with $k_{\text {cat }} K_{\mathrm{m}}$ values in the order of $\mathrm{HP}-\beta-\mathrm{CD}>\mathrm{G}-\beta-\mathrm{CD}>\beta-\mathrm{CD}>\mathrm{G}-\alpha-$ $\mathrm{CD}>\gamma-\mathrm{CD}>\alpha-\mathrm{CD}$.

Figure 39 Lineweaver-Burk plot of coupling reaction of CGTases.
RB01 () and pRB (O). Cellobiose and various cyclodextrins were used as substrates. CDs (donor) concentrations were varied ($0.5-15 \mathrm{mM}$) for incubation with 10 mM cellobiose (acceptor) for 5 minutes at $55^{\circ} \mathrm{C}$.

Table 8 Kinetic parameters of coupling reaction of CGTase from RB01 and pRB.
Cellobiose and various cyclodextrins were used as substrate.

Substrate	$\begin{gathered} K_{\mathrm{m}} \\ (\mathrm{mM}) \end{gathered}$		$\begin{gathered} V_{\max } \\ \left(\mathrm{mM} \min ^{-1} \mathrm{mg}^{-1}\right) \end{gathered}$		$\begin{gathered} k_{\mathrm{cat}} \\ \left(\sec ^{-1}\right) \end{gathered}$		$\begin{gathered} k_{\mathrm{cat}} / K_{\mathrm{m}} \\ \left(\mathrm{mM}^{-1} \sec ^{-1}\right) \end{gathered}$	
	RB01	pRB	RB01	pRB	RB01	pRB	RB01	pRB
α-Cyclodextrin	$\begin{gathered} 3.777 \pm \\ 0.196 \end{gathered}$	$\begin{gathered} 10.443 \pm \\ 2.457 \end{gathered}$	0.300	0.509	0.022	0.037	0.006	0.004
β-Cyclodextrin	$\begin{gathered} 1.620 \pm \\ 0.134 \end{gathered}$	$\begin{gathered} 0.887 \pm \\ 0.135 \end{gathered}$	0.322	0.156	0.024	0.012	0.015	0.013
γ-Cyclodextrin	$\begin{gathered} 2.574 \pm \\ 0.660 \end{gathered}$	$\begin{gathered} 2.527 \pm \\ 0.160 \end{gathered}$	0.608	0.142	0.004	0.011	0.002	0.004
Glucosyl- α Cyclodextrin	$\begin{gathered} 3.423 \pm \\ 0.401 \end{gathered}$	$\begin{gathered} 0.876 \pm \\ 0.220 \end{gathered}$	0.624	0.131	0.046	0.009	0.013	0.011
Glucosyl- β - Cyclodextrin	$\begin{gathered} 2.385 \pm \\ 0.231 \end{gathered}$	$\begin{gathered} 0.634 \pm \\ 0.050 \end{gathered}$	0.265	0.206	0.002	0.015	0.001	0.024
Hydroxypropyl- β Cyclodextrin	$\begin{gathered} 4.445 \pm \\ 0.298 \end{gathered}$	$\begin{gathered} 0.718 \pm \\ 0.044 \end{gathered}$	0.462	0.383	0.034	0.028	0.008	0.039

* $\boldsymbol{k}_{\text {cat }}$ were calculated from the formula, $V_{\text {max }}$ Divided by the Total Enzyme Concentration.

Figure 40 and Table 9 showed the results for enzymes from T16 and pT16. T16 showed highest affinity (lower K_{m}) for HP- $\beta-\mathrm{CD}$ followed by G- $\alpha-\mathrm{CD}, \gamma-\mathrm{CD}, \beta-\mathrm{CD}$, G-$\beta-C D$ and $\alpha-C D$ respectively. CGTase from $\mathrm{pT1} 6$ also showed highest affinity for HP-$\beta-C D$ while the order of affinity slightly changed. The enzyme from pT seemed to have improved affinity for $\beta-\mathrm{CD}$ and its glucosyl derivative. The $k_{\text {cat }} K_{\mathrm{m}}$ ratios of pT enzyme also seemed to be much improved for $\beta-C D$ and also for $H P-\beta-C D$.

Figure 40 Lineweaver-Burk plot of coupling reaction of CGTases.
T16 (■) and pT (ロ). Cellobiose and various cyclodextrins were used as substrates. CDs (donor) concentrations were varied ($0.5-15 \mathrm{mM}$) for incubation with 10 mM cellobiose (acceptor) for 5 minutes at $55^{\circ} \mathrm{C}$.

Table 9 Kinetic parameters of coupling reaction of CGTase from T16 and pT.
Cellobiose and various cyclodextrins were used as substrate.

Substrate	$\begin{gathered} K_{\mathrm{m}} \\ (\mathrm{mM}) \end{gathered}$		$\begin{gathered} V_{\max } \\ \left(\mathrm{mM} \min ^{-1} \mathrm{mg}^{-1}\right) \end{gathered}$		$\begin{gathered} k_{\text {cat }} \\ \left(\mathrm{sec}^{-1}\right) \end{gathered}$		$\begin{gathered} k_{\mathrm{cat}} / K_{\mathrm{m}} \\ \left(\mathrm{mM}^{-1} \sec ^{-1}\right) \end{gathered}$	
	T16	pT	T16	pT	T16	pT	T16	pT
α-Cyclodextrin	$\begin{aligned} & 6.048 \pm \\ & 0.908 \end{aligned}$	$\begin{aligned} & 6.299 \pm \\ & 1.956 \end{aligned}$	0.325	0.577	0.003	0.044	0.001	0.007
β-Cyclodextrin	$\begin{aligned} & 5.266 \pm \\ & 0.975 \end{aligned}$	$\begin{aligned} & 1.099 \pm \\ & 0.506 \end{aligned}$	0.254	0.256	0.002	0.020	0.001	0.018
γ-Cyclodextrin	$\begin{aligned} & 2.082 \pm \\ & 0.298 \end{aligned}$	$\begin{aligned} & 2.261 \pm \\ & 0.395 \end{aligned}$	0.623	0.205	0.093	0.016	0.044	0.007
Glucosyl- α Cyclodextrin	$\begin{aligned} & 1.595 \pm \\ & 0.236 \end{aligned}$	$\begin{array}{\|l} 2.615 \pm \\ 0.982 \end{array}$	0.142	0.248	0.021	0.019	0.013	0.007
Glucosyl- β Cyclodextrin	$\begin{aligned} & 5.636 \pm \\ & 0.562 \end{aligned}$	$\begin{aligned} & 1.963 \pm \\ & 0.680 \end{aligned}$	0.379	0.148	0.057	0.011	0.010	0.006
Hydroxypropyl- β Cyclodextrin	$\begin{aligned} & 1.291 \pm \\ & 0318 \end{aligned}$	$\begin{aligned} & 0.752 \pm \\ & 0.582 \end{aligned}$	0.453	0.191	0.004	0.015	0.003	0.019

* $\boldsymbol{k}_{\text {cat }}$ were calculated from the formula, $V_{\max }$ Divided by the Total Enzyme Concentration.

3.5.7 Product analysis by High Performance Liquid Chromatography

The reaction mixture containing 2.5 ml of 2.0% soluble starch in 0.2 M phosphate buffer, pH 6.0 was incubated with 0.5 ml enzyme at $40^{\circ} \mathrm{C}$ for 24 h and reaction was stopped by incubation in boiling water bath for 10 min . β-amylase ($20 \mathrm{U} / \mathrm{ml}$) was added to the aliquot and the mixture was incubated at $25^{\circ} \mathrm{C}$ for 3 hours. The HPLC analysis of the resulted mixture revealed the presence of mainly 2 types of CDs. It was found that CGTase from wild types and transformants produced mainly β-CD. However, T16 gave almost equal amount of all three CDs with slightly higher amount of γ-CD. The ratio of $\alpha: \beta: \gamma$-CD was $0.57: 1: 0.13$ for RB01, $0.21: 1: 0.05$ for $\mathrm{pRB}, 0.83: 1: 1.1$ for T 16 and $0.25: 1: 0.51$ for pT (Figure 40 and Table 10)

Figure 41 HPLC chromatogram of CDs produced by purified CGTase and standard cyclodextrins ($\alpha-C D, \beta-C D$ and $\gamma-C D$).
(a-d) standard CD, e-h) CGTase from RB, $\mathrm{pRB}, \mathrm{T} 16$ and pT , respectively.
Lichrocart- NH_{2} column was used. Acetonitrile : water ($70: 30, \mathrm{v} / \mathrm{v}$) was used as eluent at $1.6 \mathrm{ml} / \mathrm{min}$ flow rate.

Table 10 CD products of purified CGTase determined by HPLC.

	Area Peak			Ratio $\operatorname{\alpha -CD}$
RB01	5.88	10.28	1.38	$0.57: 1: 0.13$
pRB	5.65	27.44	1.35	$0.21: 1: 0.05$
T16	3.294	3.45	5.41	$0.95: 1: 1.57$
pT	2.96	11.66	5.95	$0.25: 1: 0.51$

