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Chapter 1

Statements of the results

The Segal-Bargmann space HL2(Cd, µt) is the space of holomorphic functions on

Cd that are square-integrable with respect to the Gaussian measure µt(z) dz =

(πt)−de−|z|
2/t dz, where |z|2 = |z1|2 + · · ·+ |zd|2. Here t is a fixed positive real num-

ber. See [B], [F1], [GM], [H1], [H3], [H4], [HM] for details about the importance

of this space.

Various generalizations of the Segal-Bargmann space have been considered. An

important part of the study of such generalizations is to obtain sharp pointwise

bounds on the functions. (See, for examples, [CL], [E], [H2], [H5], [HL].) Such

bounds amount to estimates for the reproducing kernel on the diagonal.

In this work, we consider the subspace of the standard Segal-Bargmann space

that is invariant under the special orthogonal group. The goal of the work is

to compare two bounds for functions in this space, a simple bound obtained by

minimizing the standard bounds in the full Segal-Bargmann space over the orbits

of the group, and a sharp bound obtained by directly estimating the reproducing

kernel for the subspace. We show that the sharp bounds are polynomially better

than the simple bounds, with the difference between the two growing larger and
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larger as the dimension d goes to infinity.

This analysis is motivated in part by a comparison of [Dr] and [H2]. In [Dr],

Driver obtains (among other things) bounds for a generalized Segal-Bargmann

space by representing it as the subspace of a certain infinite-dimensional standard

Segal-Bargmann space that is invariant under a certain group action. (See also

[GM], [HS], [H6].) Meanwhile, in [H2], Hall obtains sharp bounds for the relevant

generalized Segal-Bargmann space by directly estimating the reproducing kernel.

The difference between the two bounds is significant; the sharper bounds of [H2]

are essential, for example, in the analysis in [HL].

It is well-known that for any function F ∈ HL2(Cd, µt), we have the pointwise

bound

|F (z)|2 ≤ e|z|
2/t‖F‖2

L2(Cd,µt)
(z ∈ Cd). (1.1)

Now suppose that F is invariant under the action of SO(d), and therefore, by

analytic continuation, under the action of SO(d,C). By minimizing (1.1) on each

orbit, for any SO(d)-invariant function F in the Segal-Bargmann space, we obtain

the preliminary estimate

|F (z)|2 ≤ e|(z,z)|/t‖F‖2
L2(Cd,µt)

(z ∈ Cd), (1.2)

where (z, z) = z2
1 + · · · + z2

d. Since |(z, z)| ≤ |z|2, this is already an improvement

over the pointwise bound in (1.1).

The SO(d)-invariance means that F is determined by its values on

{(z, 0, ..., 0)} ' C1. (By holomorphicity, F is determined by its values on Rd,

then any point in Rd can be rotated into R1.) Conversely, any even holomorphic

function on C1 has an extension to an SO(d)-invariant function on Cd. Then the

space of SO(d)-invariant functions in the Segal-Bargmann space over Cd can be

expressed as an L2-space of holomorphic functions on C1, with some non-Gaussian
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measure. By estimating the reproducing kernel for this space, we obtain a sharp

bound for an SO(d)-invariant function F in HL2(Cd, µt), which will be polynomi-

ally better than (1.2). This bound is described in the following theorem.

Theorem 1.1. There exists a constant C, depending only on d and t, such that

for each SO(d)-invariant function F in HL2(Cd, µt), we have

|F (z)|2 ≤ C e|(z,z)|/t

1 + |(z, z)|(d−1)/2
‖F‖2

L(Cd,µt)
(z ∈ Cd).

In the last chapter, we obtain the formula of the reproducing kernel for the

space of SO(d)-invariant functions in the Segal-Bargmann space which is given by

K(z, z) = C BesselI
(d− 2

2
,
|(z, z)|
t

)( 1

|(z, z)|

)d/2−1

for all z ∈ Cd, where BesselI is the modified Bessel function of the first kind and

C is a constant depending on d and t. The reproducing kernel for this space is

asymptotically equal to the bound in Theorem 1.1 for a large argument. This

implies that the bound in Theorem 1.1 is sharp.



Chapter 2

Orthogonal group

In this chapter, we consider some properties of the non-degenerate bilinear form

on a finite-dimensional vector space and the special complex orthogonal group

that will be used in later chapters.

2.1 Bilinear Form

Definition 2.1. Let V be a vector space over C and B a symmetric bilinear map

on V .

1. For any subspace W of V , define W⊥ = {x ∈ V | B(x, y) = 0 ∀y ∈ W}.

2. A subset S of V is called an orthonormal set if B(v, v) = 1 for any v ∈ S

and B(v, w) = 0 for v, w ∈ S and v 6= w.

3. We say that B is non-degenerate if for all v ∈ V − {0} there is w ∈ V such

that B(v, w) 6= 0.

Remark. Let V be a vector space over C and B a non-degenerate symmetric

bilinear form on V . For any subspace W of V, if B is non-degenerate on W then

W ∩W⊥ = {0}.
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Lemma 2.2. Let V be a finite-dimensional vector space over C and B a non-

degenerate symmetric bilinear form on V . If W is a subspace of V such that B is

non-degenerate on W , then V/W and W⊥ are linearly isomorphic.

Proof. Consider a linear map x 7→ x+V from W⊥ into V/W . It is injective, since

W ∩W⊥ = {0}. Thus dimW⊥ ≤ dimV/W . On the other hand, define a linear

map φ : V/W → (W⊥)∗ by

φ(v +W )(x) = B(v, x)

for all x ∈ W⊥. For any v1, v2 ∈ V , if v1 + W = v2 + W then v1 − v2 ∈ W , so

B(v1 − v2, x) = 0 for any x ∈ W⊥. Thus φ(v1) and φ(v2) are equal. Hence φ is

an injective map which implies that dimV/W ≤ dim(W⊥)∗ = dimW⊥. So the

lemma is proved.

Theorem 2.3. Let V be a finite-dimensional vector space over C and B a non-

degenerate symmetric bilinear form on V . Then B is non-degenerate on a subspace

W of V if and only if V = W ⊕W⊥.

Proof. Let W be a subspace of V . Assume that B is non-degenerate on W . The

canonical map φ : V → V/W is a linear map with kernel W . Then

dimV = dimW+dimV/W = dimW+dimW⊥ = dim(W+W⊥)+dim(W ∩W⊥).

Using the fact that W ∩W⊥ = {0}, we have V = W ⊕W⊥. We next assume

that V = W ⊕W⊥. Let w ∈ W − {0}. Then there is v = x + y ∈ V such that

B(w, v) 6= 0, where x ∈ W and y ∈ W⊥. Thus B(w, x) = B(w, v) 6= 0, so the

theorem is proved.

Theorem 2.4. Let V be a finite-dimensional vector space over C and B a non-

degenerate symmetric bilinear form on V . Let W be a subspace of V . If B is

non-degenerate on W , then it is non-degenerate on W⊥.
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Proof. Assume that the form B is non-degenerate on W . Then by Theorem 2.3

we have that V = W ⊕W⊥. Let w ∈ W⊥−{0}. Thus there exists v = x+ y ∈ V

such that B(w, v) 6= 0, where x ∈ W and y ∈ W⊥. So B(w, y) = B(w, v) 6= 0.

This implies that the form B is non-degenerate on W⊥.

Lemma 2.5. Let V be a vector space over C. If B is a symmetric non-degenerate

symmetric bilinear form on V , then there is v ∈ V such that B(v, v) 6= 0.

Proof. Suppose that for all v ∈ V , B(v, v) = 0. Let w ∈ V − {0}. Since B is

non-degenerate, there is v ∈ V such that B(w, v) 6= 0. Then

0 = B(w + v, w + v)

= B(w,w) +B(w, v) +B(v, w) +B(v, v)

= B(w, v) +B(v, w).

It follows that 2B(v, w) = 0, a contradiction. Hence there is v ∈ V such that

B(v, v) 6= 0.

Theorem 2.6. If V is a finite-dimensional vector space over C and B a non-

degenerate symmetric bilinear form on V , then V has an orthonormal basis.

Proof. We will prove by induction on dimension of V . If dimV = 1, then there

exists v ∈ V − {0} such that B(v, v) 6= 0 since B is a non-degenerate symmet-

ric bilinear form. Hence {v/
√
B(v, v)} is an orthonormal basis of V . Suppose

dimV = n. Assume the statement of this lemma is true for any vector space W

with dimW ≤ n−1. Let v ∈ V −{0} be such that B(v, v) 6= 0 and V1 = span{v}.

Then B is non-degenerate on V1 and V ⊥
1 . By the induction hypothesis, there is

an orthonormal basis {v2, . . . , vn} of V ⊥
1 . By Theorem 2.3, V = V1 ⊕ V ⊥

1 , so we

have that { v√
B(v,v)

, v2, . . . , vn} is an orthonormal basis of V .
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2.2 Special Complex Orthogonal Group

Let F be the field R or C. For each d ∈ N, denote by Md(F) the set of all d × d

matrices with entries in F and by GL(d,F) the set of all invertible d× d matrices

with entries in F. We can regard Md(F) as the vector space Fd2
, and hence it has

an inherited topology from the usual topology on Fd2
.

Consider the map ( · , · ) : Fd × Fd → F given by

(x, y) = x1y1 + · · ·+ xdyd

for all x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Fd. It is easy to see that this map is a

symmetric non-degenerate bilinear form. If we write x ∈ Fd as a column matrix,

then

(x, y) = xty for all x, y ∈Md×1(F) ∼= Fd.

From this, we have

(Ax, y) = (Ax)ty = xtAty = (x,Aty)

for all x, y ∈ Fd and all A ∈Md(F).

Definition 2.7. An invertible d × d matrix A which preserves the bilinear form

( · , · ), i.e.

(Ax,Ay) = (x, y) for all x, y ∈ Fd,

is called an orthogonal matrix. Denote by O(d,F) the set of all d×d orthogonal

matrices and by SO(d,F) the set of all A in O(d,F) with detA = 1.

Definition 2.8. The set of all d × d complex orthogonal matrices is called the

complex orthogonal group O(d,C) and the set of all d×d complex orthogonal

matrices with determinant one is called the special complex orthogonal group
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SO(d,C). The set of d× d real orthogonal matrices is called the (real) orthogo-

nal group O(d). The set of d× d real orthogonal matrices with determinant one

is called the special (real) orthogonal group SO(d). Then O(d) and SO(d)

are subgroups of O(d,C), and hence of GL(d,C). Moreover, they are closed sub-

groups of GL(d,C). Geometrically, an element of O(d) is either a rotation, or a

combination of rotation and reflection. An element of SO(d) is just a rotation.

For each w ∈ C, we define

Sw = {z ∈ Cd | (z, z) = w2}.

In particular, S1 is the complex unit sphere. Then SO(d,C) acts on Cd by left

multiplication. Under this action an orbit for each z ∈ Cd is a subset of S√
(z,z)

.

We next show that for each d ≥ 2 if (z, z) 6= 0, then the orbit of z is equal to

S√
(z,z)

.

Definition 2.9. Let η : G ×M → M be an action of G on M on the left. The

action is called transitive if whenever m and n belong to M there is g in G such

that η(g,m) = n. For m0 ∈M , the set

Gm0 = {g ∈ G | η(g,m0) = m0}

is called the isotropy group at m0. If G is a Lie group, then Gm0 is a closed

subgroup of G.

Theorem 2.10. For any d ≥ 2, SO(d,C) acts transitively on Sw for all w ∈ C∗.

Proof. Let w ∈ C∗ and z ∈ Sw. Then a bilinear form (·, ·) is non-degenerate on

U = span{z}⊥. By Lemma 2.6, we can find an orthonormal basis of Cd with a

normalized z as its first element, denoted by B1 = { z√
(z,z)

, z2, . . . , zd}. If x ∈ Sw
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then choose an orthonormal basis B2 = { x√
(x,x)

, x2, . . . , xd} of Cd and define a

linear map g : Cd → Cd by

g
( z√

(z, z)

)
=

x√
(x, x)

and g(zi) = xi

for any i = 2, 3, . . . , d. Then we have [g]B2,B1z = x and det[g]B2,B1 = ±1. If

det[g]B2,B1 = −1, define a linear map g′ : Cd → Cd by

g
( z√

(z, z)

)
=
( x√

(x, x)

)
, g(z2) = −x2 and g(zi) = xi

for any i = 3, . . . , d. Then [g]B2,B1z = x and det[g]B2,B1 = 1.

Next we will show that the smooth complex manifold S1 is diffeomorphic to a

homogeneous manifold SO(d,C)/SO(d− 1,C). Let us recall some theorem about

homogeneous manifolds first.

If G is a Lie group and H is a closed subgroup of G, then we can define a

differentiable structure on the quotient space G/H so that it is a smooth manifold,

called a homogeneous manifold. Moreover, there is a natural transitive left-

action ofG onG/H. Conversely, ifM is a smooth manifold and there is a transitive

left-action by a Lie group G on M , then M can be identified with the quotient

manifold G/Gm0 , where m0 is a point in M . This is summarized in the following

theorem.

Theorem 2.11 ([War] Theorem 3.62). Let η : G ×M → M be a transitive

left-action of the Lie group G on the manifold M . Let m0 ∈ M , and let H be

the isotropy group at m0. Define a mapping β : G/H → M by β(gH) = η(g,m0).

Then β is a diffeomorphism.

Proposition 2.12. The complex unit sphere S1 is diffeomorphic to

SO(d,C)/SO(d− 1,C).
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Proof. The Lie group SO(d,C) acts transitively on S1 with the isotropy group at

(1, 0, . . . , 0) being the set of matrices in SO(d,C) of the form

X =

1 0

0 A

,
where the matrix A is a matrix in SO(d− 1,C). Hence, we identify the isotropy

group at (1, 0, . . . , 0) with SO(d − 1,C). It follows from Theorem 2.11 that the

homogeneous manifold SO(d,C)/SO(d− 1,C) is diffeomorphic to S1.



Chapter 3

Holomorphic function spaces

In this chapter, we provide some results about a space of holomophic functions.

First, we discuss a reproducing kernel, which exists on any Hilbert space such

that each pointwise evaluation is bounded. After that is we consider the Segal-

Bargmann space that is invariant under the action of SO(d,C).

3.1 Basic properties of the holomorphic function

spaces

In this section, we review some definitions and theorems about the holomorphic

function space which are in [H3].

Definition 3.1. Let U be a non-empty open set in Cd. A function f : U → C is

holomorphic if f is continuous and holomorphic in each variable with the other

variables fixed. Let H(U) be the space of holomorphic functions on U .

Definition 3.2. Let α be a continuous strictly positive function on a non-empty

open set U in Cd. Denote by HL2(U, α) the space of L2-holomorphic functions
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with respect to the weight α. In other words,

HL2(U, α) =

{
F ∈ H(U)

∣∣ ∫
U

|F (z)|2 α(z) dz <∞
}
.

Theorem 3.3. 1. For all z ∈ U , there exists a constant cz such that

|F (z)|2 ≤ cz‖F‖2
L2(U,α)

for all F ∈ HL2(U, α).

2. HL2(U, α) is a closed subspace of L2(U, α), and therefore a Hilbert space.

Theorem 3.4. There exists a complex-valued function K on U × U , with the

following properties

1. K(z, u) is holomorphic in z and anti-holomorphic in u, and satisfies

K(z, u) = K(u, z) (z, u ∈ U).

2. For all z, u ∈ U , ∫
U

K(z, w)K(w, u)α(w)dw = K(z, u).

3. For each fixed z ∈ U and for all F ∈ HL2(U, α)

F (z) =

∫
U

K(z, w)F (w)α(w)dw.

4. For all z ∈ U

|F (z)|2 ≤ K(z, z)‖F‖2,

and the constant K(z, z) is optimal in the sense that for each z ∈ U there is

a non-zero Fz ∈ HL2(U, α) for which equality holds.
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Theorem 3.5. Let {en} be an orthonormal basis for HL2(U, α). Then for all

z, u ∈ U ∑
n

|en(z)en(u)| <∞

and

K(z, u) =
∑

n

en(z)en(u).

Definition 3.6. The Segal-Bargmann space is the holomorphic function space

HL2(Cd, µt), where

µt(z) = (πt)−d e−|z|
2/t.

Here, |z|2 = |z1|2 + · · ·+ |zd|2 and t is a positive number.

Theorem 3.7. The reproducing kernel of HL2(Cd, µt) is given by

K(z, u) = e〈u,z〉/t (z, u ∈ Cd).

where 〈·, ·〉 is an inner product on Cd. Hence, we have the pointwise bound

|F (z)|2 ≤ e|z|
2/t‖F‖2 (z, u ∈ Cd), (3.1)

for any F ∈ HL2(Cd, µt).

3.2 SO(d)-invariant holomorphic function spaces

Definition 3.8. Let F be a holomorphic function on Cd. We say that F is SO(d)-

invariant if

F (Az) = F (z) for all A ∈ SO(d) and all z ∈ Cd.

In particular, if F is an SO(d)-invariant holomorphic function, then by analytic

continuation it is SO(d,C)-invariant, i.e., F (Az) = F (z) for all A ∈ SO(d,C) and

all z ∈ Cd.
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Notation. Denote by H(Cd)SO(d,C) the set of all SO(d,C)-invariant holomorphic

functions on Cd, i.e.,

H(Cd)SO(d,C) = { f ∈ H(Cd) | f is SO(d,C)-invariant}.

Then it is a linear subspace of H(Cd).

Denote by H(C)e the set of all holomorphic even functions on C, i.e.,

H(C)e = {g ∈ H(C) | g(w) = g(−w), ∀w ∈ C}.

Proposition 3.9. For any d ≥ 2, the map φ : H(Cd)SO(d,C) → H(C)e defined by

φ(f)(x) = f(x, 0, . . . , 0)

for all f ∈ H(Cd)SO(d,C) and all x ∈ C, is a linear isomorphism whose inverse is

given by

ψ(g)(z) = g
(√

(z, z)
)

for all g ∈ H(C)e and all z ∈ Cd.

Note that since g is even, the value of φ(g)(z) is independent of choice of square

root of (z, z).

Proof. It is clear that φ is a linear map and φ(f) is a holomorphic function on C

for any f ∈ H(Cd)SO(d,C). Moreover, φ(f) is even since

φ(f)(w) = f(w, 0, . . . , 0)

= f(A(w, 0, . . . , 0))

= f(w, 0, . . . , 0)

where A = diag(−1,−1, 1, 1, . . . , 1). On the other hand, ψ is a linear map. Since g

is even, ψ(g) is given by a convergent power series in integer powers of (z, z), where



15

(z, z) = z2
1 + · · ·+z2

d, and therefore ψ(g) is holomorphic on Cd for each g ∈ H(C)e.

Moreover, ψ(g) is SO(d,C)-invariant because the bilinear form is preserved under

the action of the orthogonal group. It is easy to see that φ ◦ ψ = idH(C)e and by

analytic continuation we have ψ ◦ φ = idH(Cd)SO(d,C) , so the theorem is proved.

Corollary 3.10. For each f ∈ H(Cd)SO(d,C) and each w ∈ C, if x, y ∈ Sw, then

f(x) = f(y).

Proof. Let f ∈ H(Cd)SO(d,C) and w ∈ C. By Proposition 3.9, there exists a

function g ∈ H(C)even such that

f(z) = g
(√

(z, z)
)

for all z ∈ Cd.

Hence, for all x, y ∈ Sw,

f(x) = g
(√

(x, x)
)

= g
(√

(y, y)
)

= f(y).



Chapter 4

Invariant measure on the complex

sphere

In this chapter, we construct a rotation-invariant Borel measure α on the complex

unit sphere. It will be shown that Lebesgue measure on Cd can be factored as a

product of a measure on the open right-half plane of C and the rotation-invariant

measure α on the complex unit sphere. We can give an explicit formula for α via

the identification between the complex unit sphere and the cotangent bundle on

the real unit sphere.

Notation. Let S be the set of all elements on Cd such that the argument of their

bilinear forms lie on the negative real axis, including zero, i.e.,

S = {z ∈ Cd | (z, z) ∈ (−∞, 0]}.

Recall that S0 = {z ∈ Cd | (z, z) = 0}. Next we show that S is a subset of Cd

with Lebesgue measure zero. Let U ⊂ Rn be an open set, and let F : U → Rk be

a smooth function. The graph of F is the subset of Rn × Rk defined by

Γ(F ) = {(x, y) ∈ Rn × Rk | x ∈ U and y = F (x)}.
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Theorem 4.1 (Implicit Function Theorem). Let U ⊂ Rn × Rk be an open

set, and let (x, y) = (x1, . . . , xn, y1, . . . , yk) denote the standard coordinates on U .

Suppose Φ: U → Rk is a smooth map, (a, b) ∈ U , and c = Φ(a, b). If the k × k

matrix (∂Φi

∂yj
(a, b)

)
is nonsingular, then there exist neighborhoods V0 of a and W0 of b and a smooth

map F : V0 → W0 such that Φ−1(c) ∩ (V0 ×W0) is the graph of F , and hence it is

an embedded n-dimensional submanifold of Rn+k.

Proposition 4.2. S0 − {0} and S − S0 are submanifolds of Cd with dimension

d− 1.

Proof. Let z ∈ Cd − {0}. Then zj 6= 0 for some 1 ≤ j ≤ d, so ∂ (z,z)
∂ zj

= 2zj 6= 0.

By Implicit Function Theorem S0 − {0} = (·, ·)−1{0} − {0} is a smooth (d − 1)-

dimensional submanifold of Cd. Since

(z, z) = z2
1 + z2

2 + · · ·+ z2
d

= x2
1 − y2

1 + 2ix1y1 + · · ·+ x2
d − y2

d + 2ixdyd

where zj = xj + iyj, we have that

tan(arg(z, z)) =
Im(z, z)

Re(z, z)

=
2x1y1 + · · ·+ 2xdyd

x2
1 − y2

1 + · · ·+ x2
d − y2

d

.

Thus for any z′ ∈ S − S0, arg(z′, z′) = π, Im(z′, z′) = 2x′1y
′
1 + · · · + 2x′dy

′
d = 0

and Re(z′, z′) = x′21−y′
2
1 + · · ·+x′2d−y′

2
d < 0. Therefore y′j 6= 0 for some 1 ≤ j ≤ d
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which implies

∂ tan(arg(z, z))

∂zj

∣∣∣
z=z′

=
1

2

∂
(

Im(z,z)
Re(z,z)

)
∂xj

∣∣∣
z=z′

− i

2

∂
(

Im(z,z)
Re(z,z)

)
∂yj

|z′=z

=
y′j

Re(z′, z′)
−

ix′j
Re(z′, z′)

6= 0.

Applying the chain rule we have that ∂ arg(z,z)
∂zj

∣∣∣
z=z′

6= 0. Hence we can conclude

that S − S0 = (arg(·, ·))−1{π} is a submanifold of Cd with dimension d− 1.

Corollary 4.3. The set S ⊂ Cd has Lebesgue measure zero.

Denote by H+ = {z ∈ C | Re(z) > 0} the open right-half plane of C. Define

Ψ: Cd − S → H+ × S1 by

Ψ(z) = (w, z′)

where w = |(z, z)|1/2ei θ
2 , θ is the principal value of arg(z, z), θ ∈ (−π, π), and

z′ = z
w
. Then Ψ is a continuous bijection map whose inverse is Ψ−1(w, z′) = wz′.

We can think of this map as a “complex polar form” of an element in Cd whose

bilinear form is nonzero.

Let m be Lebesgue measure on Cd and m∗ the Borel measure on H+ × S1

such that m∗(E) = m(Ψ−1(E)). The next theorem shows that the push-forward

measure m∗ on H+ × S1 can be written as a product measure m∗ = ρ× α, where

ρ is a measure on H+ defined by

ρ(A) =

∫
A

|w|2d−2dw

and α is an SO(d,C)-invariant Borel measure on S1.
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Theorem 4.4. There is an SO(d,C)-invariant Borel measure α on S1 such that

m∗ = ρ × α. If f is a Borel measurable function on Cd such that f ≥ 0 or

f ∈ L1(Cd,m), then∫
Cd

f(z) dz =

∫
C

∫
S1

f(wz′)dα(z′) |w|2d−2dw, (4.1)

where dw denotes the two-dimensional Lebesgue measure on C = R2.

Proof. Since S has Lebesgue measure zero, (4.1) is equivalent to∫
Cd−S

f(z) dz =

∫
C

∫
S1

f(wz′)dα(z′) |w|2d−2dw. (4.2)

First, we need to construct α. Let E be a Borel set in S1. For any a > 0, define

Da = {w ∈ C | |w| < a} and

Ea = Ψ−1(Da ∩H+ × E) = {wz′ | w ∈ Da ∩H+, z′ ∈ E}.

If (4.2) is to hold when f = χE1 , we must have

m(E1) =
1

2

∫
D1

∫
E

dα(z′) |w|2d−2dw =
π

2d
α(E).

Hence, for any Borel set E in S1, we define

α(E) =
2d

π
m(E1).

Since the map E 7→ E1 takes Borel sets to Borel sets and commutes with unions,

intersections and complements, it is clear that α is a Borel measure on S1. If E is

a Borel set in S1 and A ∈ SO(d,C) then

(AE)1 = {wz′ | w ∈ H+, |w| < 1, z′ ∈ AE}

= {wAz′ | w ∈ H+, |w| < 1, z′ ∈ E}

= AE1.
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Consequently,

α(AE) =
2d

π
m((AE)1) =

2d

π
m(A(E)1) =

2d

π
det(A)m(E1) = α(E),

where det(A) is the determinant of A over R which is 1. Hence α is SO(d,C)-

invariant. Moreover, Ea = aE1, so m(Ea) = a2dm(E1). Following this we have

that

m∗((Da ∩H+)× E) = m(Ea)

=
2π

d
(a2d)α(E)

= α(E)
1

2

∫
Da

|w|2d−2dw

= ρ× α((Da ∩H+)× E).

Fix E ∈ BS1 and let AE be the collection of finite disjoint unions of sets of the form

(Da ∩ H+) × E. Then AE is an algebra on H+ × E that generates the σ-algebra

ME = {D × E | D ∈ BH+}. Since m∗ = ρ× α on AE, m∗ = ρ× α on ME. But⋃
{ME | E ∈ BS1} is a set of all Borel rectangles on H+ × S1. Thus m∗ = ρ × α

on all Borel sets. Hence equation (4.2) holds when f is a characteristic function of

a Borel set and it follows for general f by the usual linearity and approximation

argument.

The measure α in Theorem 4.4 is uniquely determined and can be given ex-

plicitly. First, let us recall some definition and theorem about Lie groups and the

complex unit sphere S1.

Theorem 4.5 ([Kn] Theorem 8.36). Let G be a Lie group, let H be a closed sub-

group, and let ∆G and ∆H be the respective modular functions. Then a necessary

and sufficient condition for G/H to have a nonzero G-invariant Borel measure is

that the restriction to H of ∆G equal ∆H . In this case such a measure dµ(gH) is
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unique up to a scalar, and it can be normalized so that∫
G

f(g)dlg =

∫
G/H

[ ∫
H

f(gh)dlh
]
dµ(gH) (4.3)

for all f ∈ Cc(G) where dl is a left-Haar measure on G.

Notation. Denote by T ∗(Sd−1) the cotangent bundle of the real unit sphere Sd−1,

which we can think of as

T ∗(Sd−1) = {(x,p) ∈ Rd × Rd | |x| = 1, x · p = 0}.

There is a diffeomorphism between T ∗(Sd−1) and the complex unit sphere S1

given by the formula

a(x,p) = cosh(p)x +
i

p
sinh(p)p

for any x ∈ Sd−1 and x · p = 0, where p = |p|. See [HM] for more details.

Lemma 4.6. The measure (sinh 2p

2p

)d−2
2d−1 dp dx

is invariant under the action of SO(d,C) on S1
∼= T ∗(Sd−1).

Proof. See [HM], Lemma 3.

Using this coordinate, we can write the measure α explicitly as follows:

Lemma 4.7. The measure α is given by

dα(z) = a0

(sinh 2p

2p

)d−2
2d−1 dp dx,

where a0 is a constant which is unique. Here z = a(x,p), dx is the surface area

measure on Sd−1 and dp is Lebesgue measure on Rd.

Proof. The measure α and the measure
(

sinh 2p
2p

)d−2
2d−1 dp dx are both SO(d,C)-

invariant and finite on compact sets. Thus, by Proposition 2.12 and Theorem 4.5,

these two measures must agree up to a constant.



Chapter 5

Pointwise bound for a function in

HL2(Cd, µt)SO(d,C)

In this chapter, we consider the subspace of the Segal-Bargmann space which is

invariant under the action of the special complex orthogonal group. Our objective

is to find a pointwise bound of a function in this space.

Notation. We write

HL2(Cd, µt)
SO(d,C) = H(Cd)SO(d,C) ∩ L2(Cd, µt).

It is easy to see that it is a closed subspace of HL2(Cd, µt), and hence is a Hilbert

space.

By averaging over each orbit, we obtain the following pointwise bound:

Proposition 5.1. For any F ∈ HL2(Cd, µt)
SO(d,C) and for any z ∈ Cd

|F (z)|2 ≤ e|(z,z)|/t||F ||2L2(Cd,µt)
. (5.1)

Proof. Note that |(z, z)| = |(Az,Az)| ≤ |Az|2 for any z ∈ Cd and A ∈ SO(d,C). If

z /∈ S0, we have that (
√

(z, z), 0, . . . , 0) ∈ {Az | A ∈ SO(d,C)}, because SO(d,C)
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acts transitively on Sw where w =
√

(z, z), and thus

|(z, z)| = inf
{
|Az|2 : A ∈ SO(d,C)

}
.

But Sc
0 is dense in Cd, so this equation is also true for all z ∈ Cd. This immediately

gives (5.1).

This simple technique yields an improvement from the Bargmann’s pointwise

bound (3.1). However, we will establish a polynomially-better bound than the

bound in (5.1). Our strategy is to construct a non-Gaussian measure λ on C

so that we can express HL2(Cd, µt)
SO(d,C) in terms of the space HL2(C, λ)e of

holomophic even functions on C that are square-integrable with respect to λ and

then estimate the reproducing kernel of the latter space.

Henceforth, we will write each nonzero complex number w in a general expo-

nential form w = |w|eiθ where θ is the principal value of arg(w) (−π < θ ≤ π).

Denote by Bd the Borel σ-algebra in Cd and by B the Borel σ-algebra in C. Define

Φi : (Cd,Bd, µt) → (C,B), i = 1, 2 to be the branch of
√

(z, z) with a smaller and

larger argument respectively and for each E ∈ B define

λi(E) = µt(Φ
−1
i (E)).

Then define λ = (λ1 + λ2)/2. It is easy to check that λ is a Borel measure on C

and for any measurable function g and any E ∈ B∫
E

g dλ =
1

2

∫
Φ−1

1 (E)

g ◦ Φ1 dµt +
1

2

∫
Φ−1

2 (E)

g ◦ Φ2 dµt.

Theorem 5.2. HL2(Cd, µt)
SO(d,C) and HL2(C, λ)e are unitarily equivalent.

Proof. From Proposition 3.9 we have that the function

ψ : H(C)e → H(Cd)SO(d,C)
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is a linear isomorphism. We consider the restriction of ψ to the space HL2(C, λ)e.

Let g ∈ H(C)e and f ∈ H(Cd)SO(d,C) be such that f = ψ(g). Thus∫
C
|g|2dλ =

1

2

∫
Φ−1

1 (C)

|g ◦ Φ1(z)|2 µt(z) dz +
1

2

∫
Φ−1

2 (C)

|g ◦ Φ2(z)|2 µt(z) dz

=

∫
Cd

|g(
√

(z, z) )|2 µt(z) dz

=

∫
Cd

|ψ(g) (z)|2 µt(z) dz

=

∫
Cd

|f(z)|2 µt(z) dz.

So we have ‖g‖L2(C,λ) = ‖f‖L2(Cd,µt). Hence, f ∈ HL2(Cd, µt)
SO(d,C) if and only

if g ∈ HL2(C, λ)e. This shows that ψ is a unitary map from HL2(C, λ)e onto

HL2(Cd, µt)
SO(d,C).

We next show that the measure λ is absolutely continuous with respect to

Lebesgue measure and then we approximate the density of λ. This will yield a

pointwise bound for a function in HL2(Cd, λ)e. Then a pointwise bound for a

function in HL2(Cd, µt)
SO(d,C) is obtained by a unitary map.

Theorem 5.3. The measure λ is absolutely continuous with respect to Lebesgue

measure on C with density given by

Λ(w) =
|w|2d−2

(πt)d

∫
S1

e−|wz|2/tdα(z). (5.2)

Proof. Let E be a complex Borel set in C. For any z ∈ C with z = wz′, w ∈ C

and z′ ∈ S1, we have that z ∈ Φ−1
1 (E) if and only if w ∈ E. Similarly z ∈ Φ−1

2 (E)
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if and only if −w ∈ E. Therefore by Theorem 4.4

λ(E) =
1

2

∫
Φ−1

1 (E)

e−|z|
2/t

(πt)d
dz +

1

2

∫
Φ−1

2 (E)

e−|z|
2/t

(πt)d
dz

=
1

2

∫
C

∫
S1

χΦ−1
1 (E)(wz

′)
|w|2d−2

(πt)d
e−|wz′|2/t dα(z′) dw

+
1

2

∫
C

∫
S1

χΦ−1
2 (E)(wz

′)
|w|2d−2

(πt)d
e−|wz′|2/t dα(z′) dw

=
1

2

∫
C

∫
S1

χE(w)
|w|2d−2

(πt)d
e−|wz′|2/t dα(z′) dw

+
1

2

∫
C

∫
S1

χE(−w)
|w|2d−2

(πt)d
e−|wz′|2/t dα(z′) dw

=
1

2

∫
C

∫
S1

χE(w)
|w|2d−2

(πt)d
e−|wz′|2/t dα(z′) dw

+
1

2

∫
C

∫
S1

χE(w)
|w|2d−2

(πt)d
e−|wz′|2/t dα(z′) dw

=

∫
E

|w|2d−2

(πt)d

∫
S1

e−|wz′|2/t dα(z′) dw

=

∫
E

Λ(w) dw

where Λ is given by (5.2).

Next, we will approximate the density Λ of λ and show that on holomorphic

functions, the L2-norm with respect to λ is equivalent to the L2-norm with respect

to the measure β(w)dw where

β(w) =
e−|w|

2/t

πt
|w|d−1

for all w ∈ C.

Proposition 5.4. There exist constants m,M > 0, depending on d and t, such

that the density function Λ of λ satisfies

mβ(w) ≤ Λ(w) ≤Mβ(w) (5.3)

for all w ∈ C with |w| ≥ 1.
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Proof. From Lemma 4.7, for any w ∈ C∫
S1

e−|wz|2/t dα(z) = a0

∫
Sd−1

∫
{p∈Rd|x·p=0}

e−|w a(x,p)|2/t
(sinh(2p)

2p

)d−2

2d−1 dp dx

= a0σ(Sd−1)

∫
Rd−1

e− cosh(2p) |w|2/t
(sinh(2p)

2p

)d−2

2d−1 dp

= ad

∫ ∞

0

e− cosh(2r) |w|2/t
(sinh(2r)

2r

)d−2

2d−1 rd−2 dr

= ad

∫ ∞

0

e− cosh(2r) |w|2/t sinhd−2(2r) 2dr

= ad

∫ ∞

0

e− cosh(u)|w|2/t sinhd−2 u du

= ade
−|w|2/t

∫ ∞

0

e−(cosh(u)−1)|w|2/t (cosh2 u− 1)(d−3)/2d(coshu)

= ade
−|w|2/t

∫ ∞

0

e−|w|
2x/t (x2 + 2x)(d−3)/2 dx, (5.4)

with ad = a0σ(Sd−1)σ(Sd−2) where σ is the surface measure. The last equality

follows from the change of variables cosh(u) = x+ 1. But then

(x2 + 2x)(d−3)/2 =

{
d−3∑
k=0

(
d− 3

k

)
2d−3−kxd−3+k

}1/2

=
{ d−3∑

k=0

akx
d−3+k

}1/2

, (5.5)

where

ak =

(
d− 3

k

)
2d−3−k.

Now let us consider the case d ≥ 3. Applying the inequality

1√
n

(
√
a1 +

√
a2 + · · ·+

√
an ) ≤

√
a1 + a2 + · · ·+ an ≤

√
a1 +

√
a2 + · · ·+

√
an,

for any a1, a2, . . . , an ≥ 0, we see that

1√
d− 2

d−3∑
k=0

a
1/2
k x(d−3+k)/2 ≤

{
d−3∑
k=0

akx
d−3+k

}1/2

≤
d−3∑
k=0

a
1/2
k x(d−3+k)/2.

Thus

1√
d− 2

d−3∑
k=0

a
1/2
k x(d−3+k)/2 ≤ (x2 + 2x)(d−3)/2 ≤

d−3∑
k=0

a
1/2
k x(d−3+k)/2. (5.6)
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By using the formula for the Gamma function we have that∫ ∞

0

e−|w|
2x/tx(d−3+k)/2 dx = Γ

(
d− 3 + k

2
+ 1

)(
t

|w|2

)(d−1+k)/2

.

It follows that

1√
d− 2

P

(√
t

|w|

)
≤
∫ ∞

0

e−|w|
2x/t (x2 + 2x)(d−3)/2 dx ≤ P

(√
t

|w|

)
,

where

P (x) =
d−3∑
k=0

a
1/2
k Γ

(
d− 1 + k

2

)
xd−1+k.

This shows that

ad√
d− 2

P

(√
t

|w|

)
e−|w|

2/t ≤
∫

S1

e−|wz|2/t dα(z) ≤ adP

(√
t

|w|

)
e−|w|

2/t.

It follows from (5.2) that

e−|w|
2/t

tπ
√
d− 2

Q

(
|w|√
t

)
≤ Λ(w) ≤ e−|w|

2/t

tπ
Q

(
|w|√
t

)
(5.7)

where

Q(x) =
ad

πd−1

d−3∑
k=0

a
1/2
k Γ

(
d− 1 + k

2

)
xd−1−k =

d−1∑
k=2

bkx
k.

Since we are interested in the behavior of Λ, we will keep only the monomials of

the highest degrees xd−1 of Q in our estimate. Hence we establish (5.3) for the

case d ≥ 3.

Meanwhile in the d = 2 case we have∫
S1

e−|wz|2/t dα(z) = a2 e
−|w|2/t

∫ ∞

0

e−x|w|2/t

√
x2 + 2x

dx

=
a2√
2
e−|w|

2/t

∫ ∞

0

e−u

√(
|w|2
tu

− |w|2
2|w|2 + tu

)
t

|w|2
du

≥ a2

√
t√

2|w|
e−|w|

2/t

(∫ ∞

0

e−u

√
u
du−

∫ ∞

0

e−u√
2|w|2/t+ u

du

)
.

The function

φ(r) =

∫ ∞

0

e−u

√
r + u

du (r ≥ 0)
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is a strictly decreasing function. Hence, if we let δ = 2/t and ε = φ(0) − φ(δ),

then φ(0) − φ (2|w|2/t) ≥ φ(0) − φ(δ) = ε for any w with 2|w|2/t ≥ δ. It follows

that

Λ(w) =
|w|2

(πt)2

∫
S1

e−|wz|2/tdα(z)

≥ εa2

π
√

2t

e−|w|
2/t

πt
|w|

for any w ∈ C with |w| ≥ 1.

On the other hand,∫
S1

e−|wz|2/t dα(z) ≤ a2 e
−|w|2/t

∫ ∞

0

e−x|w|2/t

√
2x

dx

=
a2

√
tπ√

2|w|
e−|w|

2/t.

Hence

Λ(w) ≤ a2√
2πt

e−|w|
2/t

πt
|w|.

Thus the theorem is proved.

Lemma 5.5. The norms ‖ · ‖L2(C,β) and ‖ · ‖L2(C,λ) are equivalent, i.e., there are

constants k,K > 0, depending on d and t, such that

k‖f‖L2(C,β) ≤ ‖f‖L2(C,λ) ≤ K‖f‖L2(C,β), (5.8)

for all f ∈ HL2(C, λ).

Proof. First, we will show that there is a constant D > 0, depending on d and t,

such that

‖f‖2
L2(C,β) ≤ D ‖f‖2

L2(C−D,λ)

for any f ∈ HL2(C, λ), where D = {w ∈ C : |w| ≤ 1}.
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Let w ∈ D. Denote by A(w) the annulus {z ∈ C | 2 ≤ |z − w| ≤ 3}. For any

v ∈ A(w), we use the polar coordinates with the origin at w so that v−w = reiθ.

If f ∈ HL2(C, λ), then we expand f as a power series around v = w:

f(v) = f(w) +
∞∑

n=1

an(v − w)n.

Hence,∫
A(w)

f(v) dv = f(w)(9π − 4π) +
∞∑

n=1

∫ 3

2

∫ 2π

0

anr
neinθ dθdr = 5πf(w).

Therefore

f(w) =
1

5π

∫
A(w)

f(v) dv

=
1

5π

∫
C−D

χA(w)(v)
1

Λ(v)
f(v)Λ(v) dv

=
1

5π
〈χA(w)

1

Λ
, f〉L2(C−D,λ).

By Cauchy-Schwarz inequality we have that

|f(w)| ≤ 1

5π

∥∥∥χA(w)
1

Λ

∥∥∥
L2(C−D,λ)

‖f‖L2(C−D,λ).

Since Λ is strictly positive and continuous on A(w), 1
Λ

is bounded on A(w). Thus

the first L2-norm is finite. However, for each w ∈ D,

1

5π

∥∥∥χA(w)
1

Λ

∥∥∥
L2(C−D,λ)

≤ 1

5π

∥∥∥χA∗
1

Λ

∥∥∥
L2(C−D,λ)

<∞

where A∗ = {z ∈ C | 1 < |z| < 4}, which contains each A(w), w ∈ D. It follows

that there exists a constant c such that for any w ∈ D

|f(w)| ≤ c‖f‖L2(C−D,λ).

It now follows from Proposition 5.4 that∫
C
|f(w)|2β(w) dw =

∫
D
|f(w)|2β(w)dw +

∫
C−D

|f(w)|2β(w) dw

≤ c2‖f‖2
L2(C−D,λ)

∫
D
β(w)dw +

1

m
‖f‖2

L2(C−D,λ)

≤ D‖f‖2
L2(C−D,λ)
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for some constant D > 0 depending on d and t. This give the first inequality in

(5.8). The second inequality in (5.8) can be proved in the same way.

Having established Lemma 5.5, it is remains only to obtain pointwise bounds

for elements in HL2(C, λ). We do this by reducing to the standard Segal-

Bargmann space when d is odd and to the spaceHL2(C, (tπ)−1|w|e−|w|2/tdw) when

d is even. We now establish pointwise bound in the latter space.

Lemma 5.6. The set

{
wn

(t(2n+1)/2Γ(n+ 3
2
))

1/2

}∞

n=0

forms an orthonormal basis for

HL2(C, νt(w)dw), where νt(w) = |w| e−|w|2/t

tπ
for all w ∈ C.

Proof. For each n ∈ N ∪ {0}, define gn : C → C by

gn(w) = wn for all w ∈ C.

It is clear that gn ∈ H(C). Claim that {gn}∞n=0 is an orthogonal subset of

HL2
(
C, νt

)
. To prove the claim, let σ be a positive real number. Define

Dσ := { w ∈ C | |w| ≤ σ }.

Next, let

Mσ(j, k) =

∫
Dσ

wjw̄k |w|e−w2/t(πt)−1 dw

=

∫ 2π

0

∫ σ

0

eiθ(j−k)rj+k+2e−r2/t(πt)−1 dr dθ.

It follows that

(i) Mσ(j, k) = 0 if j 6= k,

(ii) Mσ(k, k) → tk+1/2Γ(k + 3/2) as σ →∞.

For any m,n ∈ N ∪ {0},∫
C
gm(w)gn(w)νt(w)dw =

∫
C
wmwn|w|e

−|w|2/t

tπ
dw

= lim
σ→∞

Mσ(m,n)
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Thus it follows from (i) that∫
C
gm(w)gn(w)νt(w)dw = 0, if m 6= n.

If n = m, we have ∫
C
|gn(w)|2νt(w)dw = lim

σ→∞
Mσ(n, n)

= tn+1/2Γ(n+ 3/2).

Thus for any n ∈ N ∪ {0},

‖gn‖2
L2(C,νt)

= tn+1/2Γ
(
n+

3

2

)
. (5.9)

Hence, {gn}∞n=0 is an orthogonal subset of HL2(C, νt). Next, we will show

that {gn}∞n=0 is an orthogonal basis of HL2(C, νt). Let g ∈ HL2(C, νt). Then

g(w) =
∞∑

n=0

anw
n for each w ∈ C, where an ∈ C for all n ∈ N ∪ {0}. Since this

power series converges uniformly on the set Dσ, we have∫
Dσ

|g(w)|2νt(w)dw =

∫
Dσ

∞∑
n=0

anw
n

∞∑
m=0

amwm|w|e
−|w|2/t

tπ
dw

=
∞∑

n=0

∞∑
m=0

anam

∫
Dσ

wnwm|w|e
−|w|2/t

tπ
dw

=
∞∑

n=0

|an|2Mσ(n, n).

Next, using the monotone convergence theorem, we have∫
C
|g(w)|2νt(w)dw = lim

σ→∞

∫
Dσ

|g(w)|2|w|e
−|w|2/t

tπ
dw

= lim
σ→∞

∞∑
n=0

|an|2Mσ(n, n)

=
∞∑

n=0

|a2n|2 tn+ 1
2 Γ
(
n+

3

2

)
.

Therefore, if g is square-integrable with respect to νt, then

∞∑
n=0

|a2n|2 tn+ 1
2 Γ
(
n+

3

2

)
<∞.
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Define a sequence (Fn) to be

Fn(w) :=
n∑

m=0

am wm

for any w ∈ C. Then (Fn) is a Cauchy sequence in L2(C, νt). To see this, notice

that for m > n,

‖Fm − Fn‖L2(C,νt) =

∫
C
|Fm − Fn|2 |w|

e−|w|
2/t

tπ
dw

=

∫
C

∣∣∣∣∣
m∑

k=n+1

akw
k

∣∣∣∣∣
2

|w|e
−|w|2/t

tπ
dw

=
m∑

k=n+1

|ak|2tk+ 1
2 Γ
(
k +

3

2

)
→ 0 as m,n→∞.

Thus (Fn) converges in L2(C, νt) to some function h, and hence it has a subse-

quence which converges pointwise almost everywhere to h. But (Fn) converges

pointwise to g, so we have that h = g a.e. [νt]. Therefore h = g in L2(C, νt), so

(Fn) converges to g in L2(C, νt). Thus g ∈ span{gn | n ∈ N ∪ {0}}. This show

that

{
wn

(t(2n+1)/2Γ(n+ 3
2
))

1/2

}∞

n=0

forms an orthonormal basis for HL2
(
C, νt

)
.

Corollary 5.7. For any g ∈ HL2
(
C, νt

)
,

|g(w)|2 ≤ e|w|
2/t

|w|
erf(

|w|√
t
) ||g||2 (w ∈ C− {0}),

where the error function erf is defined by

erf(x) =
2√
π

∫ x

0

e−y2

dy = e−x2
∞∑

n=0

x2n+1

Γ(n+ 3
2
)
.

Proof. By using Lemma 5.6, the reproducing kernel for the space HL2
(
C, νt

)
is

given by

K(x, y) =
∞∑

n=0

xn yn

t(2n+1)/2Γ(n+ 3
2
)
.
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Thus the pointwise bound for a function g in the space HL2
(
C, νt

)
is

|g(w)|2 ≤ K(w,w)‖g‖2

≤
∞∑

n=0

|w|2n

t(2n+1)/2Γ(n+ 3
2
)
‖g‖2

=
e|w|

2/t

|w|
erf(

|w|√
t
) ‖g‖2

for any w ∈ C.

Theorem 5.8. There is a constant B, depending on d and t, such that for any

f ∈ HL2(C, λ) and any w ∈ C− {0},

|f(w)|2 ≤ B

|w|d−1
e|w|

2/t‖f‖2
L2(C,λ). (5.10)

Proof. Let f ∈ HL2(C, λ)e. Then f ∈ HL2(C, β), and thus∫
C
|w|d−1|f(w)|2 e

−|w|2/t

πt
dw <∞.

If d− 1 is an even number, then

w(d−1)/2f(w) ∈ HL2(C,
e−|w|

2/t

tπ
dw).

This is the one-dimensional Segal-Bargmann space. Using Bargmann’s pointwise

bound (3.1) for this space, we obtain

|w|d−1|f(w)|2 ≤ e|w|
2/t ||f ||2L2(C,β) ≤

e|w|
2/t

k2
||f ||2L2(C,λ)

for all w ∈ C, where k is the constant in Corollary 5.8. On the other hand if d− 1

is an odd number, then

w(d−2)/2f(w) ∈ HL2(C, |w|e
−|w|2/t

tπ
dw).

Following Lemma 5.6, we have

|w|d−2|f(w)|2 ≤ ‖f‖2
L2(C,β)

e|w|
2/t

|w|
erf
( |w|√

t

)
≤ 1

k2
‖f‖2

L2(C,λ)

e|w|
2/t

|w|
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for all w ∈ C − {0}. In either case we obtain the pointwise (5.10) with B =

1/k2.

Proof of Theorem 1.1. We will transform the pointwise bound (5.10) to a func-

tion in HL2(Cd, µt)
SO(d,C). Let F ∈ HL2(Cd, µt)

SO(d,C). Then F (w, 0, . . . , 0) ∈

HL2(C, λ)e, which implies

|F (z)|2 = |F (w, 0, . . . , 0)|2 ≤ B
e|w|

2/t

|w|d−1
‖F‖2

L2(Cd,µt)

where w =
√

(z, z) for any z ∈ Cd with (z, z) 6= 0. In particular,

|F (z)|2 ≤ Be|(z,z)|/t

|(z, z)|(d−1)/2
‖F‖2

L2(Cd,µt)

for any z ∈ Cd with (z, z) 6= 0. On the other hand, from Proposition 5.1,

|F (z)|2 ≤ e|(z,z)|/t‖F‖2
L2(Cd,µt)

for any z ∈ Cd.

Applying the inequality

min

{
1,

1

x

}
≤ 2

x+ 1
for each x > 0,

we have

|F (z)|2 ≤ C e|(z,z)|/t

|(z, z)|(d−1)/2 + 1
‖F‖2

L2(Cd,µt)

for each z ∈ Cd, where C is a constant depending on d and t. This completes the

proof of Theorem 1.1.



Chapter 6

Reproducing kernel formula

In this last chapter, we obtain the formula for the reproducing kernel of

HL2(Cd, µt)
SO(d,C) that will yield an optimal pointwise bound for a function in

HL2(Cd, µt)
SO(d,C). This bound is asymptotically equal to the bound on the pre-

vious chapter for large arguments. First, we recall some definitions and properties

of modified Bessel functions that will be central in the formula for the reproducing

kernel of HL2(Cd, µt)
SO(d,C).

6.1 Bessel Functions

In this section, we give some definitions and properties of the Bessel functions that

will be used in the next section. All of substances of this section are in [T] and

[Wat].

Bessel functions first defined by the Swiss mathematician Daniel Bernoulli and

named after Friedrich Bessel, are canonical solutions y(x) of Bessel’s differential

equation

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0
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for an arbitrary real number α (the order). The most common and important

special case is where α is an integer.

Since this is a second-order differential equation there must be two linearly

independent solutions. The Bessel functions of the first kind, denoted by Jα(x),

can be defined by its Taylor series expansion around x = 0 that is

Jα(x) =
∞∑

m=0

(−1)m

m!Γ(m+ α+ 1)

(x
2

)2m+α

.

The graphs of Bessel functions look roughly like oscillating sine or cosine functions

that decay proportionally to 1/
√
x, although their roots are not generally periodic

except asymptotically for large x.

The second linearly independent solution is then found to be the Bessel function

of the second kind, denoted by Yα(x). They are singular (infinite) at x = 0. Then

Yα(x) is related to Jα(x) by

Yα(x) =
Jα(x) cos(απ)− J−α(x)

sin(απ)

where the case of integer α is handled by taking the limit.

The Bessel functions are valid even for complex arguments x, and an important

special case is that of a purely imaginary argument. In this case, the solutions to

the Bessel equation are called the modified Bessel functions of the first and

second kind which are defined by,

BesselI(α, x) := Iα(x) = i−αJα(ix)

BesselK(α, x) := Kα(x) =
π
2
I−α(x)− Iα(x)

sin(απ)
.

These are chosen to be real-valued for real arguments x. They are the two linearly

independent solutions to the modified Bessel’s equations

x2 d
2y

dx2
+ x

dy

dx
− (x2 + α2)y = 0.
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Unlike the ordinary Bessel functions, which are oscillating, Iα(x) andKα(x) are ex-

ponentially growing and decaying functions respectively. Like the ordinary Bessel

function Jα(x), the function Iα(x) goes to zero at x = 0 for α > 0 and is finite at

x = 0 for α = 0. Analogously Kα(x) diverges at x = 0.

We next give some properties of the modified Bessel functions which will be

used in the next section.

1. If Re(α) > −1
2

Iα(z) =
(z/2)α

√
πΓ(1/2 + α)

∫ 1

−1

(1− t2)α−1/2 cosh(tα)dt.

2. For any α

Iα(x) =
∞∑

m=0

1

m!Γ(m+ α+ 1)

(x
2

)2m+α

.

3. If Re(α) > −1
2

and | arg z| < 1
2
π

Γ(1/2 + α)Kα(z) =
√
π
( z
α

)α
∫ ∞

1

(1− t2)α−1/2e−ztdt

=
√

(π)
( z
α

)α
∫ ∞

0

exp(−z cosh(θ)) sinh(θ)2αdθ.

4. If n is a positive integer (or zero)

Kn+ 1
2

=
( π

2z

)1/2

e−z

n∑
k=0

(n+ k)!

k!(n− k)!
(2z)−k.

5. Kα(z) = K−α(z).

6.

∫ ∞

0

Kα(t)tv−1dt = 2v−2Γ
(v − α

2

)
Γ
(v + α

2

)
.

7. The asymptotic approximations for Iα(x) and Kα(x) for large x, given by

Iα(x) ∼ ex

√
2πx

Kα(x) ∼ e−x

√
π

2x

for all α ∈ R.
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6.2 Reproducing kernel of HL2(Cd, µt)
SO(d,C)

Theorem 6.1. The set {x2n}∞n=0 forms an orthogonal basis for HL2(C, λ)e.

Proof. For each n ∈ N ∪ {0}, define gn : C → C by

gn(x) = x2n for all x ∈ C.

It is clear that gn ∈ H(C). Claim that {gn}∞n=0 is an orthogonal subset of

HL2(C, λ)e. To prove the claim, let σ be a positive real number. Define

Dσ := {z ∈ Cd | |zj| ≤ σ for all j = 1, . . . , d} and

D1
σ := {x ∈ C | |x| ≤ σ}.

Next, let

Mσ(j, k) =

∫
D1

σ

x2jx̄2k e−x2/t(πt)−1 dx

=

∫ 2π

0

∫ σ

0

e2iθ(j−k)r2j+2k+1e−r2/t(πt)−1 dr dθ.

It follows that

(i.) Mσ(j, k) = 0 if j 6= k,

(ii.) Mσ(k, k) → t2k(2k)! as σ →∞.

In other words, ∫
C
x2jx̄2k dµt(z) = δjkt

2k(2k)!.
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For any m,n ∈ N ∪ {0},∫
C
gm · gn dλ =

∫
Cd

(gm · gn) ◦ Φ(z) µt(z) dz

=

∫
Cd

gm

(√
(z, z)

)
gn

(√
(z, z)

)
µt(z) dz

=

∫
Cd

(z, z)m (z, z)n µt(z) dz

=

∫
Cd

(z2
1 + · · ·+ z2

d)
m (z̄2

1 + · · ·+ z̄2
d)

n µt(z) dz

=

∫
Cd

( ∑
j1+···+jd=m

z2j1
1 · · · z2jd

d

)( ∑
k1+···+kd=n

z̄2k1
1 . . . z̄2kd

d

)
µt(z) dz

=
∑

j1+···+jd=m

∑
k1+···+kd=n

∫
Cd

(zj1
1 z̄

k1
1 )2 · · · (zjd

d z̄
kd
d )2 e

−|z|2/t

(πt)d
dz

=
∑

j1+···+jd=m

∑
k1+···+kd=n

Mσ(j1, k1) · · ·Mσ(jd, kd).

Thus it follows from (i) that∫
C
gm · gn dλ = 0, if m 6= n.

Hence, {gn}∞n=0 is an orthogonal subset of HL2(C, λ)e. Next, we will show

that {gn}∞n=0 is an orthogonal basis of HL2(C, λ)e. Let g ∈ H(C)e. Then

g(x) =
∞∑

n=0

anx
n for each x ∈ C, where an ∈ C for all n ∈ N ∪ {0}. But

g(x) = g(−x), so an = 0 for each odd positive integer n. Thus

g(x) =
∞∑

n=0

a2n x
2n.
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Since this power series converges uniformly on the set Dσ, we have∫
Dσ

|g(
√

(z, z))|2 µt(z) dz

=

∫
Dσ

∞∑
n=0

a2n(z, z)n

∞∑
m=0

a2m(z, z)m µt(z) dz

=

∫
Dσ

∞∑
n=0

∞∑
m=0

a2na2m(z, z)n(z, z)m µt(z) dz

=
∞∑

n=0

∞∑
m=0

a2na2m

∫
Dσ

(z2
1 + · · ·+ z2

d)
n (z̄2

1 + · · ·+ z̄2
d)

m µt(z) dz

=
∞∑

n=0

∞∑
m=0

a2na2m

∫
Dσ

∑
j1+···+jd=n

z2j1
1 · · · z2jd

d

∑
k1+···+kd=m

z̄2k1
1 · · · z̄2kd

d

e−|z|
2/t

(πt)d
dz

=
∞∑

n=0

∞∑
m=0

a2na2m

∑
j1+···+jd=n

∑
k1+···+kd=m

∫
Dσ

(zj1
1 z̄

k1
1 )2 · · · (zjd

d z̄
kd
d )2 e

−|z|2/t

(πt)d
dz

=
∞∑

n=0

|a2n|2
∑

k1+···+kd=n

Mσ(k1, k1) · · ·Mσ(kd, kd).

Next, using the monotone convergence theorem, we have∫
C
|g|2 dλ =

∫
Cd

|g ◦ Φ(z)|2 µt(z) dz

= lim
σ→∞

∫
Dσ

|g(
√

(z, z))|2 µt(z) dz

= lim
σ→∞

∞∑
n=0

|a2n|2
∑

k1+···+kd=n

Mσ(k1, k1) · · ·Mσ(kd, kd)

=
∞∑

n=0

|a2n|2
∑

k1+···+kd=n

(t2k1(2k1)!) · · · (t2kd(2kd)!)

=
∞∑

n=0

(
|a2n|2 t2n

∑
k1+···+kd=n

(2k1)! · · · (2kd)!
)
.

Therefore, if g is square-integrable with respect to λ, then

∞∑
n=0

(
|a2n|2 t2n

∑
k1+···+kd=n

(2k1)! · · · (2kd)!
)

=

∫
C
|g|2 dλ <∞.

Define a sequence (Fn) to be

Fn(x) :=
n∑

m=0

a2m x2m
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for any x ∈ C. Then (Fn) is a Cauchy sequence in L2(C, λ). To see this, notice

that for m > n,

‖Fm − Fn‖L2(Cλ) =

∫
C
|Fm − Fn|2 dλ

=

∫
Cd

∣∣∣∣∣
m∑

k=n+1

a2k(z, z)
k

∣∣∣∣∣
2

µt(z) dz

=
m∑

k=n+1

|a2k|2 t2k
∑

k1+···+kd=k

(2k1)! · · · (2kd)! → 0 as m,n→∞.

Thus (Fn) converges in L2(C, λ) to some function h, and hence it has a subsequence

which converges pointwise almost everywhere to h . But (Fn) converges pointwise

to g, so we have that h = g a.e.[λ]. Therefore h = g in L2(C, λ), so (Fn) converges

to g in L2(C, λ). Thus g ∈ span{gn | n ∈ N}. This show that {x2n}∞n=0 forms an

orthogonal basis for HL2(C, λ).

Corollary 6.2. The set {(z, z)n}∞n=0, forms an orthogonal basis for

HL2(Cd, µt)
SO(d,C).

Proof. This follows from Theorem 5.2 and Theorem 6.1.

Proposition 6.3. The reproducing kernel K of HL2(Cd, µt)
SO(d,C) is

K(z, z) =
Γ(d/2)

a02d/2+1
BesselI

(d− 2

2
,
|(z, z)|
t

)( t

|(z, z)|

)d/2−1

for all z ∈ Cd, where a0 is a constant in Lemma 4.7.

Proof. From Proposition 5.3, the density function of the measure λ is

Λ(w) =
|w|2d−2

(πt)d

∫
S1

e−|wz|2/tdα(z)

= a0
|w|2d−2

(πt)d

∫
Sd−1

∫
x·p=0

e−|w a(x,p)|2/t
(sinh 2p

2p

)d−2

pd−22d−1 dp dx

= ad
|w|2d−2

(πt)d

∫ ∞

0

e−(cosh x)|w|2/t(sinhx)d−2 dx

= ad
|w|2d−2

(πt)d
Γ
(d− 1

2

)
BesselK

(d− 2

2
,
|w|2

t

)( t

|w|2
)(d−2)/2 2(d−2)/2

√
π
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for all w ∈ C. So for any z ∈ Cd and n ≥ 0, we we have that

‖(z, z)n‖2 =

∫
Cd

‖(z, z)n‖2µt(z) dz

=

∫
C
|w2n|2 dλ(w)

=
ad2

(d−2)/2

π(d+1/2)
Γ
(d− 1

2

)∫
C

|w|2d−2+4n

td
K d−2

2

( |w|2
t

)( t

|w|2
)(d−2)/2

dw

=
ad2

(d−2)/2

π(d−1/2)
Γ(
d− 1

2
)

∫ ∞

0

t2nx2n+d/2K d−2
2

(x) dx

=
ad2

(d−2)/2

π(d−1/2)
t2nΓ

(d− 1

2

)
Γ(n+ 1)Γ(n+ d/2)22n−1+d/2

=
a0

Γ(d/2)
22n+dt2nΓ(n+ 1)Γ(n+ d/2).

Since {(z, z)n}∞0 is an orthogonal basis for HL2(Cd, µt)
SO(d,C), the reproducing

kernel K of HL2(Cd, µt)
SO(d,C) is

K(z, z) =
∞∑

n=0

|(z, z)n|2

‖(z, z)n‖2

=
Γ(d/2)

a0

∞∑
n=0

|(z, z)|2n

t2n22n+dΓ(n+ 1)Γ(n+ d/2)

=
Γ(d/2)

a02d/2+1
BesselI

(d− 2

2
,
|(z, z)|
t

)( t

|(z, z)|

)d/2−1

for all z ∈ Cd. The last equality follows from the property number (2) of the

modified Bessel functions in the previous section.

However, BesselI(d/2− 1, x) ∼ ex
√

2πx
asymptotically if x is large enough. Thus

for any z ∈ Cd such that |(z, z)| is large enough we have that

K(z, z) ∼ t(d−1)/2Γ(d/2)

a0

√
π 2(d+3)/2

e|(z,z)|/t

|(z, z)|(d−1)/2
.

This implies that for all F ∈ HL2(Cd, µt)
SO(d,C)

|F (z)|2 ≤ C
e|(z,z)|/t

|(z, z)|(d−1)/2
‖F‖2

L2(C2,µt)

for any z ∈ Cd such that |(z, z)| is large enough, where C > 0 is a constant

depending on d and t. Hence the bound in Theorem 1.1 is sharp.
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[Dr] B. Driver, On the Kakutani-Itô-Segal-Gross and Segal-Bargmann-Hall iso-
morphisms, J. Funct. Anal. 133 (1995), 69–128.
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