บทที่ 4

ผลการทดลอง

วงจรแปลงสัญญาณพัลส์วิลคินสันแบบอาร์เรย์ที่พัฒนาขึ้น สามารถทำงานร่วมกับเครื่อง วิเคราะห์พลังงานแบบหลายช่อง CANBERRA รุ่น S-100 โดยสามารถทดสอบ การทำงานเปรียบ เทียบกับ ADC CANBERRA รุ่น 8706 (450 MHz) และเปรียบเทียบการทำงานระหว่างการทำงาน ของ ADC ชุดเดียวกับ ADC ทำงานแบบอาร์เรย์ได้ โดยทำการทดสอบดังนี้

- 1. ทคสอบการทำงานของวงจร
- 2. ทคสอบความเสถียรในการทำงานของ ADC
- 3. ทคสอบความไม่เป็นเชิงเส้นแบบอินติกรัล
- 4. ทคสอบอัตราวิเคราะห์สัญญาณ (throughput count rate)
- 5. ทคสอบการวิเคราะห์สเปกตรัมของต้นกำเนิครั้งสีมาตรฐาน

4.1 การทดสอบการทำงานของวงจร

4.1.1 เครื่องมือและอุปกรณ์

- 1. เครื่องกำเนิดสัญญาณความถี่สูง (Hewlett Packard model 1407)
- 2. NIM BIN Power Supply (CANBERRA model 1000)
- 3. เครื่องวิเคราะห์พลังงานแบบหลายช่อง (CANBERRA model S-100)
- 4. อุปกรณ์ขยายสัญญาณพัลส์ (CANBERRA model 2021)
- วงจรแปลงผันสัญญาณพัลส์วิลคินสันแบบอาร์เรย์ที่พัฒนาขึ้น
- 6. เครื่องอ่านรูปสัญญาณ (Tektronix model TDS 360)
- 7. เครื่องคอมพิวเตอร์ CPU 486 ขึ้นไป 1 ชุด

4.1.2 ทดสอบรูปสัญญาณที่จุดทดสอบสำคัญ

รูปที่ 4.1 แผนภาพการจัดอุปกรณ์ทดสอบการทำงานของวงจร

- จัดอุปกรณ์การทดลองดังรูปที่ 4.1
- 2. จ่ายไฟฟ้าให้เครื่องมือและอุปกรณ์ทำงาน 10 นาที
- 3. ปรับเครื่องกำเนิดสัญญาณให้ได้สัญญาณพัลส์ 250 mV ความถี่ 80 kcps
- ปรับอุปกรณ์ขยายสัญญาณพัลส์ให้ shaping time = 2 μs และปรับอัตราขยาย สัญญาณให้ได้สัญญาณทางออก 9 V
- 5. ใช้เครื่องอ่านรูปสัญญาณจับรูปสัญญาณขณะที่ ADC ทำงานเพียงชุคเดียวที่จุด ทดสอบต่างๆ ได้สัญญาณดังรูปที่ 4.2 4.3 และ 4.4 จากรูปสัญญาณที่ได้ในรูป ที่ 4.4 conversion time ที่ 9 V = 40.28 μs (ที่ channel 4028) ช่วงเวลา storage

รูปที่ 4.2 สัญญาณ peak detect

รูปที่ 4.4 สัญญาณ conversion time และช่วง storage time

ปรับอุปกรณ์แปลงผันสัญญาณที่พัฒนาขึ้นให้วงจร ADC ทำงานพร้อมกันทั้ง
 4 ชุด ใช้เครื่องอ่านรูปสัญญาณจับรูปสัญญาณที่จุดทดสอบการส่งสัญญาณ
 (data storage) เทียบกับสัญญาณพัลส์จากอุปกรณ์ขยายสัญญาณ และเปรียบ
 เทียบผลการทำงานกับการใช้ ADC เพียงตัวเดียว ให้ผลรูปสัญญาณตั้งรูปที่

4.5 4.6 และ 4.7จากผลของรูปสัญญาณพบว่าในรูปที่ 4.6 การใช้ ADC 1 ชุด ทำงานจะสูญเสียสัญญาณพัลส์ 3 พัลส์ ส่วนในรูปที่ 4.7 ใช้ ADC 4 ชุดทำงาน พร้อมกันจะไม่มีการสูญเสียสัญญาณพัลส์

รูปที่ 4.5 สัญญาณ ramp discharge เมื่อใช้ ADC 1 ชุดทำงาน

รูปที่4.6 สัญญาณ data storage เมื่อใช้ ADC 1 ชุดทำงาน

-

4.2 ทดสอบความเสถียรของการทำงานของ ADC (stability)

- 4.2.1 เครื่องมือและอุปกรณ์
 - 1. เครื่องกำเนิดสัญญาณความถี่สูง (Hewlett Packard model 1407)
 - 2. NIM BIN Power Supply (CANBERRA model 1000)
 - 3. เครื่องวิเคราะห์พลังงานแบบหลายช่อง (CANBERRA model S-100)
 - 4. อุปกรณ์ขยายสัญญาณพัลส์ (CANBERRA model 2021)
 - วงจรแปลงผันสัญญาณพัลส์วิลคินสันแบบอาร์เรย์ที่พัฒนาขึ้น
 - 6. เครื่องคอมพิวเตอร์ CPU 486 ขึ้นไป 1 ชุด

4.2.2 ทดสอบความเสถียรของการทำงานของ ADC แต่ละชุด

รูปที่ 4.8 แผนภาพการจัดอุปกรณ์วัดเพื่อทคสอบความความเสถียรของ ADC

- 1. จัดอุปกรณ์การทดลองคังรูปที่ 4.8
- 2. จ่ายไฟฟ้าให้เครื่องมือและอุปกรณ์ทำงาน 10 นาที
- 3. ใช้เครื่องกำเนิดสัญญาณความถี่สูงปรับให้ได้สัญญาณพัลส์ 500 mV ความถี่ 100 kcps
- 4. ปรับวงจรขยายหลัก ให้ค่า shaping time = 2 μs ปรับค่าการขยายสัญญาณให้
 ใค้สัญญาณเอาท์พุต 5 V
- ปรับให้ ADC ชุดที่1 ทำงานชุดเดียวด้วยดิพสวิตช์ SW1 บน ADC board โดย ให้ดิพสวิตช์ SW1/1 = OFF, SW1/2 = ON, SW1/3 = ON, SW1/4 = ON ใช้ เวลาวิเคราะห์ เป็น REAL TIME 10 วินาที บันทึกผลสำหรับ ADC ชุดที่1 ผล การทดสอบเป็นตามรูปที่ 4.9
- ปรับให้ ADC ชุดที่2 ทำงานชุดเดียวด้วยดิพสวิตช์ SWI บน ADC board โดย ให้ดิพสวิตช์ SW1/1 = ON, SW1/2 = OFF, SW1/3 = ON, SW1/4 = ON ใช้ เวลาวิเคราะห์ เป็น REAL TIME 10 วินาที บันทึกผลสำหรับ ADC ชุดที่ 2 ผล การทดสอบเป็นตามรูปที่ 4.10
- ปรับให้ ADC ชุคที่3 ทำงานชุคเคียวด้วยดิพสวิตช์ SW1 บน ADC board โดย ให้ดิพสวิตช์ SW1/1 = ON, SW1/2 = ON, SW1/3 = OFF, SW1/4 = ON ใช้ เวลาวิเคราะห์ เป็น REAL TIME 10 วินาที บันทึกผลสำหรับ ADC ชุคที่ 3 ผล การทดสอบเป็นตามรูปที่ 4.11
- ปรับให้ ADC ชุดที่4 ทำงานชุดเดียวด้วยดิพสวิตช์ SW1 บน ADC board โดย ให้ดิพสวิตช์ SW1/1 = ON, SW1/2 = ON, SW1/3 = ON, SW1/4 = OFF ใช้ เวลาวิเคราะห์ เป็น REAL TIME 10 วินาที บันทึกผลสำหรับ ADC ชุดที่4 ผล การทดสอบเป็นตามรูปที่ 4.12

Energy (keV)

-

รูปที่ 4.12 สเปกตรัมการทคสอบ ADC ชุดที่ 4

4.2.3 ทดสอบความสเถียรของการทำงาน ADC 4 ชุดร่วมกัน

- จัดอุปกรณ์การทดลองดังรูปที่ 4.8
- 2. จ่ายไฟฟ้าให้เครื่องมือและอุปกรณ์ทำงาน 10 นาที
- ใช้เครื่องกำเนิคสัญญาณความถี่สูง ปรับให้ได้สัญญาณพัลส์ 500 mV ความถี่ 100 kcps
- 4. ปรับวงจรงยายหลัก ให้ค่า shaping time เป็น 2 μs ปรับค่าการงยายสัญญาณ
 ให้ได้สัญญาณเอาท์พุศ 5 V
- 5. ปรับให้ ADC ชุดที่1 สางานชุดเดียวด้วยดิพสวิตช์ SW1 บน ADC board โดย ให้ดิพสวิตช์ SW1/1, SW1/2, SW1/3 และ SW1/4 เป็น OFF ใช้เวลา วิเคราะห์ เป็น REAL TIME 10 วินาที บันทึกผลสำหรับ ADC 4ชุดทำงาน ผล การทดสอบเป็นตามรูปที่ 4.13 จากผลการทดสอบจะเห็นว่าตำแหน่งช่อง วิเคราะห์เบี่ยงเบนไม่เกิน 2.06 ช่องวิเคราะห์ (FWHM) เมื่อให้ ADC 4 ชุด ทำงานร่วมกัน

-

4.3 การทดสอบความไม่เป็นเชิงเส้น (nonlinearity)

4.3.1 เครื่องมือและอุปกรณ์

- 1 เครื่องกำเนิคสัญญาณพัลส์ (CANBERRA Model 807)
- 2. เครื่องกำเนิคสัญญาณความถี่สูง (Hewlett Packard model 1407)
- 3. NIM BIN Power Supply (CANBERRA model 1000)
- 4. เครื่องวิเคราะห์พลังงานแบบหลายช่อง (CANBERRA model S-100)
- 5. อุปกรณ์ขยายสัญญาณพัลส์ (CANBERRA model 2021)
- 6. วงจรแปลงผันสัญญาณพัลส์วิลคินสันแบบอาร์เรย์ที่พัฒนาขึ้น
- 7. เครื่องคอมพิวเตอร์ CPU 486 ขึ้นไป 1 ชุด

4.3.2 ทดสอบความเป็นเชิงเส้นในการแปลงสัญญาณของ ADC แต่ละชุด

รูปที่ 4.14 แผนภาพการจัดอุปกรณ์วัดเพื่อทคสอบความเป็นเชิงเส้นในการแปลงสัญญาณของ ADC

- 1. จัคอุปกรณ์การทคสอบคังรูปที่ 4.14
- 2. จ่ายไฟฟ้าให้เครื่องมือและอุปกรณ์ทำงาน 10 นาที
- ปรับให้ ADC ชุดที่1 ทำงานชุดเดียวด้วยดิพสวิตช์ SW1 บน ADC board โดย ให้ดิพสวิตช์ SW1/1 = OFF, SW1/2 = ON, SW1/3 = ON, SW1/4 = ON
- ปรับค่าความสูงของสัญญาณพัลส์ ครั้งละ 1 V จาก 1 ,2......8 Vโดยใช้เวลา การวิเคราะห์ช่วงละ10 วินาที
- บันทึกผลการทคลองสำหรับ ADC ชุดที่1 ได้ผลการทคสอบตามตารางที่ 4.1 และกราฟแสดงความสัมพันธ์รูปที่ 4.15
- ปรับให้ ADC ชุดที่2 ทำงานชุดเดียวด้วยดิพสวิตช์ SW1 บน ADC board โดย ให้ดิพสวิตช์ SW1/1 = ON, SW1/2 = OFF, SW1/3 = ON, SW1/4 = ON

- ทำซ้ำข้อ 4 บันทึกผลการทดลองสำหรับ ADC ชุดที่2 ได้ผลการทดสอบตาม ตารางที่ 4.1 และกราฟแสดงความสัมพันธ์รูปที่ 4.16
- ปรับให้ ADC ชุดที่3 ทำงานชุดเดียวด้วยดิพสวิตช์ SW1 บน ADC board โดย ให้ดิพสวิตช์ SW1/1 = ON, SW1/2 = ON, SW1/3 = OFF, SW1/4 = ON
- ทำซ้ำข้อ 4 บันทึกผลการทดลองสำหรับ ADC ชุดที่3 ได้ผลการทดสอบตาม ตารางที่ 4.1 และกราฟแสดงความสัมพันธ์รูปที่ 4.17
- ปรับให้ ADC ชุดที่4 ทำงานชุดเดียวด้วยดิพสวิตช์ SW1 บน ADC board โดย ให้ดิพสวิตช์ SW1/1 = ON, SW1/2 = ON, SW1/3 = ON, SW1/4 = OFF
- ทำซ้ำข้อ 4 บันทึกผลการทดลองสำหรับ ADC ชุดที่4 ได้ผลการทดสอบตาม ตารางที่ 4.1 และกราฟแสดงความสัมพันธ์รูปที่ 4.18

ตารางที่ 4.1 ผลการทคสอบความเป็นเชิงเส้นในการแปลงสัญญาณของ ADC แต่ละชุด

ความสูงของพัลส์	ADC ชุดที่ 1	ADCชุดที่ 2	ADC ชุดที่ 3	ADC ชุดที่ 4
(volt)	(channel number)	(channel number)	(channel number)	(channel number)
1	82	140	79	137
2	699	708	704	694
3	1166	1201	1192	1174
4	1683	1677	1667	1678
5	2168	2161	2166	2174
6	2635	2643	2654	2653
7	3129	3122	3119	3150
8	3600	3600	3608	3628

รูปที่ 4.15 กราฟความสัมพันธ์ระหว่างความสูงของพัลส์กับช่องวิเคราะห์ ADC ชุดที่ 1

รูปที่ 4.16 กราฟความสัมพันธ์ระหว่างความสูงของพัลส์กับช่องวิเคราะห์ ADC ชุดที่ 2

รูปที่ 4.17 กราฟความสัมพันธ์ระหว่างความสูงของพัลส์กับช่องวิเคราะห์ ADC ชุคที่ 3

รูปที่ 4.18 กราฟความสัมพันธ์ระหว่างความสูงของพัลส์กับช่องวิเคราะห์ ADC ชุดที่ 4

4.3.3 ทดสอบความเป็นเชิงเส้นในการแปลงสัญญาณของ ADC 4 ชุดทำงานร่วมกัน

รูปที่ 4.19แผนภาพการจัคอุปกรณ์วัคเพื่อทคสอบความเป็นเชิงเส้นในการแปลงสัญญาณของ ADC 4 ชุด ทำงานร่วมกัน

- 1. จัดอุปกรณ์การทดสอบดังรูปที่ 4.19
- 2. จ่ายไฟฟ้าให้เครื่องมือและอุปกรณ์ทำงาน 10 นาที
- ปรับให้ ADC 4 ชุดทำงานร่วมกันด้วยดิพสวิตช์ SW1 บน ADC board โดยให้ ดิพสวิตช์ SW1/1, SW1/2, SW1/3 และ SW1/4 = OFF
- ปรับความถิ่ของเครื่องกำเนิดความถี่สูงให้ ADC 4 ชุดทำงานพร้อมกันโดย สังเกตจาก LED ที่ ADC จะกระพริบทั้ง 4 ควง ที่สัญญาณพัลส์เอาท์พุด ของอุปกรณ์ขยายสัญญาณพัลส์เป็น 9 V
- ปรับค่าความสูงของสัญญาณพัลส์ ครั้งละ 1 V จาก 1 ,2......8 Vโดยใช้เวลา การวิเคราะห์ช่วงละ10 วินาที บันทึกผลการทดลองสำหรับ ADC 4 ชุดทำงาน ร่วมกัน ได้ผลการทดสอบตามตารางที่ 4.2 และกราฟแสดงความสัมพันธ์รูปที่ 4.20

ความสูงของพัลส์	ADC 4 ชุดทำงาน		
(volt)	(channel number)		
1	137		
2	689		
3	1189		
4	1663		
5	2157		
6	2628		
7	3088		
8	3582		

ตารางที่ 4.2 ผลการทคสอบความเป็นเชิงเส้นในการแปลงสัญญาณของ ADC 4 ชุคทำงานร่วมกัน

รูปที่ 4.20 กราฟความสัมพันธ์ระหว่างความสูงของพัลส์กับช่องวิเคราะห์ ADC 4ชุคทำงาน

4.4 การทดสอบอัตราในการวิเคราะห์สัญญาณ (throughput count rate)

4.4.1 เครื่องมือและอุปกรณ์

- 1. เครื่องกำเนิดสัญญาณความถี่สูง (Hewlett Packard model 1407)
- 2. NIM BIN Power Supply (CANBERRA model 1000)
- 3. เครื่องวิเคราะห์พลังงานแบบหลายช่อง (CANBERRA model S-100)
- 4. อุปกรณ์ขยายสัญญาณพัลส์ (CANBERRA model 2021)
- รงจรแปลงผันสัญญาณพัลส์วิลคินสันแบบอาร์เรย์ที่พัฒนาขึ้น
- 6. วงจรแปลงผันสัญญาณพัลส์วิลคินสัน(CANBERRA model 8706 450 MHz)
- 7. เครื่องนับความถี่ (Hewlett Packard model 5315A)
- หัววัครังสี NaI(TI) ขนาด 2 นิ้ว x 2 นิ้ว พร้อมฐาน PMT และอุปกรณ์ขยาย สัญญาณ
- 9. High voltage power supply (EG&G ORTEC model 478)
- 10. เครื่องคอมพิวเตอร์ CPU 486 ขึ้นไป 1 ชุด
- 11. ต้นกำเนิดรังสี ซีเซียม-137 ความแรงรังสี 40 μCi
- 4.4.2 ทดสอบอัตราวิเคราะห์สัญญาณเปรียบเทียบกันระหว่าง ADC ที่พัฒนาขึ้นกับ ADC model 8706

รูปที่ 4.21 แผนภาพการจัคอุปกรณ์วัคเพื่อทคสอบอัตราวิเคราะห์สัญญาณด้วยต้นกำเนิดรังสึ

- จัดอุปกรณ์การทดสอบดังรูปที่ 4.21 โดยใช้ ADC วิลดินสันอาร์เรย์ที่พัฒนา ขึ้น
- 2. จ่ายไฟฟ้าให้เครื่องมือและอุปกรณ์ทำงาน 10 นาที
- 3. ปรับให้ ADC ทำงานชุดเดียวด้วยดิพสวิตช์ SW1 บน ADC board
- ปรับ shaping time ที่ 0.5 μs ปรับความละเอียดการวิเคราะห์ 4096 ช่อง ปรับ อุปกรณ์ขยายสัญญาณพัลส์ให้พีดของพลังงานตรงกับช่องวิเคราะห์ 2048
- แปรเปลี่ยนระยะห่างระหว่างต้นกำเนิดรังสี กับหัววัดรังสี โดยอ่านค่าอัตรานับ รังสีงากเครื่องนับความถี่ ในการแปรเปลียนครั้งละ10 kcps งาก 10k,20k
 160k โดยใช้เวลาวิเคราะห์สเปกตรัมครั้งละ10 วินาที
- วิเคราะห์สเปกตรัมของ ซีเซี่ยม-137 ที่อัตรานับตามข้อ 5. โดยจัดให้ ADC วิล ดินสันอาร์เรย์ครั้งละ 1, 2, 3 และ 4 ชุด โดยการเลือกสวิตช์บนบอร์ด
- บันทึกจำนวนนับรังสีใต้พื้นที่สเปกตรัมทั้งหมด (total area) ของการวิเคราะห์ จากการทำงานของ ADC ในข้อที่ 6 ได้ผลตอบสนองอัตรานับรังสีตามตาราง ที่ 4.3 คอลัมน์ที่ 2, 3, 4 และ 5 ตามลำดับ
- เปลี่ยน ADC ของเครื่องวิเคราะห์ MCA เป็น ADC model 8706 แล้วคำเนิน ขั้นตอนซ้ำข้อ 4 และ 5
- วิเคราะห์สเปกตรัมของ ซีเซียม-137 ที่อัตรานับตามข้อ 5. พร้อมบันทึก จำนวนนับรังสีใต้พื้นที่สเปกตรัมทั้งหมด ได้ผลตอบสนองอัตรานับรังสีตาม ตารางที่ 4.3คอลัมน์ที่ 6
- เบียนเส้นกราฟความสัมพันธ์ระหว่างอัตรานับรังสีที่แปรเปลี่ยนกับ ผลตอบ สนองที่วิเคราะห์ได้จาก ADC ในเงื่อนไขต่างๆดังในรูปที่ 4.22
- หาค่าเฉลี่ยของ dead time (τ) เมื่อเครื่องวิเคราะห์ MCA ทำงานด้วยจำนวนชุด ของ ADC ต่างกัน และ ADC รุ่น 8706จากตารางที่ 4.3 ดังสมการ ⁽¹⁾

$$m = \underline{n}_{1+n\tau}$$
 (4.1)
รือ $\tau = \underline{n-m}_{nm}$ (4.2)

$$m =$$
อัตราวิเคราะห์พัลส์ที่แปลงผันได้

$$n =$$
อัตราพัลส์ที่ทางเข้า

$$\tau =$$
dead time ที่เกิดขึ้น

จะได้ค่าเฉลี่ย dead time ดังตารางที่ 4.4

ห่

เมื่อ

- 12. คำนวณอัตราวิเคราะห์สัญญาณจากการคำนวณ ตามสมการที่ 4.1 โดยใช้ค่า เฉลี่ยของ dead time ได้ผลตามตารางที่ 4.4 และเส้นกราฟเปรียบเทียบอัตรา วิเคราะห์พัลส์จากการคำนวณและการวิเคราะห์ของระบบ ระหว่าง ADC อาร์เรย์ 4 ชุด (100 MHz) และ ADC ปกติ (450 MHz) ในรูปที่ 4.23
- เขียนเส้นกราฟความสัมพันธ์ของ dead time กับจำนวนชุดการทำงานของ
 ADC อาร์เรย์ ในรูปที่ 4.24 ซึ่งจะได้สมการของ τ = 19.964 x^{-0.8252} μs
- เขียนเส้นกราฟความสัมพันธ์ของอัตราวิเคราะห์พัลส์กับจำนวนชุดการทำงาน ของ ADC อาร์เรย์ที่ความถี่ทางเข้า 10, 50, 100, 150 kcps ได้ผลดังเส้นกราฟที่ 4.25

ตารางที่ 4.3 ผลการทคสอบอัตราวิเคราะห์สัญญาณด้วยค้นกำเนิดรังสี ซีเซียม-137

4

ความถี่ input	ADC 1 ୪୍ନ	ADC 2 ชุด	ADC 3 ชุด	ADC 4 ชุด	ADC
(kcps)	ทำงาน	ทำงาน	ทำงาน	ทำงาน	450 MHz
	(kcps)	(kcps)	(kcps)	(kcps)	(kcps)
10	7.5	8.1	8.1	8.1	8.9
20	13.6	15.8	16	15.9	16.8
30	19.4	24.3	25.3	25.3	23.9
40	23	30.5	32.3	32.5	30.3
50	26.2	36.6	39.8	40.5	35
60	28.6	41.2	46	47	39
70	30.4	45.2	51.6	53.2	42.6
80	31.7	48.3	56	58.5	45.8
90	32.7	50.8	60.1	63.6	48.5
100	33.7	53.3	63.6	67.5	51
110	33.8	54.5	65.7	71.5	52
120	33.4	55.6	67.5	74.0	53.3
130	33.8	55.8	68	75.1	54.2
140	33.6	56.1	68.5	75.9	54.4
150	33.7	56.6	68.6	76.3	54
160	33.7	56.8	69.1	77	53.4

ความถี่ input	ADC1 ชุด	ADC2 ชุด	ADC3 ชุด	ADC4 ชุด	ADC 450 MHz
(kcps)	τ=21.21 μs	$\tau = 10.18 \ \mu s$	τ = 7.70 μs	τ = 6.94 μs	τ = 10.04 μs
	(kcps)	(kcps)	(kcps)	(kcps)	(kcps)
10	8.25	9.08	9.28	9.35	9.09
20	14.04	16.63	17.33	17.56	16.66
30	18.33	23.01	24.37	24.83	23.06
40	21.64	28.48	30.58	31.31	28.55
50	24.27	33.20	36.10	37.12	33.30
60	26.40	37.34	41.04	42.36	37.46
70	28.17	40.98	45.48	47.11	41.13
80	29.67	44.21	49.50	51.44	44.39
90	30.94	47.11	53.16	55.40	47.31
100	32.04	49.71	56.49	59.03	49.93
110	33.00	52.06	59.55	62.38	52.31
120	33.85	54.20	62.36	65.47	54.47
130	33.60	56.15	64.96	68.34	56.44
140	35.27	57.94	67.37	71.00	58.24

ตารางที่ 4.4 ผลการคำนวนอัตราวิเคราะห์สัญญานจากตารางที่ 4.3

ตารางที่ 4.4 (ต่อ)

ความถี่ input	ADC1 ชุค	ADC2 ชุค	ADC3 ชุค	ADC4 ชุค	ADC 450 MHz
(kcps)	(kcps)	(kcps)	(kcps)	(kcps)	(kcps)
150	35.87	59.58	69.60	73.49	59.90
160	36.42	61.10	71.68	75.81	61.43

รูปที่ 4.24 เส้นกราฟความสัมพันธ์ของ dead time และ งำนวนชุดการทำงานของ ADC อาร์เรย์

รูปที่ 4.25 เส้นกราฟความสัมพันธ์ของอัตรานับพัลส์กับจำนวนชุคการทำงานของ ADC อาร์เรย์ ที่ ความถี่ทางเข้าแตกต่างกัน

4.4.3 ทดสอบอัตราวิเกราะห์สัญญาณด้วยเกรื่องกำเนิดสัญญาณกวามถี่สูง

รูปที่ 4.26 แผนภาพการจัดอุปกรณ์วัคเพื่อทคสอบอัตราวิเคราะห์สัญญาณด้วยเครื่องกำเนิด สัญญาณความถี่สูง

 จัดอุปกรณ์การทดสอบดังรูปที่ 4.26 โดยใช้ ADC วิลลินสันอาร์เรย์ที่พัฒนา ขึ้น

- 2. จ่ายไฟฟ้าให้เครื่องมือและอุปกรณ์ทำงาน 10 นาที
- ปรับค่า shaping time ของอุปกรณ์ขยายสัญญาณพัลส์เป็น 1 μs ปรับความ ละเอียดการวิเคราะห์ 4096 ช่องวิเคราะห์แล้วปรับขนาดสัญญาณพัลส์ให้ได้ ตำแหน่งพืดตรงกับช่องวิเคราะห์ 2048
- แปรเปลี่ยนความถึ่งองสัญญาณพัลส์จากเครื่องกำเนิดความถี่ ครั้งละ 10 kcps
 จาก 10k,20k200k โดยใช้เวลาวิเคราะห์ช่วงละ10 วินาที
- วิเคราะห์สัญญาณพัลส์ที่อัตรานับตามข้อ 4 โดยจัดให้ ADC วิลคินสันอาร์เรย์ ทำงานครั้งละ 1, 2, 3 และ 4 ชุด ด้วยการเลือกสวิตช์บนบอร์ด
- บันทึกจำนวนนับพัลส์ใต้พืดที่พืดทั้งหมด จากการทำงานของ ADC ในข้อ 4
 ได้ผลตอบสนองอัตรานับพัลส์ตามตารางที่ 4.5 ดอลัมน์ที่ 2, 3, 4 และ 5 ตาม ลำดับ
- 7. เปลี่ยน ADC ของเครื่องวิเคราะห์ MCA เป็น ADC model 8706 และคำเนินขั้น ตอนซ้ำตามข้อ 3 และ 4
- วิเคราะห์สัญญาณพัลส์ที่อัตรานับตามข้อ 4 พร้อมบันทึกจำนวนนับใต้พื้นที่ ทั้งหมด ได้ผลตอบสนองอัตรานับพัลส์ตามตารางที่ 4.5 คอลัมน์ที่ 6
- เขียนเส้นกราฟความสัมพันธ์ระหว่างอัตรานับพัลส์กับผลตอบสนองที่
 วิเคราะห์ได้จาก ADC ในเงื่อนไขต่างๆดังรูปที่ 4.27

ความถี่ input	ADC1 ชุด	ADC2 ชุค	ADC3 ชุค	ADC4 ชุค	ADC Model
(kcps)	ทำงาน	ทำงาน	ทำงาน	ทำงาน	8706
	(kcps)	(kcps)	(kcps)	(kcps)	(kcps)
10	9.8	9.8	9.8	9.8	9.9
20	19.7	19.7	19.7	19.7	19.8
30	29.5	29.6	29.6	29.6	29.7
40	19.7	39.6	39.6	39.6	39.7
50	24.8	48.1	47.9	47.5	49.5
60	29.7	59.4	59.4	59.4	59.4
70	34.7	69.4	69.4	69.4	69.3
80	26.4	79.2	79.2	79.3	78.7
90	29.7	89.1	89.1	89.1	58.5

ตารางที่ 4.5 ผลการทคสอบอัตราวิเคราะห์ด้วยเครื่องกำเนิดสัญญาณพัลส์ความถี่สูง

ตารางที่ 4.5 (ต่อ)

ความถี่ input	ADC1 ชุด	ADC2 ชุด	ADC3 ชุด	ADC4 ชุด	ADC Model
(kcps)	ทำงาน	ทำงาน	ทำงาน	ทำงาน	8706
	(kcps)	(kcps)	(kcps)	(kcps)	(kcps)
100	33	66	99	99	50.2
110	36.5	72.8	109	109.3	49.5
120	30	60	89.8	120	59.8
130	32	64.8	97.3	130	65
140	35	70.1	105.1	140	70
150	37.4	74.5	111	146	74.9
160	32.8	63.6	93.8	123.3	79.5
170	33.9	67.7	101.3	135.1	82.4
180	35.9	71.7	106.8	143.7	84.3
190	38	75.9	113.9	151.2	70.6
200	39.7	79.5	119.2	159	77.3

รูปที่ 4.27 เส้นกราฟการตอบสนองอัตรานับพัลส์(throughput pulse rate) ที่ช่องวิเคราะห์ 2048

4.5 ทดสอบการวิเคราะห์สเปกตรัมของต้นกำเนิดรังสีมาตรฐาน

4.5.1 เครื่องมือและอุปกรณ์

- หัววัครังสึ NaI(Tl) ขนาด 2 นิ้ว x 2 นิ้ว พร้อมฐาน PMT และอุปกรณ์ขยาย สัญญาณ
- 2. High voltage power supply (EG&G ORTEC model 478)
- 3. NIM BIN Power Supply (CANBERRA model 1000)
- 4. เครื่องวิเคราะห์พลังงานแบบหลายช่อง (CANBERRA model S-100)
- 5. อุปกรณ์ขยายสัญญาณพัลส์ (CANBERRA model 2021)
- วงจรแปลงผันสัญญาณพัลส์วิลคินสันแบบอาร์เรย์ที่พัฒนาขึ้น
- 7. วงจรแปลงผันสัญญาณพัลส์วิลคินสัน(CANBERRA model 8706 450 MHz)
- 8. เครื่องนับความถี่ (Hewlett Packard model 5315A)
- 9. เครื่องคอมพิวเตอร์ CPU 486 ขึ้นไป 1 ชุด
- 10. ค้นกำเนิดรังสี ซีเซียม-137
- 11. ต้นกำเนิครังสี โคบอลต์-60

4.5.2 ทดสอบการวิเคราะห์สเปกตรัมของต้นกำเนิดรังสีมาตรฐาน

รูปที่ 4.28 แผนภาพการจัคอุปกรณ์วัคเพื่อทคสอบการวิเคราะห์สเปกตรัมของต้นกำเนิครังสี

4.5.2.1 ทดสอบการวิเคราะห์พลังงานรังสีแกมมาของ ชีเชียม-137

- 1. จัดอุปกรณ์การทดสอบดังรูปที่ 4.28 โดยใช้ ADC Model 8706
- ใช้ต้นกำเนิดรังสี ซีเซียม-137 วางห่างจากหัววัดรังสีอ่านค่าอัตรานับจากเครื่อง นับความถี่ให้ได้ 30 kcps
- วิเคราะห์สเปกตรัมของ ซีเซียม-137ใช้เวลาวิเคราะห์ REAL TIME 100 วินาที ได้ผลวิเคราะห์สเปกตรัมดังรูปที่ 4.29 ได้ resolution ของระบบวิเคราะห์เท่า กับ 7.66 %และ LIVE TIME บันทึกได้ 68 วินาที
- เปลี่ยน ADC ของเครื่องวิเคราะห์ MCA เป็น ADC วิลคินสันที่พัฒนาขึ้นและ คำเนินการตามขั้นตอนที่ 2
- 5. ปรับให้ ADC ทำงาน 1 ชุดและ 4ชุด เพื่อวิเคราะห์สเปกตรัมของซีเซียม-137 ใช้เวลาวิเคราะห์ REAL TIME 100 วินาที ได้ผลวิเคราะห์สเปกตรัมดังรูปที่ 4.30 และ 4.31 โดยได้ resolution ของระบบวิเคราะห์ที่ใช้ ADC 1 ชุดทำงาน เท่ากับ 7.39 % LIVE TIME บันทึกได้ 63 วินาที และเมื่อใช้ ADC ทำงาน พร้อมกัน 4 ชุด จะมี resolution ของระบบวิเคราะห์เท่ากับ 7.57 % LIVE TIME บันทึกได้ 100 วินาที จากผลการทดลอง เมื่อเปรียบเทียบผลของ LIVE TIME ของ ADC model 8706 ซึ่งใช้ฐานความถี่ 450 MHz กับ ADC อาร์เรย์ที่ ทำงานพร้อมกัน 4 ชุด จะเห็นว่า ADC ที่พัฒนาขึ้นให้ LIVE TIME สูงกว่า และมี resolution ของระบบที่ใกล้เคียงกัน
- 6. ทคสอบการวิเคราะห์สเปกตรัมที่พลังงาน 662 keV. ของ ซีเซียม-137 และ พลังงาน 1173 keV., 1332 keV. ของ โคบอลต์-60 ใช้เวลาวิเคราะห์ 100 วินาทีผลการวิเคราะห์เป็นไปคังรูปที่ 4.32
- 7. ทคสอบปรับเทียบพลังงานเพื่อสร้าง calibration curve ให้ผลคังรูปที่ 4.33

รูปที่ 4.30 สเปกตรัมซีเซียม-137 วิเคราะห์ด้วย ADC อาร์เรย์ที่พัฒนาขึ้นปรับให้ ADC ทำงาน 1ชุด

Energy (keV)

รูปที่ 4.32 สเปกตรัมของ ซีเซียม-137 ร่วมกับโคบอลต์-60 ด้วย ADC ที่พัฒนาขึ้น

รูปที่ 4.33 เส้นกราฟปรับเทียบพลังงาน

รูปที่4.34 ภาพถ่ายการจัคอุปกรณ์เพื่อการทคสอบสมรรถนะของ ADC