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APPENDIX A

The calculation shown below is for l%Pd-3 %Ag/Al2 0 3 . The alumina support 
weight used for all preparation is 2  g.

Reagent: - Palladium (II) nitrate hexahydrate (Pd(N0 3 )2 '6 H2 0 )
Molecular weight = 338.41

- Silver (III) nitrate (Ag(NC>3))
Molecular weight = 169.87

- Support:- Alumina

Calculation for Palladium Impregnation

Based on 100 g of catalyst used, the composition of the catalyst will be as follows:

CALCULATION FOR CATALYST PREPARATION

Palladium = 1 g
Silver 3g
Alumina = 100-0+3) = 97 g

For 2 g of alumina
Palladium required = 2x1/97 g 0.0206 g

Pd(N0 3 )2 '6 H2 0  required = Palladium required X MW of Pd(N0 3 )2 '6 H2 0

MW of Pd
= 0.0206x338.41/106.42 = 0.0655 g

Since the pore volume of the alumina support is 0.25 ml/g and the total 
volume of impregnation solution which must be used is 0.5 ml by the requirement of 
dry impregnation method, the de-ionised water is added until the total volume of 
impregnation solution is 0.5 ml.
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Calculation for Silver Impregnation

Based on 100 g of catalyst used, the composition of the catalyst will be as follows: 
Palladium = 1 g
Silver
Alumina = 

For 2 g of alumina

3 g
100—(1+3) = 97 g

Silver required = 2x3/97 g = 0.0618 g

Ag(N0 3 ) required = Silver required X MW of Ag(N0 3 ) 
MW of Ag

= 0.0619x169.87/107.87 = 0.0975 g

Since the pore volume of the alumina support is 0.25 ml/g and the total 
volume of impregnation solution which must be used is 0.5 ml by the requirement of 
dry impregnation method, the de-ionised water is added until the total volume of 
impregnation solution is 0.5 ml.
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APPENDIX B

CALCULATION CURVES
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re B.l The calibration curve of hydrogen from TCD of GC-8 A.
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Figure B.2 The calibration curve of acetylene from FID of GC-8 A.



APPENDIX c

The catalyst performance for the selective hydrogenation of acetylene was 
evaluated in terms of activity for acetylene conversion and ethylene gain based on the 
following equations:

CALCULATION OF C2H2 CONVERSION AND C2H4 GAIN

C2H2 + H2  -------------►  C2H4 (C.l)
C2H4 + H2 --------------*  C2H6 (C.2)

Activity of the catalyst for acetylene conversion is defined as moles of 
acetylene converted with respect to acetylene in the feed:

C2H2 conversion (%) = 1 0 0 x[ mole of C2H2in feed -  mole of C2H2 in product] (i)
mole of C2H2in feed

where mole of C2H2 can be measured employing the calibration curve of C2H2 in 
Figure B.l, Appendix B., i.e.,
mole of C2H2 = (area of C2H2 peak from integrator plot on GC-8 A) X 2.623x1 O' 12 (ii).

Ethylene gain was calculated from moles of hydrogen and acetylene as explained 
in section 4.2:

C2H4 gain (%) = 1 OOx[dC2H2 -  (dH2-dC2H2)] (iii)
dC^H2

where dC2H2 = mole of acetylene in feed -  mole of acetylene in product (iv)
dH2 = mole of hydrogen in feed -  mole of hydrogen in product (v)

mole o f C2H2 is calculated by using (ii) whereas mole o f H2 can be measured employing
the calibration curve o f H2 in Figure B.2, Appendix B., i.e.,
mole o f H2 = (area o f H2 peak from integrator plot on GC-8A) X 2.740x1 o 12 (vi)



APPENDIX D

Calculation of the metal active sites and metal dispersion of the catalyst measured by 
CO adsorption is as follows:

CALCULATION FOR METAL ACTIVE SITES

Let the weight of catalyst used = พ g
Integral area of CO peak after adsorption = A unit
Integral area of 45 pi of standard CO peak = B unit
Amounts of CO adsorbed on catalyst = B-A unit
Volume of CO adsorbed on catalyst = 45x[(B-A)/B] ftl
Volume of 1 mole of CO at 30°c = 24.86x1 o6 ฝ
Mole of CO adsorbed on catalyst = [(B-A)/B]x[45/24.86x 106] mole
Molecule of CO adsorbed on catalyst = [1.61xl0'6]x [6.02x1023]x[(B-A)/B] molecules
Metal active sites = 9.68xl017x[(B-A)/B]x[l/พ] molecules of co /g  of catalyst



APPENDIX E

CALCULATION OF THE CRYSTALLITE SIZE

Calculation of the crystallite size by Debye-Scherrer equation

The crystallite size calculated from the half-height width of the diffraction 
peak of XRD pattern using the Debye-Scherrer equation.

From Scherrer equation:

The X-ray diffraction broadening (ft) is the pure width of a powder diffraction 
free from all broadening due to the experimental equipment. a-Alumina is used as a 
standard sample to observe the experimental broadening since its crystallite size is 
larger than 2000 Â. The X-ray diffraction broadening (ft) can be obtained by using 
Warren’s formula.

From Warren’s formula:

(E.l)

K = Crystallite-shape factor = 0.9 
X = X-ray wavelength, 1.5418 Â for CuKa 
6 = Observed peak angle, degree 
p  = X-ray diffraction broadening, radian

(E.2)

where Bm = The measured peak width in radians at half height. 
Bs = The corresponding width of the standard material.
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Example: Calculation of the crystallite size of a-alumina
The half-height width of peak = 0.30° (from Figure E. 1)

= (2îi X 0.30)/360 
= 0.0052 radian

The corresponding half-height width of peak of of a-alumina (from the Bs 
value at the 2 theta o f43.32° in Figure E.2) = 0.0043 radian

The pure width, p  = -  ร1

= -v/o.00522 -  0.00432

= 0.0029 radian

B = 0.0029 radian 
26 = 43.32 
6  = 21.66 
2 = 1.5418 À

The crystallite size = — x — = 514.8 Â = 51.5 nm0.0029 cos 21.66

Figure E.l The observation peak of a-alumina for calculating the crystallite size.
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Figure E.2 The graph indicating that value of the line broadening attributeto the 
experimental equipment from the a-alumina standard.
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APPENDIX F

CATALYST EVALUATION AS FUNCTION OF TEMPERATURE

(A)

(B)

Temperature (C)

Figure F.l Dependence of the catalytic performance of fresh commercial catalyst as a 
function of temperature: (A) % acetylene conversion and (B) normalized 
ethylene gain, GHSV, 5400 h"1.
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AbstractRole of coke deposits, regeneration, and 
reactivation conditions on the properties of Pd- 
Ag/Al20 3 acetylene hydrogenation catalysts have 
been investigated. XRD andyses of fresh and spent 
catalysts indicated that there were no changes in the 
crystal size and phase of alumina after reaction. 
Temperature program oxidation study showed that 
more than one type of coke deposits existed on the 
catalyst surface and were completely burned off at 
temperature around 500-550°C. Oxygen concentration 
did not have a significant imjwct on catalyst 
regeneration since most of the catalyst active surface 
can be recovered after combustion at 500°c for 2 h in 
either 0 2 1% or 21%. N20  pretreatment can increased 
the active sites of the fresh Pd-Ag catalysts when 
reduced at 200°c. There was no such effect on the 
spent-regenerated catalysts. Reduction at 500°c also 
produced higher amount of active Pd surface than 
reduction at 200°c. Enhancement of acetylene 
conversion as well as ethylene gain was observed for 
N20-treated fresh Pd-Ag/Al20 3 catalyst. The N20  
pretreatment effect was much less pronounced when 
the spent-regenerated catalysts were employed.
Keywords: acetylene hydrogenation, coke deposits, 
Pd-Ag/Al20 3, catalyst 1
1. IntroductionSelective hydrogenation of acetylene in 
excess ethylene is an important process used to 
remove trace amounts of acetylene from ethylene 
feedstock in the production of polyethylene. An over
hydrogenation of ethylene to ethane has to be avoided 
while acetylene has to be reduced to a few ppm. 
Supported palladium catalysts are known to be the 
most selective for such reaction and usually employed 
in the industrial processes. However, catalytic activity 
and ethylene gain decrease with time-on-stream due 
to accumulation of large amounts of coke blocking 
the catalyst pores and inducing mass transfer 
limitations. Liu et al. [1] has found that steam alone 
cannot remove all deposited hydrocarbon on catalyst 
surface, and regeneration in air is needed to stripped hydrocarbon completely. The purposes of this study

are to investigate the effects of amount of coke 
deposits and the conditions used for catalyst 
regeneration and activation on the performances of 
Pd-Ag/Al20 3 catalysts in selective acetylene 
hydrogenation. Various analytical techniques such as 
JGLD, temperature-programmed oxidation, and CO- 
pulse chemisorption were applied.
2. Experimental
2.1 Catalyst

Fresh Pd-Ag catalysts used in this study are 
composed of 0.03wt% of Pd and 0.18wt% of Ag on 
a-Al20 3 and are denoted as Sample A. The BET 
surface area of the fresh catalyst is approximately 40 
m2/g. Spent catalysts with various wt% of coke 
deposits were obtained from an industrial C2-reactor 
at different conditions and are denoted as samples B 
to E.
2.2 Catalyst Characterization

2.2.1 X-ray diffraction
The X-ray diffraction patterns of the catalysts 

with and without coke were carried out using an X- 
ray refractometer, SIEMENS D5000, with Cu Ka 
radiation, accurately measured in the 20-80° 2  theta 
angular region.

2.2.2 Determination of coke concentration
Samples with coke deposited were burned off in 

air at 500°c and the weight losses were measured. 
Reference sample of fresh catalyst was given the 
same treatment and the difference in weight loss was 
attributed to coke.

2.2.3 Temperature programmed oxidationTPO was performed in a Micromeritic 
ChemiSorb 2750 automated system attached with 
ChemiSoft TPx software. Catalyst samples were 
packed in a u-shape quartz tube. To eliminate trace 
amount of water, the catalysts were heated in He to 
200°C and holding at this temperature for 2 h and then 
cooled to room temperature. The sample was heated 
at the rate of 5°c/min in a 25 ml/min flow of 1%02 in
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He.
2.2.4 CO chemisorption
The amounts of CO chemisorbed on the catalysts 

were measured using a Micromeritic ChemiSorb 2750 
automated system. The sample was reduced in a H2 
flow at 200°c for 2 h then cooled down to ambient 
temperature in a He flow. When the treated catalysts 
were used, the samples were reduced with H2, as 
mentioned above, then cooled down to the pretreatment temperature and held at that temperature 
for 10 min in a He flow before N20  was introduced. 
CO-adsorption was measured after the reactor was 
cooled down to the ambient temperature.

2.2.5 Optical MicroscopeCross-sectional areas of the catalyst pellets were
examined under a microscope. Pellet samples were 
prepared by grinding and polishing them with an ultra 
fine abrasive into disc shape with an approximate 
depth of 1 mm and then cleaning them by blowing. 
An Olympus SZX-12 optical microscope with a 
digital camera attached was used to take photographs 
of the magnified cross-sectional area of the catalyst 
pellets. The sample was placed under the specimen, 
and its photographs were taken at 20X magnification 
for observing the whole cross-section and at 45X for 
both the edge and the center.
2.3 Catalyst Regeneration and Activation

Regeneration was performed at 500°c for 2h in 
horizontal quartz tube with a 100ml/min flow of 
1%02 or 21%02 in an inert. The catalysts were 
pretreated with or without N2(ว prior to the reaction 
test. The catalysts were reduced ๒ Hi flow at 200°c 
for 2 h with a heating rate of °C/min, and then cooled 
down to the pretreatment temperature, 90°c [2] A 
small volume, 200pl/g of N20  was injected into the 
system afterwards.
2.4 Reaction StudyAcetylene hydrogenation was performed in a 9 
mm (i.d.) quartz tube reactor. Prior to the start of each 
run, the catalyst was reduced in situ  with H2 by 
heating from room temperature to 200°c at a heating 
rate of 10°c /min. Then the reactor was purged with 
argon and cooled down to the reaction temperature, 
70°C. A feed composition of 1.4644% C2H2, 1.7052% 
H2, 15.4695% C2H6 and balanced C2H4 with a GHSV 
of 5400 h' 1 were used. The composition of product and feed stream were analyzed by a Shimadzu GC 8A 
equipped with TCD and FID detectors (molecular 
sieve-5A and carbosieve ร-2 columns, respectively)
3. Results and DiscussionThe XRD patterns of fresh and spent Pd- 
Ag/Al20 3 catalysts are shown in Figure 1. All the 
XRD peaks indicate the presence of alumina in both 
alpha and transition phases. No XRD peaks for 
palladium and silver oxides were observed due

probably to the very low amount of the metals present 
on the catalysts and/or overlapping with the alumina 
peaks. XRD analyses of fresh and used catalysts 
indicated that there were no changes in phase of 
alumina after acetylene hydrogenation reaction.

LiK น >L

I k . น  J

Pd-Ag catsiyst

Fresh PcJ-Aa catalyst

0 20 30 40 so 60 70 80 90

Figure 1 XRD patterns of fresh and spent Pd- 
Ag/Al20 3 catalysts

The amount of carbonaceous deposits on the 
spent catalysts was measured by temperature 
programmed oxidation technique and shown in 
Figure 2. After reaction, coke may deposit on the 
catalyst surface resulting in deactivation of the 
catalyst which can decrease the activity, selectivity 
and life time of the catalysts [3]. The amount of 
carbon deposits was found to be in the order of 
sample B < c  < D < E. The difference in the amount of carbon deposits on Pd-Ag catalysts may be induced 
by different reaction conditions such as sample 
position, sample temperature, etc. However, most of 
the carbon deposits appeared to be burned off at ca. 
500-550°C.

0 200 400 600 800Temperature (°C)
Figure 2 Temperature programmed oxidation (TPO) of the catalysts

Optical micrographs of cross-sectioned catalysts 
are shown in Figure 3. Coke formation was 
concentrated near the pellet periphery and appeared to 
be growing toward to the pellet center as %coke 
deposits increased. Coke concentrations in terms of 
wt% and amount of active sites measured by CO- 
pulse chemisorption are reported in Table 1. The 
results were in accordance to the TPO รณdy. As 
%coke deposits increased the catalyst active sites
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decreased suggesting that the active surface of Pd 
were blocked by the carbon deposits.

conditions. It was found that N20  pretreatment can 
increased the active sites of the fresh Pd-Ag catalysts 
when reduced at 200°c. During N20  pretreatment 
accessible Pd sites responsible for acetylene 
hydrogenation to ethylene are enhanced while the 
sites for direct ethane formation are suppressed [4]. 
However, in this study we found that pretreatment of 
used catalysts did not result in the enhancement of Pd 
active sites. It is suggested that the changes in the 
catalyst geometry/morphology after being used in acetylene hydrogenation altered the N20  pretreatment 
effect In general, reduction at 500°c produced higher 
amount of'active Pd surface than those reduced at 
200°c due probably to larger amounts of PdO were 
able to be reduced.

Figure 3 Optical micrographs of cross-sectioned Pd- 
Ag/ A120 3 catalysts
Table 1 Characteristics of Pd-Ag/Al20 3 catalysts

Sample
Coke

concentration 
(พt%)

Active site 
(*10 I7site/g cat.)

A (fresh) 0 2.76
B 0.18 1.54
c 0.24 0.58
D 0.28 0.29
E 0.54 Nil

Table 3 Active site of the catalyst after activation 
under different conditions (* 10 l7site/g cat.)

Reduced 200°c Reduced 500°c
Sample untreated n 20 -

treated untreated n 20 -
treated

A 2.76 3.77 5.72 5.61
B 2.60 2.62 5.07 6.79
c 2.57 1.68 5.41 4.86
D 2.81 2.64 5.15 5.30
E 2.74 2.58 4.42 4.39

The catalyst samples with coke deposits (sample 
B-E) were then regenerated at 500°c for 2 h using 
different 0 2 concentration (1% and 21% 0 2). After 
regeneration, catalyst active sites were measured 
again by CO chemisorption and results are given in 
Table 2. It was found that the catalyst active sites 
were recovered for most of the catalyst samples after 
regeneration with either 0 2 1% or 2 1 % except that of 
sample E (the highest coke deposits) that regeneration 
was incomplete resulting in lower amount of active 
Pd sites. It is noted that CO was not adsorbed on Ag.

After regeneration and activation, the catalysts 
were tested for their catalytic performances in 
selective hydrogenation of acetylene in excess 
ethylene. The catalytic performance was evaluated in 
terms of acetylene conversion and ethylene gain (%) 
according to the following schemes:

C2H2 + H2 -» c 2a,
C2H4 + H2 -> C2H6, hence
C2H2 + 2H2 -» C2H6

Table 2 Catalyst regeneration under different 0 2 
concentrations

Sample

Aftivp citp
(*10',7site/g cat.)

1% 0 2 2 1 % 0 2

B 2.83 2.60
c 2.71 2.57
D 2.70 2.81
E 2.34 2.74

Catalyst active sites measured by CO 
chemisorption after activated by H2 reduction at 200° 
and 500°c with and without N20  pretreatment are 
shown in Table 3. The conditions used for N20  
pretreatment in this study were similar to those 
reported by Ngamsom et al. [2] to be the best

Acetylene conversion is defined as mole of acetylene 
converted with respect to acetylene in feed. Ethylene 
gain is defined as:
Ethylene gain = C7H-, hydrogenated to C->Hd X 100 

Total hydrogenated C2H2
The ethylene being hydrogenated to ethane is the 
difference between all the hydrogen consumed and all 
the acetylene which has been totally hydrogenated
Ethylene gain = [ d c  1แ  2 ~ X Q̂Q

d C  2แ  2
Or it can be written as:
Ethylene gain = (2 -  ■ -ffl;2--)jcioo 

d c  2H  2
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Acetylene conversion and ethylene gain of fresh (A) 
and regenerated catalyst samples (B) are shown in 
Figured and 5, respectively.

Time-on-stream (h)
Figure 4 Acetylene conversions as a function of time- 
on-stream

Time-on-stream (h)
Figure 5 Ethylene gain as a function of time-on- 
stream

It can be seen that acetylene conversion as well 
as ethylene gain increased for N20-treated fresh Pd- 
Ag/Al20 3 catalyst. Acetylene conversion of the fresh 
catalyst was increased by 22%. The N20  pretreatment 
effect was much less pronounced when the spent
regenerated catalysts were employed. Although, 
acetylene conversion of the used catalysts increased 
by 16%, ethylene gain decreased by 10%. The results 
suggest that there might be some changes in the 
catalyst properties after being used in acetylene 
hydrogenation reaction such as Pd-Ag geometry and 
morphology that resulted in different phenomena 
observed during N20  pretreatment and acetylene 
hydrogenation reaction between fresh and used 
catalysts. 5
5. ConclusionsAmount of coke and oxygen concentration used 
in catalyst regeneration do not have a significant 
impact on the amount of active Pd surface recovered. 
However, study of catalyst activation by N20  
pretreatment revealed that there might be some 
changes in morphology or geometry of Pd and Ag on

A120 3 surface after used in acetylene hydrogenation 
thus only fresh catalysts were able to activate by N20.
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