CHAPTER IV

CHEETAH 18 TRADITIONAL PERFORMANCE

4.1 Line Balancing Analysis

4.1.1 Introduction

Base on the existing line balancing of Cheetah18 product, the highest line loading that can be obtained is equal to 9.9 KDGR which this number is calculated by basing on 21 working hour per day, 72.22% cumulative yield and 90% utilization as illustrated in Table 4.1

In order to increase the line loading capacity, the bottleneck operations have been investigated by considering on the percent sampling and UPH of each operation. It is obviously that Spot cleaning operation, Tail tacking operation and space limitation are the constraints.

4.1.2 Spot Cleaning Operation Analysis

The existing capacity of Spot cleaning operation is only 9,895 units/day which is calculated from:

Capacity by operation = <u>Capacity at operation</u> (Unit/day) x 100 Percent Sampling

$$= \frac{12,474 \times 100}{126.06}$$

= 9,895 units/day

In addition, the percent sampling is equal to 126.06% which it means that the current capacity is overloading by comparing to the number of operators. The problem of this is due to the high percentage of fast rework contamination at the backend line which is about 44%.

The high percentage of backend line contamination is caused by the hidden factory in Cheetah 18 manufacturing line such as spot cleaning effectiveness, specification, Blower location, etc. In order to obtain higher capacity at this operation, all of hidden factories must be minimized or eliminated. Therefore, the Six sigma is the concept that is selected for solving this problem, which it is basically composed of four phases which are Measure, Analyze, Improve and Control phase. The details will be illustrated in Chapter of the Backend Line Contamination Reduction.

In addition, time study has been performed at this operation in order to observe the bottleneck elements which is illustrated in Table 4.2.

4.1.3 Space Limitation and Autogrammer Operation Analysis

Base on the obtained Line balancing, we have seen that the spacing is limited at 40 cm., so, there is no opportunity to add an extra operators in order to obtain more loading capacity.

However, we have seen an opportunity to increase manufacturing line loading capacity at Autogrammer operation. The reason is that Autogrammer operation is like a rework operation, most of incoming parts are required to adjust at this operation which it is non-value added process. The first yield of this operation is only 24% which it means that only 24 out of 100 parts are pass and no need for adjustment. So, If the first yield is improved (percent no adjusted increase), the number of autogrammers can be reduced. The more space can be obtained. Beside, the bending elements at autogrammer has been pulled of from the database which is provided in Table 4.3

The problem of this low yield is also due to the hidden factory at Front line operation such as the epoxy application procedure at FOS bond operation, incoming preload of raw flexure, FOS vendor, etc. Six sigma is selected method to minimize or eliminate these hidden factories which the details will be shown in Chapter of Improve of HGA Preload First Yield.

4.1.4 Tail Tacking operation analysis

Base on an existing Cheetah 18 line balancing, 9.9 KDGR, Tail Tacking operation is not a bottleneck operation but it will after other operations capacities are improved. The current capacity of this operation is equal to 10,093 units/day.

However, due to the design constraints on Cheetah 18 product, we can not change the current tail tack process because it has improved the reliability of product at Drive level.

If the autogrammer first yield is improved, the more space will be gained from the reduction of autogrammer. In consequently, an additional operator can be added to this operation in order to increase the capacity.

4.2 Actual Cheetah 18 Input/ Output (Appendix C)

The actual Cheetah 18 Input and Output, before improvement, have been passive from the database which it is illustrated in Table 4.4. The Output is calculated by basing on 72.22% cumulative yield.

• An actual loading capacity by cell by day can be calculated as below:

Average Loading by cell/ day = $\frac{\text{Total Loading}}{\text{Total working day x Number of cells}}$ $= \frac{1,241,307}{7 \text{ x } 18}$ = 9,852 HGAs by cell/ day

• An actual output by cell by day can be calculated as below:

Average Output by cell/ day =		Total Output
		Total working day x Number of cells
	11	896,472 7 x 18
	=	7,115 HGAs by cell/day

So, these numbers will be used as base line for comparing between before and after implement the improvement activities.

			Revised					
OPERATION	SAMPLING			9.9	Canacity	Snace R	anirement	Relurned Unit
	Jean Eling	1120	0,11		Capacity	_ opace m	Total	
MRB SCREEN							60	
PRETRIM	100 00%	100 00%	662	1	12512	70	70	
LOAD HEAD	100 00%	100.00%	340	2	12852	70	140	
GIMBAL BOND	100.00%	100 00%	195	3	11057	70	210	
FLEX BOND	100 00%	100.00%	204	3	11567	75	225	
FLEX LEAD BOND	100 00%	100 00%	195	3	11057	80	240	
SERVILANCE # 1 (Sampling)	25 00%	100 00%	160	1	3024	60	60	
SPC BOND PULL	3 53%	100 00%						
COAT LEAD	100 00%	100 00%	372	2	14062	60	120	
TAIL TACKING	100200%	100.00%	267	2	10093	60	120	
THERMAL OVEN							366	
UNLOAD HGA FROM JIT TOOL	100 00%	100 00%	382	2	14440	70	140	
LOAD IAT TEST ARM	123 26%	100 00%	372	2	14062	70	:40	
SERVILANCE # 2 (Sampling)	25 00%	100 00%	160	1	3024	60	60	
SPOT CLEANING	126.06%	100.00%	165		12474	60	240	26 06%
HEAD SETTER	100 00%	100 00%	585	1	11057	60	ō0	
PRELOAD	100 00%	100 00%	159	4	12036	80	320	
STATIC ATTITUDE ADJUST	126.06%	100.00%	225	з	12758	110	330	
REMOVE PRE-SHUNT	100.00%	100 00%	870	1	16443	70	70	
MRE	100.00%	96 00%	293	2	11075	110	220	
ELECTRICAL TESTER	100 00%	81.25%	95 0	55	9900			2 80%
FLY TESTER	100 00%	100.00%		013				
SPC ALIGNMENT		100 00%		0				
SPC GIMBAL BOND		100.00%		0				
AUTO SHUNT WIRE	100.00%	100 00%	437	1	8259	75	75	
FLAPPER	50.00%	100.00%	250	1	4725	60	60	
UNLOAD TEST ARM	123 26%	100 00%	327	2	12361	75	150	
FINAL INSPECTION	137 92%	99 00%	128	5	12096	70	350	14.00%
QC	10.00%	100 00%	128	1	2419	60	60	
PACK	100.00%	100.00%	1500	1	28350	100	100	
SPC				1	t.			
мн				2				
LEAD GIRL				1				
TOTAL HEAD COUNT				57.93				
HEAD COUNT IN LINE				49				

Space Requirement	
Front line Space available	
Space Requirement front line	1245
Back line Space available	2781
Back line Space Requirement	2741
Total space requirement	3986
No. 2 AND	40

Table 4.1 Cheetah18 Manufacturing Line Loading Capacity

ELEMENT	QTY.	%	STANDARD	SUMMATION	AVERAGE
			TEST TIME	TIME	TEST TIME
LOAD TEST ARM TO TRAY		-	2	2	2
TOTAL IN	2897				
NOT BEND	702	24.23%	6.6	6.60	1.60
BEND1	1198	41.35%	14	14.00	5.79
BEND2	636	21.95%	21.8	21.80	4.79
BEND3	280	9.67%	29.60	29.60	2.86
BEND4	61	2.11%	35.70	35.70	0.75
BEND5	8	0.28%	41.8	41.80	0.12
BEND6	6	0.21%	47.90	47.90	0.10
BEND7	1	0.03%	53.90	53.90	0.02
BEND8	5	0.17%	59.9	59.90	0.10
BEND9	0	0.00%	65. 9	65.90	0.00
UNLOAD TEST ARM TO TRAY			2	2.00	2.00
TOTAL	2897	1	SUMATION TI	ME	20.12
			STANDARD T	IME(ALLOWA	22. 6 11
			HOUR PER UI	TIV	0.0063
			UPH		159.2
			CAPACITY PE	R OPERATIO	3009

Table 4.2 Spot Cleaning Elements

ELEMENT	QTY.	%	STANDARD	SUMMATION	AVERAGE	
			TEST TIME	TIME	TEST TIME	
LOAD TEST ARM TO TRAY			2	2	2	
TOTAL IN	19446					
NOT BEND	11704	60.19%	6.6	6.60	3.97	
BEND1	6866	35.31%	14	14.00	4.94	
BEND2	825	4.24%	21.8	21.80	0.92	
BEND3	42	0.22%	29.60	29.60	0.06	
BEND4	5	0.03%	35.70	35.70	0.01	
BEND5	2	0.01%	41.8	41.80	0.00	
BEND6	1	0 .0 1%	47.90	47.90	0.00	
BEND7	1	0.01%	53.90	53.90	0.00	
BEND8	0	0.00%	59.9	59.90	0.00	
BEND9	0	0.00%	65.9	65.90	0.00	
UNLOAD TEST ARM TO TRAY			2	2.00	2.00	
TOTAL	19446	1	SUMATION TI	ME	13.92	
			STANDARD T	ME(ALLOWAN	15.644	
			HOUR PER UI	TIN	0.0043	
		UPH		230.1		
	CAPACITY PE	4349				

Table 4.3 Autogram Elements

÷.

0.0

Production Report

Clieetali18 Product Number of Cells = 1

	S	at	Sun		Mon		Tue		Wed	
	Target	Actual								
Input	180,000	181,517	150,000	151,987	180.000	180,332	180,000	180,766	180,000	182.125
Output	129,996	131,092	108,330	109,765	129.996	130,236	129,996	130,549	129,996	131.531

	Thu		F	ri	WTD		
	Target	Actual	Target	Actual	Target	Actual	
Input	180,000	180.827	180,000	183.753	1.230.000	1,241.307	
Output	129,996	130.593	129,996	132,706	888.306	896.472	

Table 4.4 Summary of Cheetah 18 product daily input/output (Before improvement)