TOUGHENING OF POLYBENZOXAZINE BY SILK SERICIN-g-PLA/MARL BIOCOMPOSITES

Juthamas Mahajaroensiri

14.1

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2009

522 .54

Thesis Title:	Toughening of Polybenzoxazine by Silk Sericin-g-PLA/Marl
	Biocomposites
By:	Juthamas Mahajaroensiri
Program:	Polymer Science
Thesis Advisors:	Assoc. Prof. Rathanawan Magaraphan
	Dr. Thanyalak Chaisuwan

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee:

May Maryable Chaisuan

(Assoc. Prof. Rathanawan Magaraphan)

(Dr. Thanyalak Chaisuwan)

Nothailian M. AKTIWAN SHOTZPEUL

(Asst. Prof. Hathaikarn Manuspiya) (Asst. Prof. Artiwan Shotipruk)

have byin

(Dr. Orasa Onjun)

ABSTRACT

5072006063: Polymer Science Program
Juthamas Mahajaroensiri: Toughening of Polybenzoxazine by Silk
Sericin-g-PLA/Marl Biocomposites.
Thesis Advisors: Assoc. Prof. Rathanawan Magaraphan and
Dr. Thanyalak Chaisuwan 188 pp.
Keywords: Silk Sericin/ Polylactide(PLA)/ Marl/Polybenzoxazine(PBZ)/
Biocomposites

Polylactide (PLA) is the most widely known biodegradable polymer in use today. Additionally, natural proteins in silk, sericin, have been increasingly used. This work emphasized the synthesis of a graft copolymer, Sericin-g-PLA, in the presence of surface treated marl as a filler, followed by blending with polybenzoxazine to harden the obtained biocomposite. Polybenzoxazine precursor was synthesized from aliphatic diamine, bisphenol-A, and paraformaldehyde by using the faster quasi-solventless approach with 88% yield. The synthesized polybenzoxazine precursor was blended with marl having surface modified by (3aminopropyl) trimethoxy-silane. The chemical structures of the graft copolymer and polybenzoxazine precursor were confirmed by FTIR and NMR. The results from SEM revealed the better interfacial adhesion between the graft copolymer and the polymer matrix after modification surface of marl. The results of DSC and TGA techniques showed that graft copolymer filled with modified marl can lower the curing temperature of polybenzoxazine; meanwhile, the thermal stability was increasing. The effects of the polybenzoxazine content on the mechanical properties of the biocomposite, particularly flexural strength and impact strength, were exhibited that the biocomposite from 20% graft copolymer added modified marl with polybenzoxazine gave the highest flexural modulus and impact strength.

บทคัดย่อ

จุฑามาศ มหาเจริญสิริ : การเพิ่มความแข็งแรงให้กับพอลิเบนซอกซาซีนโดยใช้วัสดุ กอมพอสิทชีวภาพซึ่งเตรียมได้จากกราฟโคพอลิเมอร์ของโปรตีนไหมเซริซิน, พอลิแลคไทค์, และ ดินสอพอง (Toughening of Polybenzoxazine by Silk Sericin-g-PLA/Marl Biocomposite) อ. ที่ปรึกษา : รศ. คร. รัตนวรรณ มกรพันธุ์และ คร. ธัญญลักษณ์ ฉายสุวรรณ์ 188 หน้า

้ปัจจุบันพลาสติกย่อยสลายได้ เช่น พอลิแลคไทค์ถูกพัฒนาให้เหมาะสมกับการใช้งาน และได้รับการขอมรับอย่างกว้างขวาง นอกจากนี้ยังมีพอลิเมอร์ที่ได้จากสัตว์จำพวกสารโปรตีนกาว ใหมเซริซินก็ได้รับความนิยมในการใช้งานมากยิ่งขึ้นด้วย ดังนั้นงานวิจัยนี้จึงเน้นการสังเคราะห์โค พอลิเมอร์แบบกราฟของกาวไหมเซริซินกับพอลิแลคไทด์ โดยใช้ดินสอพองที่มีการปรับปรุง พื้นผิวมาเป็นสารเติมแต่ง จากนั้นจึงทำการผสมพอลิเบนซอกซาซีนเพื่อเพิ่มความแข็งแรงของ ผลิตภัณฑ์คอมพอสิทชีวภาพที่ได้ พอลิเบนซอกซาซีนในขั้นเริ่มด้นสังเคราะห์ได้จากสารไคเอมีน สายโซ่ตรง. บิสฟีนอล-เอ. และพาราฟอร์มาลดีไฮด์โดยใช้วิธีเสมือนไม่ใช้ตัวทำละลายซึ่งเป็นวิธีที่ ทำให้ใช้เวลาในการสังเคราะห์น้อยลงโดยที่ได้มวลรวมของสารสังเคราะห์ใน พัฒบาจึ้บใหม่ ปริมาณเทียบเท่ากับการใช้วิธีเคิม (ร้อยละ 88) พอลิเบนซอกซาซีนสังเคราะห์ขั้นค้นจะถูกนำมา ผสมกับคินสอพองที่ทำการปรับปรุงพื้นผิวโคยใช้สาร (3-อะมิโนโพรพิล)ไตรเมทอกซี-ไซเลน ้โครงสร้างทางเคมีของกราฟโคพอลิเมอร์ และพอลิเบนซอกซาซีนขั้นค้นจะถูกวิเคราะห์และยืนยัน จากภาพถ่ายค้วยกล้องจุลทรรศน์อิเลกตรอน โคยใช้เครื่องฟรูเรียทรานสฟอร์มสเปกโทรสโคปี แบบส่องกราคแสคงให้เห็นว่า กราฟโคพอลิเมอร์ซึ่งมีคินสอพองที่ได้ปรับปรุงพื้นผิวเป็นสารเติม แต่งและพอลิเบนซอกซาซีนสามารถยึดติดกันได้ดีขึ้น เทกนิคดิฟเฟอเรนเชียลเทอร์มอลอะนาไล ซิสและเทอร์ โมกราวิเมทริคอะนาไลซิสถูกนำมาใช้เพื่อศึกษาระคับการบ่ม และคุณสมบัติทาง ความร้อนของพอลิเบนซอกซาซีนและวัสดุคอมพอสิทชีวภาพ ซึ่งจากผลการทดลองพบว่ากราฟโค พอลิเมอร์ที่เติมคินสอพองซึ่งได้รับการเติมแต่งพื้นผิว จะทำให้อุณหภูมิการบ่มของสารพอลิเบน ซอกซาซีนลคลงได้ ในขณะเคียวกันก็ช่วยเพิ่มคุณสมบัติทางความร้อนของวัสดุคอมพอสิทด้วย นอกจากนี้งานวิจัยยังทำการศึกษาผลของปริมาณพอลิเบนซอกซาซีน ต่อคุณสมบัติเชิงกลของวัสคุ คอมพอสิทโดยการทดสอบด้วยเครื่องกดโด้งงอและเครื่องรับแรงกระแทก ซึ่งจากผลการทดลอง พบว่าที่สัดส่วนผสมร้อยละ 20 ของกราฟโคพอลิเมอร์ที่มีดินสอพองซึ่งได้ทำการเติมแต่งพื้นผิว สามารถรับแรงในการกคโค้งงอและแรงกระแทกไค้สูงที่สุด

ACKNOWLEDGEMENTS

This work would not have been possible without the assistance of the following individuals.

First of all, the author would like to give special thanks to her advisors, Assoc. Prof. Rathanawan Magaraphan for her intensive suggestions, valuable guidance, encouragement and vital help throughout this research work and Dr. Thanyalak Chaisuwan for her constructive suggestions and helpful guidance. In addition, the author deeply thanks to Asst. Prof. Hathaikarn Manuspiya, Asst. Prof. Artiwan Shotipruk, and Dr. Orasa Onjun for serving on her thesis committees.

The author is grateful for the partial scholarship and partial funding of the thesis work provided by the Petroleum and Petrochemical College (PPC); Ratchadapisek-sompoch Endowment, the Center for Petroleum, Petrochemicals, and Advanced Materials, and Polymer Processing and Polymer Nanomaterial Research Units. The authors would also thanks the National Research Council of Thailand (NRCT) for graduate research assistant scholarship.

Special thanks go to Mr. Robert J. Wright for his recommendation and his assistance and Ms. Penwisa Pisitsak for her useful suggestions and her encouragement during the course of this work. In addition, I greatfully acknowledge all of the Petroleum and Petrochemical College's faculties who have tendered invaluable knowledge and to the college staff who willingly gave supports and encouragements.

My thanks are extended to Chul Thai Silk Co., Ltd. for the supply of silk sericin powder and Mettler Toledo Co., Ltd. for the thermal properties measurement and their staff for assistance in testing.

Finally, the author would like to take this opportunity to thank PPC Ph.D. students and all her PPC friends for their assistance, cheerfulness, creative suggestions, and encouragement. Also, the author is greatly indebted to her parents and her family for their support, love and understanding.

TABLE OF CONTENTS

		PAGE
Tit	le Page	i
Ab	stract (in English)	iii
Ab	stract (in Thai)	iv
Ac	knowledgements	v
Tal	ble of Contents	vi
Lis	st of Tables	viii
Lis	st of Figures	Х
Ab	breviation	xviii
CHAPT	ER	
Ι	INTRODUCTION	1
II	THEORETICAL BACKGROUND AND	
	LITERATURE REVIEW	4
III	EXPERIMENTAL	30
IV	EFFECTS OF MARL ON THERMAL AND MECH	IANICAL
	PROPERTIES OF POLYBENZOXAZINE COMPO	DSITES:
	SYNTHESIS AND CHARACTERIZATION	41
	4.1 Abstract	41
	4.2 Introduction	41
	4.3 Experimental	43
	4.4 Results and Discussion	47
	4.5 Conclusions	73
	4.6 Acknowledgements	73
	4.7 References	74

CHAPTER

V	TOUGHENING OF POLYBENZOXAZINE BY	
	SILK SERICIN-g-PLA/MARL BIOCOMPOSITES	76
	5.1 Abstract	76
	5.2 Introduction	76
	5.3 Experimental	78
	5.4 Results and Discussion	84
	5.5 Conclusions	110
	5.6 Acknowledgements	111
	5.7 References	111
VI	CONCLUSIONS AND RECOMMENDATIONS	117
	REFERENCES	121
	APPENDICES	126
	CURRICULUM VITAE	187

LIST OF TABLES

TABLE

CHAPTER II

2.1	Composition of silk in	Bombyx mori (Mondal et al., 2007)	4
-----	------------------------	-----------------------------------	---

CHAPTER III

3.1	Temperature program for compression molding process of	
	polybenzoxazine and polybenzoxazine-marl composites, and	
	the biocomposites	34

CHAPTER IV

4.1	The onset temperature and enthalpy of each stages curing	
	polybenzoxazine precursors	54
4.2	Elemental Analysis of marl	55
4.3	Curing temperature and enthalpy of the polybenzoxazine-	
	marl composites after solvent removal by drying in an oven	
	at 80°C for 72 h	57
4.4	Thermal properties of synthesized polybenzoxazine and	
	polybenzoxazine-marl composites	58
4.5	Summary of the flexural properties and impact strength of	
	the polybenzoxazine-marl composites	65

CHAPTER V

5.1	The melting temperature (T_m) and crystallization temperature	
	(T _c) of lactide, polylactide, and the graft copolymer	89
5.2	Thermal properties of synthesized graft copolymer	
	comparing with the pure reactants	89

TABLE

5.3	Curing temperature and enthalpy of the polybenzoxazine	
	biocomposites after solvent removal by drying in an oven at	
	80°C for 72 h	98
5.4	Thermal properties of the polybenzoxazine biocomposites	
	(thermal properties of the synthesized polybenzoxazine and a	
	graft copolymer are also noted for comparison)	100
5.5	Summary of the flexural properties and impact strength of	
	the biocomposites	103

LIST OF FIGURES

FIGURE

PAGE

CHAPTER II

2.1	Schematic diagram of lactide synthesis (Bendix, 1997).	9
2.2	Schematic diagram of a synthesis reaction for	
	blockcopolymerisation: using pre-oligomerised blocks of	
	one monomer (ϵ -caprolactone) and a second monomer	
	(lactide) (Jacobsen et al., 2000).	12
2.3	Schematic diagram of the synthesis polystyrene grafted with	
	poly (ϵ -caprolactone) or poly (DL-lactide) by a "grafting	
	form" method (Janata et al., 2003).	13
2.4	Schematic of graft copolymerization of DL-lactide onto	
	chitosan (Wu et al., 2005).	15
2.5	Schematic representation of the synthesis of chitosan-g-	
	polylactide copolymer (Elizabeth et al., 2006).	15
2.6	Schematic diagram of synthesis (top) and thermal induces	
	ring-opening polymerization of PBZ to form Mannich	
	bridge (N.N. Ghosh et al., 2007).	17
2.7	Schematic diagram of synthesis difunctional benzoxazine	
	(B-a) mono-mer based on bisphenol-A and aniline (N.N.	
	Ghosh <i>et al.</i> , 2007).	18
2.8	Three types of hydrogen bonding that could possibly occur	
	in the PCL-PBZ blend: (a) intermolecular hydrogen bonding	
	between two hydroxyl groups of PBZ, (b) intramolecular	
	hydrogen bonding between hydroxyl groups and nitrogen	
	atoms on the Mannich bridge, and (c) intermolecular	
	hydrogen bonding between the carbonyl groups of PCL and	
	hydroxyl groups of PBZ (Ishida et al., 2001).	19

PAGE

2.9	Schematic diagram of preparation and thermal induced	
	polymerization of PBZ precursors, which synthesized from	
	bisphenol-A, formaldehyde, and diamine (mda =	
	methylenedianiline, eda = ethylenediamine, and hda =	
	hexamethylene-diamine) and the possible structure of PBZ	
	(Takeichi et al., 2005).	21
2.10	Schematic diagram of the synthesis of pa-OH, pa-PCL, pa-	
	PCL/PBZ and the generation of nanoporous PBZ films from	
	phase-separated copolymers (Su et al., 2005).	23
2.11	Schematic diagram of the condensation of silanol	
	(hydrolyzed silane) with reactive groups on the filler surface	
	(Leong et al., 2005).	28

CHAPTER III

3.1	Schematic diagram of synthesis reaction of polybenzoxazine	
	precursors based on bisphenol-A, paraformaldehyde, and	
	1,6-diaminohexane.	35
3.2	Benxoxazine precursor preparation.	36
3.3	Preparation of Sericin-g-PLA, benzoxazine, and modified	
	surface marl biocomposite to be used as a soft splint.	40

CHAPTER IV

4.1	Schematic structure of the synthesized polybenzoxazine.	43
4.2	The polystyrene calibration for the calculation of molecular	
	weight.	46
4.3	GPC curve for synthesized benzoxazine precursor.	49
4.4	FTIR spectra of uncured (80°C) and cured (200°C)	
	synthesized polybenzoxazine precursors.	50

4.5	¹ H NMR spectra of synthesized polybenzoxazine precursors.	51
4.6	TG-DTA plots of the synthesized polybenzoxazine	
	precursors: (a) weight losses of the sample and (b)	
	differential weight loss curve.	52
4.7	The DSC curves of the synthesized polybenzoxazine	
	precursors after each curing stages.	53
4.8	SEM-EDX elemental analysis of marl particles.	55
4.9	DSC profile of synthesized marl-polybenzoxazine	
	composites (0–50 wt%).	56
4.10	Percent weight loss for the diamine-based of	
	polybenzxazine-marl composites as a function of marl	
	content as obtained in a nitrogen atmosphere. Percent	
	weight loss of the synthesized polybenzoxazine is also noted	
	for comparison.	59
4.11	Derivative weight loss for the diamine-based of	
	polybenzxazine-marl composites as a function of marl	
	content as obtained in a nitrogen atmosphere.	59
4.12	SEM micrographs of the 10% and 20% marl-	
	polybenzoxazine composite fracture surfaces	60
4.13	SEM images and their corresponding EDX micrographs of	
	polyben-zoxazine-marl composite: (a) 30 wt% marl with Ca	
	mapping, (b) 30 wt% marl SEM image, (c) 50 wt% marl	
	with Ca mapping, and (d) 50 wt% marl SEM image.	61
4.14	FTIR spectra of marl fillers: (a) untreated marl; (b) stearic	
	acid-treated marl; (c) silane-treated marl; and (d) silane pH	
	4.5-treated marl.	62

4.15	SEM micrographs (2000x) of the fracture surfaces of the	
	polybenzoxazine-marl composites (20 wt%): (a) silane	
	treated, (b) silane pH 4.5 treated, and (c) stearic acid treated.	63
4.16	TGA curves of PBZ-20 %wt unmodified and modified	
	marl.	64
4.17	Flexural strain of the synthesized polybenzoxazine-marl	
	composites as a function of marl content as obtained in the	
	3-point bending experiments. Flexural strain of	
	polybenzoxazine is also noted for comparison.	66
4.18	Flexural stress of the synthesized polybenzoxazine-marl	
	composites as a function of marl content as obtained in the	
	3-point bending experiments. Flexural stress of	
	polybenzoxazine is also noted for comparison.	66
4.19	Flexural moduli of the synthesized polybenzoxazine-marl	
	composites as a function of marl content as obtained in the	
	3-point bending experiments. Flexural modulus of	
	polybenzoxazine is also noted for comparison.	67
4.20	Impact strength of the synthesized polybenzoxazine-marl	
	composites as a function of marl content as obtained in the	
	ZWICK impact testing. Impact strength of polybenzoxazine	
	is also noted for comparison.	67
4.21	Storage moduli for the synthesized polybenzoxazine and	
	composites of polybenzoxazine-unmodified surface marl	
	(from 10 to 50 wt% marl contents) and polybenzoxazine-	
	modified surface marl (at 20 wt% marl contents).	69
4.22	Storage modulus at the onset temperature of the PBZ-marl	
	composites as a function of marl contents in the composites.	69

PAGE

4.23	Loss moduli for the synthesized polybenzoxazine and	
	composites of polybenzoxazine-unmodified surface marl	
	(from 10 to 50 wt% marl contents) and polybenzoxazine-	
	modified surface marl (at 20 wt% marl contents).	70
4.24	Glass transition temperature of the polybenzoxazine-marl	
	composites as a function of marl contents in the composites.	70
4.25	Tan δ curves for the synthesized polybenzoxazine and	
	composites of polybenzoxazine-unmodified surface marl	
	(from 10 to 50 wt% marl contents) and polybenzoxazine-	
	modified surface marl (at 20 wt% marl contents).	71

CHAPTER V

5.1	Schematic structure of the synthesized polybenzoxazine.	79
5.2	The PL pollulant calibration for the calculation of molecular	
	weight.	83
5.3	FTIR spectra of polylactide, sericin, and graft copolymer:	
	(A) sericin, (B) lactide monomer, (C) polylactide, (D) Ser-g-	
	PLA in glassware, and (E) Ser-g-PLA in brabender.	85
5.4	Reaction scheme for grafting copolymerization of silk	
	sericin protein and lactide monomer.	86
5.5	¹ H NMR spectra of (a) synthesized polylactide at 130°C in	
	CDCl ₃ , and (b) surface modified marl filled silk sericin-	
	polylactide graft copolymer prepared by brabender mixer at	
	130°C in D ₂ O.	87
5.6	The DSC curves of the synthesized modified marl filled silk	
	sericin-polylactide graft copolymers.	88

5.7	TG-DTA plots of the surface modified marl filled silk	
	sericin-polylactide graft copolymer: (a) weight losses of the	
	sample and (b) differential weight loss (DTG) curve. Percent	
	weight loss of the synthesized polylactide, sericin, lactide	
	monomer, and marl are also noted for comparison.	90
5.8	XRD patterns of crude sericin-g-PLA added modified	
	surface marl produced in brabender mixer with 0.1 wt%	
	Sn(Oct) ₂ , and 50 rpm screw speed. XRD patterns of the	
	synthesized polylactide, commercial polylactide, and marl	
	are also noted for comparison the cystallinity.	91
5.9	GPC curve for modified surface marl filled silk sericin-	
	polylactide graft copolymer in water media.	93
5.10	FTIR spectra of polybenzoxazine and its biocomposite: (a)	
	polybenzoxazine after curing at 80°C, (b) Sericin-g-PLA	
	added modified-surface marl, (c) biocomposite after curing	
	at 200°C, and (d) biocomposite after curing at 80°C.	94
5.11	SEM micrographs (2000x) of the fracture surface of the	
	biocomposites (20 wt% graft copolymer).	96
5.12	SEM images and their corresponding EDX micrographs of	
	polybenzoxazine-biocomposite: (a) 10 wt% graft	
	copolymer-marl with Ca mapping, (b) 10 wt% graft	
	copolymer-marl SEM image, (c) 30 wt% graft copolymer-	
	marl with Ca mapping, and (d) 30 wt% graft copolymer-	
	marl SEM image.	97
5.13	DSC of the biocomposites as a function of graft copolymer	
	content: (a) uncured (at 100°C) and (b) fully cured (at	
	200°C).	99

PAGE

5.14	TG-DTA of the biocomposites as a function of graft	
	copolymer content: (a) weight losses of the sample and (b)	
	differential weight loss (DTG) curve. Percent weight loss of	
	the graft copolymer filled marl and polybenzoxazine are also	
	noted for comparison.	102
5.15	Flexural strain of the biocomposites as a function of graft	
	copolymer content as obtained in the 3-point bending	
	experiments. Flexural strain of polybenzoxazine is also	
	noted for comparison.	104
5.16	Flexural stress of the biocomposites as a function of graft	
	copolymer content as obtained in the 3-point bending	
	experiments. Flexural stress of polybenzoxazine is also	
	noted for comparison.	104
5.17	Flexural moduli of the biocomposites as a function of graft	
	copolymer content as obtained in the 3-point bending	
	experiments. Flexural modulus of polybenzoxazine is also	
	noted for comparison.	105
5.18	Impact strength of the biocomposites as a function of graft	
	copolymer content as obtained in the ZWICK impact	
	testing. Impact strength of polybenzoxazine is also noted for	
	comparison.	105
5.19	Storage moduli for the synthesized polybenzoxazine and	
	biocomposites (from 10 to 50 wt% graft copolymer	
	contents).	107
5.20	Loss moduli for the synthesized polybenzoxazine and	
	biocomposites (from 10 to 50 wt% graft copolymer	
	contents).	107

xvi

5.21	Tan δ curves for the synthesized polybenzoxazine and	
	biocomposites (from 10 to 50 wt% graft copolymer	
	contents).	108
5.22	Glass transition temperature of the biocomposites from the	
	maximum of tan δ peak as a function of graft copolymer	
	contents in the composites.	108

ABBREVIATIONS

LA Lactide

PLA Polylactide

BZ Benzoxazine

PBZ Polybenzoxazine

Sericin-g-PLA Silk sericin protein copolymer graft polylactide

SA Silane coupling agent

S acid Stearic acid