PREFERENTIAL OXIDATION OF CO IN A DOUBLE-STAGE PACKED-BED REACTOR

Siwat Rujinarong

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2009

522.58

.

Thesis Title:	Preferential Oxidation of CO in a Double-Stage Packed-Bed
	Reactor
By:	Siwat Rujinarong
Program:	Petroleum Technology
Thesis Advisors:	Asst. Prof. Apanee Luengnaruemitchai
	Assoc. Prof. Sujitra Wongkasemjit

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

apaun L

(Asst. Prof. Apanee Luengnaruemitchai)

Wenghonny

(Assoc. Prof. Sujitra Wongkasemjit)

Framoch R

(Assoc. Prof. Pramoch Rangsunvigit)

Vonte

(Assoc. Prof. Nurak Grisadanurak)

ABSTRACT

5073013063: Petroleum Technology Program

Siwat Rujinarong: Preferential Oxidation of CO in a Double-Stage Packed-Bed Reactor

Thesis Advisors: Asst. Prof. Apanee Luengnaruemitchai and Assoc. Prof. Sujitra Wongkasemjit xx pp.

Keywords: Preferential oxidation of CO/ deposition-precipitation/ double-stage reactor

Preferential oxidation (PROX) of CO is typically used to lower the CO concentration in the H₂-rich stream derived from hydrocarbon reforming. In this study, Au supported on a TiO₂ catalyst prepared by deposition–precipitation was tested for the PROX reaction in the temperature range of $30-120^{\circ}$ C. The effects of calcination temperature, Au loading, and storage condition on the catalytic performance were studied. The prepared catalysts were characterized by X-ray Diffraction (XRD), UV-visible spectrophotometry and Atomic Absorption Spectrometry (AAS). The results indicated that the 1 wt% Au/TiO₂ calcined at 200°C operated in a single-stage reactor exhibited 100% CO conversion with a maximum selectivity of approximately 54%. The effects of H₂O and CO₂ present in the stream for the PROX reaction were also investigated. Then, the catalyst was applied for the PROX in a double-stage reactor unit of the fuel processor, starting from methanol. In addition, the catalyst was tested in a double-stage reactor at the appropriate operating conditions by varying stage temperature, oxygen split ratio, and weight split ratio. In a double-stage reactor, the PROX selectivity at 30°C was increased to 80%.

บทคัดย่อ

ศิวัช รุจิณรงค์ : การเลือกเกิดปฏิกิริยาออกซิเดชันของคาร์บอนมอนอกไซด์ในสองเตา ปฏิกรณ์ (Preferential Oxidation of CO in a Double-Stage Packed-Bed Reactor) อ. ที่ปรึกษา : ผศ.ดร. อาภาณี เหลืองนฤมิตชัย และ รศ.ดร. สุจิตรา วงศ์เกษมจิตต์ 71 หน้า

โดยปกติแล้วปฏิกิริยาการเลือกเกิดออกซิเดชันของการ์บอนมอนอกไซด์ ใช้ในการลด ปริมาณการ์บอนมอนอกไซด์ที่ได้จากกระบวนการผลิตไฮโดรเจนจากปฏิกิริยารีฟอร์มมิง ใน งานวิจัยนี้ใช้ทองบนโลหะไททาเนียมออกไซด์ที่เตรียมด้วยวิธี ดีโพซิชัน พืชพิเตชัน (Deposition-Precipitation) เป็นตัวเร่งปฏิกิริยาของ ปฏิกิริยาการเลือกเกิดออกซิเดชันของการ์บอนมอนอกไซด์ ในช่วงอุณหภูมิ 30-120 องศาเซลเซียส โดยศึกษาผลจากการเผาที่อุณหภูมิต่างๆ ปริมาณของทอง บนตัวเร่งปฏิกิริยา และวิธีเก็บรักษาตัวเร่งปฏิกิริยาว่ามีผลต่อประสิทธิภาพของด้วเร่งปฏิกิริยา ทั้งนี้ ด้วเร่งปฏิกิริยาที่เตรียมได้นั้นนำไปวิเคราะห์อุณลักษณะทางกายภาพหลายวิธีเช่น เอกเรย์ดีแฟลก ชัน (XRD) ยูวี-วิสิเบิล สเปกโตรส โฟโตเมทรี (UV-vis) และ อะตอมมิกแอบซอร์พชัน สเปกโต รส เมทรี (AAS) จากการทดลองพบว่า 1 เปอร์เซ็นต์โดยน้ำหนักของทองบนตัวรองรับไททาเนีย เผาที่อุณหภูมิ 200 องศาเซลเซียสในระบบเตาปฏิกรณ์เดี่ยวสามารถกำจัดก๊าซการ์บอนมอนอกไซด์ ที่อยู่ในเชื้อเพลิงไฮโดรเจนได้ดีและให้ก่าความจำเพาะเจาะจงในการเกิดปฏิกิริยานี้ได้สูงถึง 54 เปอร์เซ็นต์ นอกจากนี้ยังศึกษาผลของน้ำและการ์บอนไดออกไซด์ต่อกวามสามารถของตัวเร่ง ปฏิกิริยา อย่างไรก็ตามเมื่อนำตัวเร่งปฏิกิริยามาทดสอบปฏิกิริยาการเลือกเกิดออกซิเดชันของ การ์บอนมอนอกไซด์ ในเตาปฏิกรณ์กู่สามารถเพิ่มก่าความจำเพาะเจาะจงในการเกิดปฏิกิริยามาก ขึ้นได้ประมาณ 80 เปอร์เซ็นต์ ในสภาวะที่เหมาะสม

ACKNOWLEDGEMENTS

I am very grateful my thesis advisors, Asst. Prof. Apanee Luengnaruemitchai and Assoc. Prof. Sujitra Wongkasemjit for the great amount of liberty give to me throughout my thesis work, for having always me up with support with helpful comments and suggestions, and trust.

This thesis work is funded by the Petroleum and Petrochemical College; and the Nation Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

I acknowledge Ms. Pattarasuda Naknam for her helpful guidance and suggestion. Grateful acknowledgements are made to all members and staff of the Petroleum and Petrochemical College, Chulalongkorn University for providing the instrument training and valuable measurements.

I would like to give credit to all PPC friends for their friendly assistance, help, and great time for doing Master degree at PPC.

I am very grateful to my family for their understanding, perpetual support, encouragement and love.

TABLE OF CONTENTS

		PAGE
Title	e Page	i
Abs	tract (in English)	iii
Abs	tract (in Thai)	iv
Ack	nowledgements	v
Tabl	le of Contents	vi
List	of Tables	ix
List	of Figures	x
СНАРТЕ	R	
Ι	INTRODUCTION	. 1
II	LITERATURE REVIEW	3
III	EXPERIMENTAL	23
	3.1 Materials and Equipment	23
	3.1.1 Gases	23
	3.1.2 Chemicals	23
	3.2 Equipment	23
	3.2.1 Gas Blending System	23
	3.2.2 Catalytic Reactor	24
	3.2.3 Analytical Instrument	24
	3.3 Methodology	24
	3.3.1 Catalyst Preparation Process	24
	3.3.2 Catalytic Activity Testing	25
	3.3.3 Real Reformate Stream Experiment	27
	3.3.4 Catalyst Deactivation Experiment	28
	3.3.5 Catalyst Characterization	29

PAGE

CHAPTER

IV	RESULTS AND DISCUSSION	31
	4.1 Single-Stage Reactor	31
	4.1.1 Effect of Catalyst Preparation Condition on the	
	Performance of the Catalyst	31
	4.1.2 Single-Stage with the PROX Reaction	43
	4.1.3 Effect of CO ₂ and H ₂ O Concentrations	44
	4.1.4 Storage Influence on the Activity of the	
	Catalyst	46
	4.1.5 Stability of the Catalyst	52
	4.2 Double-Stage Reactor	53
	4.2.1 Influence of O ₂ Split Ratio of Double-Stage	
	Reactor on the Process Performance	53
	4.2.2 Influence of Stage Temperature of Double-Stage	
	Reactor on the Process Performance	55
	4.2.3 Influence of Weight Split Ratio of Double-stage	
	Reactor on the Process Performance	57
	4.3 Double-Stage Reactor with PROX Reaction in the Real	
	Composition Reformate Gas	61
V	CONCLUSIONS AND RECOMMENDATIONS	63
	5.1 Conclusions	63
	5.2 Recommendations	64
REF	ERENCES	65
CUF	RRICULUM VITAE	71

LIST OF TABLES

TABLE

2.1	Type of fuel cells	3
2.2	Properties of gold	11
2.3	Overall optimum process performance of double-stage mode	
	for different O ₂ split ratios	20
4.1	Characterization results of Au/TiO_2 catalyst with different	
	metal loadings and calcination conditions	35
4.2	Characterization results of 1%wt Au/TiO2 200°C calcined	
	catalyst with different storage conditions	50
4.3	Gas hourly space velocity (GHSV) in the single and the	
	double-stage processes	61

PAGE

LIST OF FIGURES

FIGURE		PAGE
2.1	Diagram of PEM fuel cells.	5
2.2	Schematic of a gasoline process for H ₂ production (Rosso	
	<i>et al.</i> , 2004).	7
2.3	A simple membrane module.	9
2.4	Application of Au catalysts ('CatGold' World Gold	
	Council, 2003).	12
2.5	Effect of particle size on the CO oxidation rate (Haruta et	
	al., 2004).	13
2.6	Interaction of Au with support prepared by DP and	
	impregnation methods (Boccuzzi et al., 2001).	15
2.7	Schematic of double-stage packed-bed reactor for PROX.	19
3.1	Experimental setup for preferential CO oxidation reaction	
	using the double-stage reactor.	26
3.2	Real catalytic reformates system.	27
3.3	Containers for exposed and unexposed to light samples.	28
4.1a	Effect of metal loading on the activity of Au/TiO ₂ catalyst.	33
4.1b	Effect of calcination temperature on the activity of	
	Au/TiO ₂ catalyst.	34
4.2	UV-visible spectra of TiO ₂ (P25), 1, 1.5, and 2%wt of Au	
	loadings, calcined at 200°C.	36
4.3	UV-visible spectra of TiO_2 (P25) and Au/TiO ₂ calcined at	
	different temperatures	36
4.4	TPR profiles of the Au/TiO ₂ catalysts with different Au	
	loadings.	38

FIGURE

4.5	TPR profiles of the Au/TiO ₂ catalysts with different	
	calcination temperatures.	38
4.6	TEM images and particle size distribution of Au/TiO ₂ , (a)	
	1% wt Au calcined at 200°C, (b) 2% wt Au calcined at	
	200°C, and (c) 1%wt Au calcined at 300°C.	40
4.7	XRD patterns of Au/TiO2 with different metal loadings:	
	Anatase (*) and Rutile (•).	42
4.8	XRD patterns of Au/TiO_2 with different calcination	
	temperatures: Anatase (*) and Rutile (•).	43
4.9	Activity of 1wt% Au/TiO ₂ and TiO ₂ (P25) support	
	calcined at 200°C in a single-stage reactor.	44
4.10	Effect of CO_2 and H_2O concentrations in the reactant gas	
	over the Au/TiO_2 catalyst.	46
4.11	Activity of Au/TiO ₂ catalyst with different storage	
	conditions: (a) CO conversion, and (b) PROX selectivity.	47
4.12	TPR profiles of Au/TiO_2 : (a) fresh catalyst, (b) exposed to	
	light for 1 month, (c) exposed to light for 2 months, and	
	(d) exposed to light for 3 months.	49
4.13	UV-visible spectra of TiO ₂ (P25) and Au/TiO ₂ with	
	different storatge conditions.	50
4.14	TEM images and particle size distribution of Au/TiO ₂ : (a)	
	fresh catalyst, (b) exposed to light for 1 month, (c)	
	exposed to light for 2 months, and (d) exposed to light for	
	3 months.	51
4.15	XRD patterns of Au/TiO ₂ with different storage	
	conditions: Anatase (*), and Rutile (•).	52
4.16	Stability of the Au/TiO ₂ catalyst.	53

FIGURE

PAGE

4.17	Catalytic activities of 1% Au/TiO ₂ calcined at 200°C in a	
	double-stage reactor with various O_2 split ratios at a	
	reaction temperature of 30°C.	54
4.18	Au/TiO ₂ catalyst activities with various reactor	
	temperatures in a double-stage reactor at an O ₂ split ratio	
	of 50:50.	56
4.19	Catalytic activities of 1% Au/TiO ₂ calcined at 200°C in a	
	double-stage reactor with various weight split ratios at a	
	reaction temperature of 30° C and an O ₂ split ratio of	
	50:50.	58
4.20	Comparison of activities of the single-stage and the	
	double-stage processes. Conditions: 30°C and O ₂ split	
	ratio of 50:50.	59
4.21	Gas composition of the reforming and PROX of CO	62
	reaction.	