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ABSTRACT

5071010063:  Petrochemical Technology Program
Kittisak Woragamon: Catalytic Epoxidation of Cyclohexene over
Different Oxide Catalysts
Thesis Advisors: Asst. Prof Siripom Jongpatiwut and Asst. Prof.
Thammanoon Sreethawong 102 pp.

Keywords:  Cyclohexene Epoxidation/ Impregnation/ Sol-gel/ Mesoporosity/
Ru0:/ Til2 SiU2/ Al203 Feso4/ H202/ Recyclability

Cyclohexene oxide is an important intermediate in several chemical
industries. It can be produced via partial oxidation of cyclohexene, so-called
cyclohexene epoxidation. Many research works have been focused on the
development of new active and selective catalysts for cyclohexene epoxidation that
can avoid undesired reactions. The purpose of this work is to investigate the
cyclohexene epoxidation using different catalysts, i.e. commercial TiC2 (TiCx (P-
25)), sol-gel-synthesized mesoporous-assembled TiCx (TiCb (SG)), SC2, A1203, and
FesCs. The experimental results showed that TiCx (SG) provided the highest
cyclohexene conversion and cyclohexene oxide selectivity. The addition of RuU2 is
investigated on TiCb (SG) prepared by two methods: (1) incipient wetness
impregnation (IWI) method (RuCh/TiCb (IWI)) and (2) single-step sol-gel (SSSG)
method (Ru02/Ti02 (SSSG)). Between Ru02/Ti02 (IWI) and Ru02/Ti02 (SSSG), 1
mol% RuCVTICh (IW1) calcined at 550°C for 4 h was found to possess selectively
high catalytic performance based on cyclohexene oxide production. The optimum
reaction conditions found are Hz202-to-cyclohexene ratio of 1, t-butanol as solvent,
catalyst amount of 0.5 g, and reaction temperature of 70°c. The recyclability of the
RUuCb/TiCh (IW1) and RuCh/TiCh (SSSG) catalysts is also investigated. It was found
that after three cycles, Ruo2/TiCx (IWI) exhibits slight decrease in cyclohexene
conversion with significant decrease in cyclohexene oxide selectivity. On the other
hand, RuU2/Tio2 (SSSG) exhibits almost unchanged in both conversion and
selectivity, indicating its higher stability.
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