

CHAPTER III EXPERIMENTAL

3.1 Materials

The silica used in this study was obtained in the form of Sodium Metasilicate Nonahydrate (SMN); 44-47.5% total solids, $Na_2O_3Si \cdot 9H_2O$, M.W. 284.19, by Thermo Sci Acro Organics. The Si content in SMN was determined using Inductively-Coupled Plasma/Mass Spectrometer (ICP/MS) and was found to be 0.104 ± 0.001 gSi/gSMN.

Analytically pure 35-37% wt. trace metal grade HCl solution was provided by Fisher Chemical. Laboratory grade salts were also supplied by different dealers as listed in Table 3.1. Ultrahigh purity, deionized water provided by a MilliQ system was used as a diluent in the preparation of all solutions.

Table 3.1	Salts	used	for	this	research.
-----------	-------	------	-----	------	-----------

Chemical	Chemical formular	Molecular weight	Supplier
Sodium Chloride	NaCl	58.44	Fisher Chemical
Cesium Chloride	CsCl	168.36	Sigma-Aldrich
Magnesium Chloride	MgCl ₂ ·6H ₂ O	203.30	Fisher Chemical
Calcium Chloride	CaCl ₂ ·2H ₂ O	147.02	Fisher Chemical
Aluminium Chloride	AlCl ₃ ·6H ₂ O	241.42	Fisher Chemical
Sodium Nitrate	NaNO ₃	84.99	Aldrich Chemical
Sodium Bromide	NaBr	102.9	Sigma Chemical
Sodium Iodide	NaI	149.89	Fisher Chemical

3.2 Experimental Procedures

First, 13.82 grams of SMN were dissolved in a cooling jacketed 3-pronged glass reaction containing a 70mL of deionized water for approximately 50 minutes. The solution was magnetically stirred at a stirring rate of 500rpm and cooled down by the circulation system with a constant coolant temperature of 5.0°C. Once completely dissolved, a hydrochloric acid solution and a solution of make-up DI water and salt cooled down to 5.0°C were added into the reactor to initiate the reaction. The final properties of this solution were 170mM Si(OH)₄, 1M HCl, 1M salt, and 300mL total of solution.

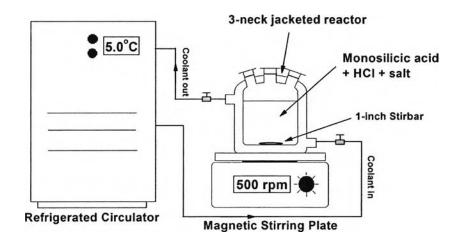


Figure 3.1 Experimental setup.

3.3 Characterization techniques

3.3.1 <u>Si Content in Solution Using Inductively-Coupled Plasma/Mass</u> Spectroscopy (ICP/MS)

Samples were manually obtained using micropipettes and drawn through polypropylene-membrane filters ($d_{pore}=0.2\mu m$) at short interval times and placed into 50mL sample tubes. Filtrate solutions were diluted twice by DI water with a dilution ratio of 1 to 25 to reach the appropriate concentration for compositional analysis using ICP/MS (ELAN9000, Perkin Elmer).

3.3.2 Silica Particle Growth Using Dynamic Light Scattering (DLS)

At particular times, samples were taken out of the reactor, put into a vial, and analyzed for silica particle size measurement using DLS (Nano ZS, Malvern) immediately. The DLS measurements were also carried out at a constant temperature of 5.0°C. Intensity-mode particle diameter DLS measurements were used to calculate the mean particle size. The particle size results were used for modeling the particle growth profile.

3.3.3 <u>Monosilicic Acid Remaining in Solution Phase Using Molybdate-Blue</u> <u>Method and Ultraviolet-Visible Light Spectroscopy (UV-Vis)</u>

Samples were withdrawn at short reaction times and transferred to 50mL sample tubes. The solutions were diluted by DI water using dilution ratios of 1 to 25 and 2 to 45, respectively. Molybdate solution was then added, causing the color of solutions to change from clear to blue. A UV-Vis spectrometer (Cary100, Varian) was used to determine the concentration of monosilicic acid remaining, which was quantified in terms of "molybdate reactive silica" according to ASTM D859-05.