HYDROPHOBIC-MODIFIED CELLULOSE FIBERS AND CELLULOSE MICROFIBRILS AS REINFORCEMENT FOR BIOCOMPOSITES

Ms. Wilailak Chanklin

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master Science The Petroleum and Petrochemical College, Chulalongkorn University in Acadamic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2009

522080

Thesis Title:	Hydrophobic-Modified Cellulose Fibers and Cellulose
	Microfibrils as Reinforcement for Biocomposites
By:	Wilailak Chanklin
Program:	Petrochemical Technology
Thesis Advisors:	Assoc.Prof. Thirasak Rirksomboon
	Prof. Huining Xiao
	Prof. Frank R. Steward

Accepted by the Petroleum and Petrochemical College, Chulalongkorn

University, in partial fulfillment of the requirements for the Degree of Master of

Science.

..... College Dean

(Asst. Frof. Pomthong Malakul)

Thesis Committee:

sully

(Assoc. Prof. Thirasak Rirksomboon)

(Prof. Huining Xiao)

2not R Stern

(Prof. Frank R. Steward)

itigenar_ B.

(Asst. Prof. Boonyarach Kitiyanan)

P-R.

(Dr. Boonrod Sajjakulnukit)

ABSRACT

5071035063: PETROCHEMICAL TECHNOLOGY PROGRAM

Wilailak Chanklin: Hydrophobic–Modified Cellulose Fibers and Cellulose Microfibrils as Reinforcement for Biocomposites.

Thesis Advisors: Prof. Huining Xiao, Assoc. Prof. Thirasak Rirksomboon, 126 pp

Keywords: Cellulose Fibers, TDI, Octadecanol, Biocomposites

The hydrophobic modification of sulfite cellulose fiber (CF) and cellulose microfibril (CMF) was conducted by grafting 1–Octadecanol (18OH) on the surfaces via covalent coupling agent, Tolylene 2,4–diisocyanate (TDI), which induced the isocyanate functionality onto the fibers surface. The grafting of 18OH onto cellulose fibers was confirmed by FTIR spectra with a peak that present a decreasing of the O– H bond of the grafted fibers. The thermogravimetric analysis (TGA) indicates the amount of grafting yield which is 4.38% and 5.79% for CF-g-TDI/18OH and CMF-g-TDI/18OH, respectively. Moreover, the surface morphology and hydrophobicity of the grafted fibers and the PP–based composites were investigated by scanning electron microscopy (SEM) and static contact angle measurement which resulting in the improvement of the interfacial interaction between cellulose fibers and PP matrix.

บทคัดย่อ

วิไลลักษณ์ จันทร์กลิ่น: วัสคุผสมชีวภาพจากการเปลี่ยนแปลงเส้นใยเซลลูโลส (CF) และเส้นใยเซลลูโลสขนาคเล็ก (CMF) โดยการเสริมแรงด้วยสารที่มีคุณสมบัติไม่ชอบน้ำ (Hydrophobic-Modified Cellulose Fibers and Cellulose Microfibrils as Reinforcement for Biocomposites) อ. ที่ปรึกษา : คร.ฮุยหนิง เฉียว และ ผศ.คร. ธีรศักดิ์ ฤกษ์สมบูรณ์ 126 หน้า

การเปลี่ยนแปลงคุณสมบัติความไม่ชอบน้ำของเส้นใยเซลลูโลสและเส้นใยเซลลูโลส ขนาดเล็กด้วยการกราฟต์สเตียริกแกลกกุฮกล์บนผิวของเส้นใย โดยมีทีดีไอเป็นสารเชื่อมใน ปฏิกิริยาการกราฟต์ เนื่องจากทีดีไอเป็นสารที่มีหม่ไอโซไซยาเนตซึ่งทำปฏิกิริยาเคมีกับหม่ไฮคร อกซิลได้ดี เส้นใยที่กราฟต์แล้วถูกพิสูงน์ด้วยเครื่องมือวิเคราะห์สารด้วยอินฟราเรด พบว่า ค่า สัคส่วนการดูคซับของกลื่นอินฟราเรคของหมู่แอลกอฮอล์นั้นลุคลง แสดงให้เห็นว่า การ ้เกิดปฏิกิริยาการกราฟต์ระหว่างเส้นใยและสเตียริกแอลกอฮอล์โดยมีทีดีไอเป็นสารเชื่อมนั้น สามารถพัฒนาความไม่ชอบน้ำของเส้นใยได้ในขณะที่เครื่องมือการวัดน้ำหนักโดยใช้ความร้อนได้ แสคงผลผลิตจากการกราฟต์ที่ร้อยละ 4.38 และ 5.79 สำหรับเส้นใยเซลลูโลสและเส้นใย เซลลูโลสขนาคเล็ก นอกจากนั้น ผลการทคสอบลักษณะทางสัณฐานวิทยาของพื้นผิวของเส้นใย และวัสดุผสมโพลีโพรพิลินชีวภาพด้วยกล้องจุลทรรศน์อิเล็คครอนแบบส่องกราค พบว่าแรงยึด เหนี่ยวพันธะระหว่างเส้นใยและโพลีโพรพิลีนคีขึ้น สืบเนื่องมาจากการกราฟต์ของสเดียริก แอลกอฮอล์ ในขณะที่ค่าความไม่ชอบน้ำของวัสคุผสมมีค่ามากขึ้น จากการทคสอบด้วยการวัดมุม สัมผัสของวัสดุผสมที่กราฟต์ด้วยสเตียริกแอลกอฮอล์ พบว่า องศาความสัมผัสเพิ่มขึ้นจาก 0 องศา เป็น 136 และ 111 องศา สำหรับเส้นใยเซลลูโลสและเส้นใยเซลลูโลสงนาคเล็กตามลำคับ นั่นคือ แรงยึคเหนี่ยวระหว่างพื้นผิวของเส้นใยและโพรลีโพพิลีนนั้นพัฒนาขึ้น

ACKNOWLEDGEMENTS

This thesis work is funded by the Petroleum and Petrochemical College, and the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

I would like to thank Dr. Huining Xiao (my supervisor) who has given me a great opportunity to study at the University of New Brunswick, Canada. With his guidance and suggestions during the course of my research, I completed my work successfully.

I also would like to thank Mr. Shuzhao Li (my lovely friend in the group) who has given me a useful and helpful supports. My experiment would not have been done without him.

Thanks to the colleagues in my group for creating a good environmental work and making my work here a lot easier. Our interesting discussions on the various topics were being the good times and beneficial for me.

I am also thankful for being the student and resident under supervisions of Dr. Frank R. Steward (and Jacky) who have helped and taken care of me during my stay in Canada. I had a truly great time with him to discuss in many topics especially about snowing.

I would like to thank Dr. Susan Belfry, Dr. Louise Weaver, Mr. Steven Cogswell, Dr. Qing Lin Huang and Dr. Samiel for their technical supports in SEM, TEM, Light Microscope, TGA, BET, FTIR characterizations. I have received the significant results from their helped.

Special thanks to P'Naid, P'Pit, P'Kate, R'Suporn, R'Justin and all Thai students for their kindness. I have valuable experiences from their friendships. I will never forget our times in every events, trips and parties.

Finally, I would like to thank my family in Thailand for their love and encourage, and for being my honorable consultant. I could not make my life easier without your support. I would like to express my deepest gratitude to you.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	xi
Abbreviations	xvii

CHAPTER				PAGE
Ι	INT	RODU	CTION	1
II	LIT	ERAT	URE REVIEW	3
	2.1	Introd	uction	3
	2.2	Cellul	ose Fibers	7
	2.3	Modif	ications of Cellulose Fiber	13
		2.3.1	Physical Modification	15
		2.3.2	Surface Chemical Modification	16
			2.3.2.1 Chemical Coupling Agents	17
			2.3.2.2 Graft Copolymerization	36
III	EXI	PERIM	ENTAL	48
	3.1	Materi	als and Chemicals	48
	3.2	Equip	ments	48
	3.3	Experi	ment Procedures	49
		3.3.1	Modification of Cellulosic Materials	
			(CF and CMF) via TDI Coupling Agent	50

			3.3.1.1 CMF Grafting with 1–Octadecanol	50
			3.3.1.2 CF Grafting with 1–Octadecanol	52
		3.3.2	Modify Cellulose Microfibril (CMF)	
			via EP Coupling Agent	52
		3.3.3	Extrusion Process	53
	3.4	Chara	cterizations	54
IV	RES	SULTS	AND DISCUSSIONS	56
	4.1	Proper	rties of Cellulose Fibers-g-TDI/18OH	56
		(Modi	fied Cellulose Fibers)	
		4.1.1	Characterizations of Surface Modified Fibers	56
		4.1.2	Surface Wettability	61
	4.2	Proper	rties of PP/Cellulose Fibers-g-TDI/18OH	
		Comp	osites	62
		4.2.1	Mechanical Properties of PP-reinforced Modified	
			Cellulose Fiber Composites	62
		4.2.2	Surface Morphology	64
		4.2.3	Thermogravimetric Analysis	65
		4.2.4	Thermal Analysis of PP-based Biocomposites	66
	4.3	The E	ffect of Alcohol Types	68
	4.4	The E	ffect of the Amount of Alcohol (Modifier Amount)	71
	4.5	The E	ffect of Grafting Procedure	72
	4.6	The E	ffect of Coupling Agents	73
	4.7	The E	ffect of Cellulose Fiber Characteristics	75
V	CO	NCLUS	SIONS AND RECOMMENDATIONS	77

REFERENCES		79
APPENDICES		
APPENDIX A	In situ atom transfer radical	
	polymerization (ATRP) of butyl acrylate	
	(BA) in an attempt to render the surface	
	of CF and CMF hydrophobic	86
APPENDIX B	Enhancement of the paper performance	117
APPENDIX C	BET results	122

CURRICULUM VITAE 126

LIST OF TABLES

TABLE

2.1	The length of fibers after processed	4
2.2	Example of interior and exterior parts produced from	
	natural materials	5
2.3	The annual fiber production and the availability of	
	some cellulose fibers	10
2.4	The summation of advantages and disadvantages of	
	cellulose fibers over traditional glass fibers	11
2.5	Chemical composition and structural parameters of	
	some natural fibers	12
2.6	Properties of typical thermoplastic polymers used in	
	natural fiber composite fabrication	14
2.7	Elemental analysis of Avicell before and after	
	modification with different coupling agents	25
2.8	Variation of tensile properties of LDPE-sisal composites	
	with fiber treatments	28
2.9	Mechanical properties of WF/PP and its composites	30
2.10	The water uptake at equilibrium (WU) and diffusion	
	coefficient of water (D) for LDPE based composites	
	when immersed in water at room temperature	36
4.1	The grafting yield and efficiency of modified cellulose fibers	60
4.2	The mechanical properties of PP-reinforced modified	
	cellulose fibers composites	63
4.3	The melting temperature of PP and its composites	67
4.4	The properties of different alcohol used in the grafting reaction	68
4.5	The grafting efficiency and grafting yield of CMF grafted	
	with various alcohol	69

4.6	The degradation temperature of CMF grafted various alcohols	71
4.7	The grafting efficiency and grafting yield of	
	CMF-g-TDI/18OH at different ratio	71
4.8	The grafting efficiency and grafting yield of	
	CMF-g-TDI/18OH and 18OH-g-TDI/CMF approach	73
4.9	The grafting efficiency and grafting yield of TDI and EP	
	coupling agents in the grafting reaction of CMF and 18OH	74
4.10	The grafting efficiency and grafting yield of CMF-g-TDI/18OH	
	and CF-g-TDI/18OH	76
A.1	Macro-initiators	94
A.2	Thermostability and contact angle results of CMF,	
	CMF-PBA-l and CMF-PBA-h	109
A.3	GPC results and calculated values from the results of TGA	111
B.1	The samples preparation for the enhancement of	
	the paper performance	117
B.2	Physical properties of modified-paper	118
B.2	Physical properties of modified-paper (cont')	119
C.1	BET Results of CMF and modified-CMF	122

LIST OF FIGURES

FIGURE		PAGE
21	Natural fiber applications in the current Mercedes-Benz	
2,1	F_Class	6
22	E-Class	0
2.2	Mercedes Benz F. Class components	6
23	(a) A natural fiber mat processed and (b) a door inner panel	0
2.3	from natural fiber rainforced PP 50% Kanaf with 50% PP	7
2.4	The structure of collulose	/ 0
2.4	The structure of centrose	0
2.5	Schematic representation of hydrogen bonding in natural	0
2.6		9
2.6	The modification reaction of cellulose fiber and oleoyi	10
	chloride schematic	18
2.7	SEM microphotography of (a) non-treated jute fibers;	
	(b) modified jute fibers in pyridine for 3 hours;	
	(c) modified jute fibers in pyridine for 24 hours	19
2.8	Structure of maleic and succinic anhydride	20
2.9	FTIR spectra of microfibrillated cellulose (a) coated with	
	succinic acid compared with that of MFC and (b) coated	
	with maleic acid compared with that of microfibrillated	
	cellulose	21
2.10	Zeta potentials at pH 7.0 of unmodified microfibrillated	
	cellulose microfibrillated cellulose coated with succinic	
	acid (Succ), maleic acid (Maleic), diisocyanate followed	
	by reactions with bis- (3-aminopropyl) amine (Bisamine)	
	and with 3-(diethylamino) propylamine (DEAPA)	22
2.11	The structure of 3-isopropenyl- $\alpha\alpha'$ -dimethylbenzyl	
	Isocyanate (TMI) and 2-isocyanatoethyl methacrylate	
	(IEM) coupling agents	23

2.12	Chemical structure of the coupling agents used for	
	cellulose surface modification	24
2.13	Full XPS spectra of cellulose surface, before and after	
	modification with different coupling agents	26
2.14	The reaction pathway for the preparation of urethane	
	derivative of cardanol	27
2.15	A possible reaction between free isocyanate groups in	
	CTDIC and cellulosic sisal fiber	28
2.16	A possible hypothetical structure of sisal fiber-CTDIC-PE	
	in the interfacial area	29
2.17	Schematic hypothesis of interfacial interaction for	
	WF/m-TMI-PP/PP	30.
2.18	SEM micrographs of (a) WF/PP and (b) WF/m-TMI-PP/PP	31
2.19	SEM photographs of fractured surfaces of (a) neat PP	
	and PP-based composites with DIC content of, (b) 1.0	
	(c) 2.5 and (d) 5.0 phr	32
2.20	The reactions of DIC compatible with PP or MAPP	33
2.21	Scanning electron micrographs of fractured surface of	
	cellulose fibers/LDPE composites: (a) 30 wt% of SMC	
	(organosolv/methanol-supercritical carbon dioxide cellulose)	
	fibers, (b) 30 wt% of SMC–DC fibers and (c) 30 wt% of	
	SMC–OC fibers	34
2.22	The tensile strength of unmodified SMC (\bullet), modified	
	SMC–DC (\blacksquare), and SMC–OC (\blacktriangle) cellulose fibers filled	
	LDPE composites versus filler loading	35
2.23	Scanning electron micrographs of (a) cellulosic material	
	and (b) acrylonitrile grafted cellulosic material	38
2.24	FTIR spectra of (a) cellulosic MF and CCF before	
	grafting (b) silane-treated MF and PAA-grafted MF	
	with several initiator concentrations	39

2.25	FTIR spectra of (a) cellulosic material isolated from	
	Agave Lechuguilla and (b) styrene-grafted Agave	
	Lechuguilla fiber (9%)	40
2.26	Scanning electron microscopic pictures of (a) cellulosic	
	material isolated from Agave Lechuguilla and	
	(b) styrene-grafted Agave Lechuguilla fiber (9%)	41
2.27	DSC curves of (a) cellulosic material isolated from	
	Agave Lechuguilla and (b) styrene–grafted Agave	
	Lechuguilla fiber (9%)	41
2.28	Reaction scheme for PAA grafting onto CM using	
	an epoxide	43
2.29	FTIR traces for CM, CM treated with 1-epoxy-5-hexane	
	and 1,2-epoxy-7-octane	44
2.30	Thermograms of CM, CM–PAA grafted (4% of KPS)	
	and PAA	44
2.31	Infrared spectra of hemp and flax fibers for	
	measurements of lateral crystallinity. (a) Untreated	
	hemp, (b) acetone-extracted hemp, (c) 8% NaOH-treated	
	hemp, (d) 20% NaOH-treated hemp, (e) 2.94%	
	acrylonitrile-grafted hemp and (f) untreated flax	46
2.32	SEM photomicrographs of acrylonitrile-grafted hemp	
	(a) 1.56% grafted, (b) 8.34% grafted and (c) 10.46% grafted	47
3.1	The experimental set up of the grafting reaction	49
3.2	The overall route of the modification of cellulosic fibers	49
3.3	Grafting reaction of cellulose fiber with TDI and	
	1–Octadecanol (first approach)	50
3.4	Grafting reaction of cellulose fiber with TDI and	
	1–Octadecanol (second approach)	51

3.5	The preparation of CF pulp from sulfite paper	52
3.6	Grafting reaction of cellulose fiber with EP and	
	1–Octadecanol	53
4.1	(a) TGA and (b) DTA curves of pure PP and CMF	57
4.2	(a) TGA and (b) DTA curves of CF and CF-g-TDI/18OH	58
4.3	(a) TGA and (b) DTA curves of CMF and CMF-g-TDI/18OH	59
4.4	FTIR spectra of CMF and CMF-g-TDI/18OH	61
4.5	Contact angle images of (a) CF (b) CF-g-TDI/18OH, 136.8°,	
	(c) CMF and (d) CMF-g-TDI/18OH, 111.0°	62
4.6	Scanning Electron Microscope at different magnifications	
	of (a) and (b) PP/CF-g-TDI/18OH; (c) and	
	(d) PP/CMF-g-TDI/18OH	64
4.7	(a) TGA and (b) DTA curves of PP and its composites	66
4.8	DSC curves of PP/CF-g-TDI/18OH and	
	PP/CMF-g-TDI/18OH composites	67
4.9	The structure of different alcohols	69
4.10	(a) TGA and (b) DTA curves of CMF grafted with	
	different alcohols	70
4.11	(a) TGA and (b) DTA curves of CMF-g-TDI/18OH	
	at different ratio	72
4.12	Tolylene 2,4-diisocyanate (TDI) and Epichlorohydrin	
	(EP) structure	73
4.13	The final structure of CMF-g-EP/18OH and	
	CMF-g-TDI/18OH	75
4.14	The morphology of CF and CMF	76
A.1	The mechanism of Atom Transfer Radical	
	Polymerization (ATRP)	87
A.2	Various styrene derivatives polymerized by ATRP	89
A.3	Various acrylate derivatives polymerized by ATRP	90

A.4	Preparation route to the PBA-g-Starch	91
A.5	The mechanism of the SI-ATRP of BA	91
A.6	The effect of the polymerizing time on the C% and PG%	92
A. 7	Various methacrylate derivatives polymerized by ATRP	93
A.8	300 MHz ¹³ C NMR spectrum of AS macroinitiator	
	(AS-BIB3) with assigned peaks	95
A.9	Some halogenated alkanes and benzylic halides used	
	as ATRP initiators	97
A.10	Examples of ligands used in copper-mediated ATRP	100
A.11	The preparation of CMF initiator	102
A.12	An ATRP reaction of CMF	103
A.13	Reaction procedure for preparing macro-initiator	104
A.14	FTIR spectra of CMF and CMF-Br	105
A.15	TG curves of CMF and CMF-Br	105
A.16	TG and DTG curves of CMF-Br	106
A.17	Reaction procedure for preparing CMF-PBA	107
A.18	FTIR spectra of CMF and CMF-PBA	108
A.19	TG curves of CMF, CMF-PBA-l and CMF-PBA-h	109
A.20	GPC traces of the polymers cleaved-off from	
	CMF-PBA-1 and CMF-PBA-2 prepared using	
	the same macro-initiator	110
A.21	Contact angle of CMF, CMF-PBA-1 and CMF-PBA-1	112
A.22	SEM images of the surface of CMF and modified CMF	113
A.23	Light Microscope (LM) images under UV light of the	
	sections of CMF-PBA-1 in PP matrix	114
A.24	SEM images of the ruptured surface of CMF and	
	modified CMF samples in PP matrix	115
B.1	Paper making flow chart	118
B.2	(a) Aggregator and (b) filter	119

÷ 1

B.3	(a) Compress system and (b) cutting equipment	120
B.4	(a) Tensile strength and (b) tearing strength equipment	120
B.5	(a) Bust strength and (b) brightness equipment	121
C.1	BET plot of CMF (Blank) sample	123
C.2	BET plot of TDI+18OH Grafted CMF_5% sample	124
C.3	BET plot of TDI+18OH Grafted CMF_5% sample	125

ABBREVIATIONS

18OH	1–Octadecanol
CF	Cellulose Fiber
CMF	Cellulose Microfibril
DSC	Differential Scanning Calorimetry
EP	Epichlorohydrin
FTIR	Fourier Transform Infrared Spectroscopy
РР	Polypropylene
SEM	Scanning Electron Microscopy
TDI	Tolylene 2,4-diisocyanate (TDI)
TGA	Thermogravimetric Analysis

xvii