บทที่ 4

การทดสอบและประเมินผล

การทดสอบลักษณะคุณสมบัติต่างๆเพื่อให้มั่นใจได้ว่า เครื่องวิเคราะห์ดีสซาร์จบางส่วน ที่ออกแบบสร้างขึ้นนี้มีความถูกต้องและเชื่อถือได้ โดยทำการทดสอบคุณสมบัติของภาคตรวจจับ PD และภาควิเคราะห์ PD

4.1 การทดสอบคุณสมบัติของภาคตรวจจับดีสชาร์จบางส่วน

การทดสอบคุณสมบัติของภาคตรวจจับ PD แบ่งเป็น 2 ส่วน คือ คุณสมบัติส่วนที่กำหนด ไว้ในมาตรฐาน IEC และคุณสมบัติเรื่องความไวซึ่งขึ้นอยู่กับเทคนิคในการออกแบบระบบวัด

4.1.1 การทดสอบตามขึ้นตอนของ IEC

รายละเอียดเกี่ยวกับคุณสมบัติของภาคตรวจจับ PD ตามขั้นตอนของ IEC ได้อธิบายใน หัวข้อ 2.5 *คุณสมบัติของเครื่องตรวจจับดีสซาร์จบางส่วน* แล้ว ส่วนผลการทดสอบมีดังนี้

1) ช่วงความถี่จำกัดและแบนด์วิดต์ ผลการทดสอบได้ f₁ = 44 กิโลเฮิรตซ์ และ f₂ =
427 กิโลเฮิรตซ์ ดังนั้นแบนด์วิดต์ Δf = 427 - 44 = 383 กิโลเฮิรตซ์ เอาต์พุตของเครื่องวัด PD เป็นแบบ α-response ซึ่งผลตอบสนองทางความถี่ (frequency response) แสดงในรูปที่ 4.1 และรูปสัญญาณเอาต์พุตแสดงในรูปที่ 4.2

รูปที่ 4.2 รูปสัญญาณเอาด์พุดของภาคตรวจจับ PD

 ความเป็นเชิงเส้นของระบบวัด ทดสอบตามขั้นตอนที่ IEC กำหนด[3] พบว่าสเกล แฟกเตอร์มีค่าความผิดพลาดจากค่าเฉลี่ย 0.4 เปอร์เซ็นต์ ผลการทดสอบแสดงในตารางที่ 4.1

ตารางที่ 4.1 ความเป็นเชิงเส้นของ k สำหรับเครื่องที่ออกแบบ

q (pC)	10	20	50	Mean k	Max Variation = 0.4 %	
k	1.007	1.000	1.002	= 1.003		

 เวลาแยกชัดของพัลส์ คือเวลาระหว่างพัลส์ติดกันที่น้อยที่สุดที่ทำให้ผลตอบเปลี่ยน แปลงไม่เกิน 10 เปอร์เซ็นต์ พบว่ามีค่า 8.5 ไมโครวินาที ดังแสดงในรูปที่ 4.3

รูปที่ 4.3 แผนภาพพัลส์คู่ (Double-pulse diagram)

 4) การแสดงผลค่าประจุที่ปรากฏ ผลการตอบสนองของระบบวัดที่มีต่อพัลส์ของ PD ที่ มีระยะห่างระหว่างพัลส์เท่ากันที่ถูกป้อนด้วย Pulse repetition frequency, N ค่าที่ระบบวัดอ่าน ได้ (Reading, R) มีในตารางต่อไปนี้ โดยปรับพิสัยและอัตราขยายให้อ่านค่าได้เต็มสเกลหรือ 100 เปอร์เซ็นต์ เมื่อ N = 100 ดังแสดงในตารางที่ 4.2

N (1/s)	1	2	5	10	50	≥100
R (%)	36.8	60.7	81.9	90.5	98.0	99.0

ตารางที่ 4.2 การตอบสนองของระบบวัดที่ออกแบบ

4.1.2 ความไวของระบบวัดดีสชาร์จบางส่วน

เนื่องจากมาตรฐานกำหนดให้ความไวของระบบวัด PD มีค่าเท่ากับสองเท่าของ สัญญาณรบกวนสูงสุดโดยที่ไม่คิดสัญญาณรบกวนจากภายนอก จากการทดสอบจะได้รูป สัญญาณดังตัวอย่างในรูปที่ 4.4 ซึ่งเป็นกรณีที่ C_a และ C_k มีค่า 1 นาโนฟารัดเท่ากัน และป้อน ประจุขนาด 2 พิโคคูลอมป์ จะคำนวณความไวได้ดังนี้ เนื่องจากความสูงของ PD และค่ายอดของ สัญญาณรบกวนเท่ากับ 2.1 โวลต์ และ 170 มิลลิโวลต์ ตามลำดับ ความไวที่ได้ในกรณีนี้จึงมีค่า เท่ากับ (2 x (2 x 170 / 2100)) ซึ่งมีค่า 0.324 พิโคคูลอมป์ สำหรับความไวกรณีที่วัสดุทดสอบ มีค่าอื่นๆแสดงในรูปที่ 4.5

รูปที่ 4.4 รูปสัญญาณกรณีที่ C_a และ C_k มีค่า 1 นาโนฟารัดเท่ากัน

4.2 การทดสอบจริง

การทดสอบจริงโดยใช้เครื่องตรวจจับ PD ที่ออกแบบสร้าง ตรวจจับ PD ในอุปกรณ์ไฟฟ้า แรงสูง (ในที่นี้จะใช้ตัวเก็บประจุแรงสูงเป็นวัสดุทดสอบ) โดยใช้วงจรทดสอบแบบวิธีตรง ดังแสดง ในรูปที่ 4.6 จากนั้นจะทำการจำลองจุดบกพร่องแบบต่างๆและทำการทดสอบเก็บผลเพื่อนำข้อมูล ที่ได้มาสร้างฐานข้อมูลสำหรับเปรียบเทียบในการวิเคราะห์ PD ด้วยเครื่องที่ออกแบบสร้าง

อุปกรณ์ประกอบวงจรทดสอบ : 1) ตัวเก็บประจุแรงสูง 100 pF (C_a) 2) ตัวเก็บประจุ คับปลิง 1 nF (C_k) 3) อุปกรณ์รับสัญญาณ (CD) 4) หม้อแปลงทดสอบ 100 kV 5 kVA 5) หม้อแปลงขดลวดแยก

รูปที่ 4.6 อุปกรณ์และการต่อวงจรทดสอบ PD ของตัวเก็บประจุแรงสูง

ในการจำลองจุดบกพร่องแบบต่างๆ จะใช้วิธีการดังนี้

 1) โคโรนาดีสซาร์จ จำลองโดยใช้ลวดขนาดเล็กยึดกับขั้วแรงสูงของวัสดุทดสอบ ให้ ปลายแหลมยื่นออกมาในอากาศ ห่างจากขั้วแรงสูงประมาณ 30 เซนติเมตร แสดงในรูปที่ 4.7 ก)

 2) ดีสชาร์จตามผิว จำลองโดยทำให้วัสดุทดสอบเกิดความเปรอะเปื้อนหรือมีความชื้นที่ ผิวที่บริเวณรอบๆ ผิวฉนวนใกล้ขั้วอุปกรณ์ เช่นใช้ผ้าหมาดเช็ดบริเวณผิวรอบๆ ส่วนบนของตัวเก็บ ประจุแรงสูงในรูปที่ 4.7 ก) เพื่อให้เกิดความเครียดสนามไฟฟ้าตามผิวเกินค่าวิกฤตได้ง่ายขึ้น

 3) ดีสชาร์จภายใน จำลองโดยการสร้างโพรงอากาศในพลาสติกใสที่ว่างซ้อนกัน 4 แผ่น แล้วยึดติดกันแน่นก่อนนำไปจุ่มน้ำมันหม้อแปลงเพื่อไม่ให้เกิด PD ที่บริเวณอื่น โดยมีอิเล็กโตรด
2 อันภายในท่อใสทำหน้าที่เป็นขั้วแรงสูงและขั้วกราวด์ ดังแสดงในรูปที่ 4.7 ข)

รูปที่ 4.7 การจำลองจุดบกพร่องของวัสดุทดสอบ

นอกจากนั้นกรณีที่โลหะในบริเวณทดสอบไม่ได้ต่อลงกราวด์จะเกิดการดีสชาร์จขึ้นที่ โลหะนั้นได้ ซึ่งจะทำให้เกิดสัญญาณที่สามารถตรวจจับโดยระบบวัด PD ดังที่ได้แสดงไว้แล้วในรูป ที่ 2.13 สามารถจำลองได้โดยการปลดรั้วโลหะที่กั้นบริเวณทดสอบออกบางส่วนไม่ให้ต่อลงกราวด์ เริ่มต้นการทดสอบด้วยการปรับเทียบวงจรทดสอบ โดยการใช้เครื่องปรับเทียบดีสชาร์จ มาตรฐานป้อนประจุปรับเทียบคร่อมที่ขั้วไฟฟ้าของวัสดุทดสอบ แล้วทำการปรับเทียบตามขั้นตอน ที่กล่าวไว้ในหัวข้อ 3.5.1 พบว่าเครื่องวิเคราะห์ดีสชาร์จบางส่วนอ่านค่าสัญญาณรบกวนสภาพ แวดล้อมได้ 0.24 พิโคคูลอมป์ แสดงว่าความไวในการวัด PD ขณะนั้นคือ 0.48 พิโคคูลอมป์ เมื่อป้อนแรงดันเข้าวงจรทดสอบเริ่มจากศูนย์และเพิ่มแรงดันขึ้นเรื่อยๆจนกระทั่งถึง 70 กิโลโวลต์ ซึ่งเป็นค่าแรงดันพิกัดของเครื่องที่ออกแบบสร้างพบว่าไม่เกิด PD ใดๆ จึงทำการจำลองให้เกิด PD แบบต่างๆ แล้วป้อนแรงดันเข้าวงจรทดสอบอีกครั้ง ในการจำลอง PD แบบโคโรนา พบว่าที่แรงดัน ประมาณ 11 กิโลโวลต์ เกิด PD ประมาณ 60 พิโคคูลอมป์ จึงได้บันทึกผลไว้ ดังรูปที่ 4.8 และ 4.9

ข) ผลการตรวจจับ PD

รูปที่ 4.8 PD แบบโคโรนาที่เกิดที่ปลายลวดแหลมยึดบนตัวเก็บประจุแรงสูง

รูปที่ 4.9 รูปสัญญาณ PD แบบโคโรนา

จากนั้นได้ทำการทดสอบวัสดุทดสอบที่ได้สร้างจุดบกพร่องจำลองเพื่อนำผลการตรวจจับ มาคำนวณการกระจายและค่าคุณลักษณะแฟรกตัล เก็บเป็นฐานข้อมูลสำหรับการวิเคราะห์ ดีสชาร์จบางส่วน โดยการกระจายที่ได้จากสาเหตุต่างๆแสดงในรูปที่ 4.10

รูปที่ 4.10 ลักษณะการกระจายของข้อมูล PD ที่เกิดจากสาเหตุต่างๆ

หลังจากเก็บข้อมูลการกระจายและคำนวณค่าคุณลักษณะแฟรกตัลแล้ว ก็จะทำการบันทึก ข้อมูลโดยแบ่งตามสาเหตุของการเกิด PD ไว้ในฐานข้อมูล ต่อจากนั้นจะทำการทดสอบความสามารถ ในการจำแนกสาเหตุการเกิด PD ของซอฟต์แวร์ที่พัฒนาขึ้น โดยการทดสอบวัสดุทดสอบที่มีจุด บกพร่องที่ทราบแน่ชัด และเก็บผลมาคำนวณการกระจายและค่าคุณลักษณะแฟรกตัล จากนั้นทำการ คำนวณเปอร์เซ็นไทล์ของข้อมูลตัวที่นำมาจำแนกสาเหตุเทียบกับกลุ่มข้อมูลที่เกิดจากสาเหตุเดียวกัน ในฐานข้อมูล จากการทดสอบกับจุดบกพร่องแบบต่างๆ ได้ผลดังรูปที่ 4.11

n) จุดบกพร่องแบบโคโรนา (ที่แรงดันเริ่มต้น)

ข) จุดบกพร่องแบบโคโรนา (ที่แรงดันสูงกว่าแรงดันเริ่มต้นมาก)

ค) จุดบกพร่องแบบดีสชาร์จตามผิว

ง) จุดบกพร่องแบบดีสชาร์จภายใน

จ) โลหะในบริเวณทดสอบไม่ได้ต่อลงกราวด์

รูปที่ 4.11 ผลการคำนวณค่าคุณลักษณะที่เกิดจากสาเหตุต่างๆ

4.3 การประเมินผล

ในการประเมินผลเครื่องวิเคราะห์ดีสชาร์จบางส่วนที่ออกแบบสร้างนั้น ได้ทำการทดสอบ คุณสมบัติทั้งส่วนที่เป็นข้อกำหนดตามมาตรฐาน และส่วนที่เป็นการนำไปใช้งานจริง แล้วนำข้อมูล ที่ได้มาประเมินผลการทำงานของภาคตรวจจับ PD และภาควิเคราะห์ PD

4.3.1 การประเมินผลภาคตรวจจับดีสชาร์จบางส่วน

จากการพิจารณาผลการทดสอบตามขั้นตอน IEC เปรียบเทียบกับข้อกำหนดที่กล่าวไว้ ในหัวข้อ 2.5 คุณสมบัติของเครื่องตรวจจับดีสชาร์จบางส่วน จะเห็นได้ว่า คุณสมบัติต่างๆของ ภาคตรวจจับ PD อันได้แก่ ช่วงความถี่จำกัด แบนด์วิดต์ ความเป็นเชิงเส้น เวลาแยกชัดของพัลส์ และการแสดงผลค่าประจุที่ปรากฏ มีค่าอยู่ในช่วงที่มาตรฐาน IEC 60270 ยอมรับ ดังนั้นภาค ตรวจจับ PD ของเครื่องวิเคราะห์ดีสชาร์จบางส่วนที่ออกแบบสร้างจึงมีคุณสมบัติตามที่มาตรฐาน IEC กำหนดไว้ทุกประการ

จากการพิจารณาค่าความไวที่คำนวณได้จากผลการทดลองเปรียบเทียบกับค่าที่ออก แบบไว้ จะพบว่าค่าความไวที่คำนวณได้มีค่าต่ำกว่าค่าความไวที่ออกแบบไว้เล็กน้อย สาเหตุที่ เป็นเช่นนี้เนื่องจากการทำการวัดในห้องทดลองปกติโดยไม่มีการซีลด์สัญญาณรบกวน สัญญาณ จากภายนอกทั้งที่เป็นสนามไฟฟ้าและสนามแม่เหล็กจึงเกิดการคาบเกี่ยว (coupling) กับระนาบ กราวด์ (ground plane) ลายวงจร (trace) รวมทั้งที่ตัวอุปกรณ์อิเล็กทรอนิกส์บนแผ่นวงจรพิมพ์ ซึ่งส่งผลรบกวนต่อสัญญาณที่วัดได้ อย่างไรก็ตาม ในการวิจัยได้ออกแบบวงจรตามหลักความ เข้ากันได้ทางสนามแม่เหล็กไฟฟ้า (Electromagnetic compatibility, EMC)[54] เพื่อให้สัญญาณ รบกวนมีผลต่อความไวของระบบวัดน้อยที่สุด

4.3.2 การประเมินผลภาควิเคราะห์ดีสชาร์จบางส่วน

จากผลการนำเครื่องวิเคราะห์ดีสชาร์จบางส่วนมาทำการทดสอบจริงโดยใช้ตรวจวัด PD และวิเคราะห์ PD จะเห็นได้ว่าเครื่องสามารถทำงานได้อย่างถูกต้องตามที่ได้ออกแบบไว้ตั้งแต่เริ่ม ป้อนแรงดันทดสอบจนถึงค่าแรงดันพิกัดของเครื่อง โดยมีความไวเพียงพอต่อการทดสอบอุปกรณ์ ไฟฟ้าแรงสูงทั่วไปเนื่องจากสามารถลดทอนสัญญาณรบกวนจากภายนอกได้มาก การแสดงผล การตรวจจับ PD เมื่อทดสอบจุดบกพร่องจำลองแบบต่างๆ มีรูปแบบที่สังเกตได้บนฐานเวลารูป วงรีสอดคล้องกับรูปแบบของสัญญาณ PD ที่แสดงไว้ในรายงานวิจัยของ CIGRE[21] ผลการ วินิจฉัยสาเหตุของการเกิด PD โดยอัตโนมัติด้วยเครื่องวิเคราะห์ดีสชาร์จบางส่วนที่ออกแบบสร้าง แสดงให้เห็นว่า อัลกอริทึม (algorithm) ต่างๆ ที่เลือกใช้ในกระบวนการรู้จำและจำแนกสาเหตุของ การเกิด PD อันได้แก่ การเก็บข้อมูลการกระจายในแบบ H_n(\phi,q) เพื่อนำมาคำนวณค่าคุณ ลักษณะแฟรกตัล และการใช้ Centour score ในการจำแนกสาเหตุที่ทำให้เกิด PD นั้นสามารถ จำแนกสาเหตุต่างๆได้จริง และมีความถูกต้องของการวินิจฉัยอยู่ในระดับที่น่าพอใจ