CHAPTER |l

THEORY

2.1 Background

The basis for atoms and molecules is formed by the coulombic attraction
between a set of positively charged nuclei surrounding by a number of electrons [47,
48]. The potential between two particles with charges qiand ¢ Separated by a
distance ri; (in centimeter-gram-second (cgs) unit) is given by

V, =V (rv)= A (2.1)

Due to electron displays both wave- and particle-like characteristics thus; it
cannot be described by classical mechanics. However, it can be described by the
quantum mechanical equation i.e. the time dependent Schrbdinger equation.

th f =i (2.2)

H IS the Hamiltonian operator; n is Planks constant divided by 271 and i is the
imaginary number. The simpler version of Equation (2.2) is the time-independent (or
static) Schrodinger equation given by:

TAF - v (2.3)

For a general n particle system the Hamiltonian operator contains kinetic (1)
and potential (V) operators for all particles.
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Where V2 is the Laplacian operator acting on particle/. The potential energy
operator is the Coulomb potential Equation (2.4). Due to nuclei are 1836 times much
heavier than electrons, their velocities are much smaller. The Schrodinger equation can
be separated into two parts, where one-part describes the electronic wavefunction for a
fixed nuclear geometry, and another part describes the nuclear wavefunction. The
energy from the electronic wavefunction plays the role of a potential energy. This
separation is called Born-Oppenheimer approximation. The Born-Oppenheimer
approximation is usually a very good approximation. For the hydrogen molecule the
error is of the order of 104 a.u., and for systems with heavier nuclei, the approximation
becomes better [48].

The Potential Energy Surfaces (PES) is known when a large number of nuclear
geometries (and possibly also for several electronic states) has been solved by the
electronic Schrodinger equation. This can then be used for solving the nuclear part of
the Schrodinger equation. If there are TVnuclei, there are 37V coordinates that define
the geometry. Of these coordinates, three coordinates describe translation and another
three coordinates describe rotation of the molecule. For a linear molecule, only two
coordinates are necessary to describe the rotation. Thus, the molecular vibrations could
be defined by 31V- 6(5) coordinates. It should be noted that nuclei are heavy enough
for quantum effect to be almost negligible, they behave to a good approximation as
classical particles.

The typical molecular Hamiltonian operator [48] consists of the kinetic term for
electrons (Tc) and nuclei (Tn), the attraction between electrons and nuclei (Vrb),
inter-electronic (V) and internuclear (Vm) repulsions. Casting the Hamiltonian into
mathematical notation, we have
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where | and yrun over electrons, /tand /run over nuclei, meis the mass of the
electron, m« is the mass of nucleus « . « is the charge on the electron, Z is an atomic
number, and ra is the distance between particles a and b . All are in cgs unit.

Applying the Born-Oppenheimer approximation Equation (2.6) is separated to
H =Hm+Heke (26)

where + ,, IS nuclear Hamiltonian. Thus,

I=yZLV;+- -1Z e rvEN 07
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If the electronic Schrodinger equation (//eeflel £7) is solved, the nuclear
Schrodinger equation can also be solved. Even for the simplest molecular system, the
electronic Schrodinger equation can still not be solved exactly.

Additional approximation is needed.
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2.2 Spatial Orbitals and Spin Orbitals

We define an orbital as a wavefunction for a single particle, an electron.
Because we are concerned with electronic structure of a molecular, molecular orbitals
will be used for the wavefunctions of the electrons in a molecule. A spatial orbital  (r),
is a function of the position vector r and describes the spatial distribution of an electron
such that vy 1x)~ ¢+ is the probability of finding the electron in the small volume element
dr surrounding r. Spatial molecular orbitals will usually be assumed to form an
orthonormal set

ja’r v, (D, (r) =8, (29)

If the set of spatial orbitals 1 is complete, then any arbitrary function
| (r) could be exactly expanded as

[(r) =x<w,(r) 2.10,

where a1 is a coefficient. The finite set of orbitals{* U= span a certain
region of the complete space.

An electron is necessary to specify its spin. The wavefunction for an electron that
describes hoth its spatial distribution and its spin is a spin orbital,j(x ), where «
indicates both space (r) and spin (( ) coordinates [49)].

y/(r)a(a>)

j(x)H or (2.11)
yI(1)i3(co)
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2.3 Slater Determinants

The wavefunction for an n -electron system, is a function ofx,,x2,.1.,Xj,. A
many electron wavefunction must be antisymmetric with respect to the interchange of

the coordinate xof any two electrons. This requirement is also called the Pauli Exclusion
Principle.

A,y XX 4, XA) =T (X X XL XA (212)
Slater determinant can be used to represent the antisymmetric wavefunction.

X,-(X].) X](*|) - - Xk(xw
Xi(x2) XM 1) - XKkM

VB (x ],ox 2, X Ny = (Arl)tLR

X iM xM n) -- X kM
(2.13)

The factor (AH)'l2is a normalization factor. The Slater determinant has n electrons
[Slater determinants formed from orthonormal spin orbitals are normalized.] It is
convenient to introduce a short-hand notation for a normalizes Slater determinant, which
includes the normalization constant and only shows the diagonal elements of the
determinant,

2.4 The Hartree-Fock Approximation

the Hartee-Fock method, the electron-electron interaction is treated within the
model of independent electrons, ie. each electron moves in the average potential of
other electrons. The advantage of the model of independent electrons is that it allows
searching for a wavefunction in the form of the product of one-electron functions
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(orbitals). The Hartree-Fock approximation constitutes the first step towards more
accurate approximations [49].The simplest antisymmetric wavefunction is a single Slater
determinant [50]. [As a consequence, there is a non-zero probability that two electrons
are located at the same point in the space.] It can be used to describe to ground state
of an n -electron system. The variation principle could be applied to obtain the lowest
possible energy = oof (%} orbital space.

Theeo=(~on voy expressed in terms spin orbitalsyx,\i = 1,2,. ,.,,/v}, is given
by Equation (2.16),

*0= *0 (215)

Eg = [#]+ (216)

For a closed-shell system, which contains ~ /2 orbitals with a spin and /2
with /? spin Equation (2.16) can be written as

co=2E (#)+ 2L VyHyb> 17
The first term is called the one-glectron integral

#my=k =1 drV;(r,)('4 V| (218)

1 k=1 rik

Thus nnis the average kinetic and nuclear attraction energy of an electron
described by the wavefunctionyl... , . The -second term in Equation (2.18) is the two-
electron integral

== P cnp™|((r2)2 (219)
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which is the classical coulomb repulsion between the charge clouds ”(r1) 2and
| (r2)! . Thus, this integral is called a coulomb integral, sy .

The -third term is
KJ - (&\ji): \]dI’XdXZ\j/*(r )y/j(r,)y- (//*(rz)y/t(m) (2.20)

and does not have any classical interpretation. It is called an exchange integral.x y .

Rewrite the Hartree-Fock energy for a closed-shell system using notations of
coulomb and exchange integrals, we obtained

Er=2l*» + 1X -K s (221)

The variation flexibility in the wavefunction is in the choice of spin orbitals. By
minimizing £0with respect to the choice of spin orbitals, one can derive an equation,
called the Hartree-Fock equation, which determines the optimal spin orbitals. The
Hartree-Fock equation is an equation of the form

/(OX*(X]):A (XI) (2 22)

where (i) is an effective one-electron operator, called the Fock operator. The Fock
operator has the form

/(O:'|V?'IA+VHF(O (2.23)

where VIIF/)is the average potential experienced hy the /helectron due to the
presence of the other electrons. The essence of the Hartree-Fock approximation is to
replace the complicated many electron problem by a one-electron problem in which
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electron-glectron repulsion is treated in an average way. The procedure for solving the
Hartree-Fock equation is called the self-consistent field (SCF) method [49],

The basic idea of the SCF method is simple. By making an initial guess at the
spin orbitals, one can calculate the average field (/.e.,vHF) seen by each electron and
then solve the eigenvalue equation in Equation (2.22) for a new set of spin orhitals.
Using these new spin orbitals, one can obtain new fields and repeat the procedure unti
self-consistency is reached (. .1 until the fields no longer change and the spin orbitals
used to construct the Fock operator are the same as its eigenfunctions), as in Figure 2.1.

Choose a molecular geometry q(OD
I

Compute and store all overlap, Guess initial density matrix p(O))
one-eletron integrals I

=

Construct and solve Hartree-

Fock secular equation
i
|

~

Compute two-electron integrala» ------ Construct density matrix

ey [TOM OCCUpied MOs

A

[Replace P(n-1) with P(n)]

NO | Is new density matrix p(n)
Choose new geometry. 1 sufficiently similar to old
according to optimization density matrix p(n-1)?
algorithm
! YES
1
E NO [Opnmlze molecule geometry?
1 1
/ | YES NO
Does the current geometry !
satisfy the optimization SRR Output data for
\criteria? unoptimized geometry

YES

-
Output data for optimized
Lgeometry

Figure 2.1 Flow chart of the HF SCF procedure [48]. Note data for an
unoptimized geometry is referred to as deriving from a so-called single-point calculation.
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The solution of the Hartree-Fock eigenvalue problem Equation (2.22) yields a set
[xk ] of orthonormal Flartree-Fock spin orbitals with orbital energies{”*}. The n spin
orbitals with the lowest energies are called the occupied or hole spin orbitals. The Slater
determinant formed from these orbitals is the Flartree-Fock ground state wavefunction
and is the best variation approximation to the ground state of the system, of the single
determinant form,

The Flartree-Fock equation can also be solved by introducing a finite set of
spatial basis functions{” ()ju =1,2,....x . Using a basis set of « spatial
functions {"), leads to a set of 2A) spin orbitals (x with «spin « and with js spin)
can be obtained.

(2.24)

2.4.1 The Restricted and Unrestricted Hartree-Fock Models

The Hartree-Fock solution is usually characterized by having doubly
occupied spatial orbitals, i.e.1 two spin orbitals xp and xc, share the same spatial
orbital y/1(r) connected with an = and a p spin function, respectively and have the
same orbital energy. If we impose this double occupancy right from the start, we arrive
at the restricted Hartree-Fock (RHF) approximation. Situations where the RHF picture is
inadequate are provided by any system containing unpair electron or open shell. There
are two possibilities for how one can treat such species within the Hartree-Fock
approximation. Either we stay as closely as possible to the RHF picture and doubly
occupy all spatial orbitals with paired electrons and singly occupy all spatial orbitals
with unpaired electron or allow each spin orbital to have its own spatial part. The former
is the restricted open shell HF scheme (ROHF) while the latter is unrestricted Hartree-
Fock variant (UHF).  UHF the = and p orbitals do not share the same effective
potential but experience different potentials, vHa and vhr.  As a consequence, the a



26

and p orbitals differ in their spatial characteristics and have different orbital energies, as
in Figure 2.2.

A Vbs A Wi2s(a)

A | P
1, /1S /1 (tX) t ( )

RH UHF

Figure 2.2 Relaxation of a restricted single determinant to an unrestricted
single determinant [49].

The UHF scheme affords equations that are much simpler than their
ROHF counterparts. Particularly, the ROHF wavefunction is usually composed not of a
single Slater determinant, but corresponds to a limited linear combination of a few
determinants where the expansion coefficients are determined by the symmetry of the
state. On the other hand, in the UHF scheme we are always dealing with single-
determinants wavefunctions. However, the major disadvantage of the UHF technique is
the UHF wavefunctions is notan eigenfunction of the total spin operator, S2.

2.4.2 Electron Correlation

The difference between Hartree-Fock energy (£0) and the exact energy
(£6a), is called the correlation energy [51].

E“"= E txx,-£ 0 (225)

Electron correlation (e corr) IS @ negative or zero quantity because & o
and eea <0and |£eed>Eol The € con value indicates the error introduced through
the HF scheme. First, £ corr is mainly caused by the instantaneous repulsion of the
electrons, which is not covered by the effective HF potential. The electrons often get too
close to each other in the Hartree-Fock scheme because the electrostatic interaction is
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treated in only an average manner. Consequently, the electron-electron repulsion term is
too large. As a result, e 0 is above e exw . This term of the correlation energy is related to
\iru - term, which controls the electron-electron repulsion in the Hamitonian. When the
distance ri2 between electrons 1 and 2 (=12 is the short, the correlation energy
becomes larger. This correlation is known as dynamical electron correlation since it
involves the actual movements of the individual electrons  a short range effect. The
second main contribution to £ corr is the non-dynamical or static correlation.  fact, the
ground state Slater determinant in a certain condition is not exactly correct for the true
ground state. For example  a hydrogen molecule (H2, the correlation energy is small
only 0.04 Ehand almost negligible.  contrast, when the bond between R atoms
stretches, the correlation energy gets largerto 0.25 Eh Figure 2.3 shows the limit of very
large distance convergence computed (RHF and UHF), compared with the exact
potential curves for the ground state of the hydrogen molecule [52],

At this point the dynamical correlation is so small because when the two
A atoms become completely separated with infinite distance (r v_# —>00), there is no
electron-glectron repulsion due to (v rH_1 —0).

RHF

Relative Energy

Figure 2.3 Potential curves for Fi2[52]
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Unlike the dynamical correlation discussed before, these non-dynamical
contributions are a long range effect and the more important it becomes the more the
bond is stretched (Cook and Karplus, 1987) [53]. However, we also see from Figure 2.3
that using the unrestricted (UHF) scheme rather than RHF cures the problem. At HH
distance of some 1.24A an unrestricted solution lower than the RHF one appears and
develops into a reasonable potential curve. However, resulting UHF wavefunction no
longer resembles the Hz singlet ground state. At large internuclear distances it actually
converges to a physically unreasonable 11 mixture between a singlet (S=0, hence

( +1)=o)and atriplet (5 =1hence ( +1)=2) as indicate by the expectation
value of the 520perator, A52*=1. The correct energy emerges hecause the UHF
wavefunction breaks the inversion symmetry inherent to a homonuclear diatomic such
as Hzand localizes one electron with spin down at one nucleus and the second one with
opposite spin at the other nucleus [49].

Finally, we want to point out that & corris not restricted to the direct
contributions connected to the electron-electron interaction. As this quantity measures
the difference between the expectation value of w with a Slater determinant
AT +Vre+vj™) and the correct energy obtained from the exact wavefunction ¥ o it
should come as no surprise that there are also correlation contributions due to the
kinetic energy or even the nuclear-electron term. For example, if the average distance
between the electrons is too small at the Hartree-Fock level, this automatically will lead
to a kinetic energy that is too large and nuclear-electron attraction which is too strong.

The error resulting from HF approximation is known as correlation
energy. The reliability (and applicability) of HF is rather limited. While the method gives
reasonable structures, calculated reaction energies show large errors. However, the
electron correlation can be somehow estimated by methods such as perturbation
theary.
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2.5 Perturbation Theory

Perturbation theory leads to an expression for the desired solution in terms of a
power series in some "small" parameters that quantify the deviation from the exactly
solvable problem. Perturbation methods can be used in quantum mechanics for adding
corrections to solutions that employ an independent-particle approximation, and the
theoretical framework is then called Many-Body Perturbation Theory (MBPT). It is
possible to determine the eigenfunctions and eigenvalues of the more complete
operator from using exact eigenfunctions and eigenvalues of the basic operator.
Rayleigh-Schrodinger perturbation theory is used for achieving this purpose. The
Hamiltonian operator 1 of this theory can be written as

Ho= H{0)+ AH" (2.20)

Where + () is an operator for which we can find eigenfunctions, w ' is a perturbing
operator, and » is a dimensionless parameter that, as it varies from o t0 1, maps ()
intow . The ground-state eigenfunctions and eigenvalues can be expanded as Taylor
series in powers of the perturbation parameter a .

_ ML) dmf) 31()
yo=AX(Q+a o BEAL 4, ’1:°+?J|'£E0A3 At (2.21)

*o=w C u +i n .- - <N)

a,0is the eigenvalue for ~qo), which is the appropriate normalized ground-state
eigenfunction forw (o). Equation (2.27) and (2.28) are usually written as

% =A°MQ+ATQ) +120Q +/136Q3 +.. (2.29)
and
a0 = Aca[f FA'aQu + A2a(>+ A3 (3) T, (2.30)
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where the superscripts ( ) term are referred to ‘«th-order corrections’ to the zeroth
order term and are defined by comparison to Equation (2.27) and (2.28).
Thus, the equations can be written as

(Hw +AH)I0) = al¥0) (2.31)
(HO +AH)/ ¥Q) +A¥ () + A2 +A¥ @ +..

(A°ai)) + Alai;) + A2a A + Aia™+..)) A¥(D) +A¥ 0 +A% (@) + L3¥<f1 +.
(2.32)

For Equation (2.32) using the terms with the same power/l, the left and right sides of
this equation can be paired as followed

[ ¥O>=r%(Q (2.33)
AL HOx ") +frx n) = X ") +« 12X 0) (2.34)
A2 Hw X 2)tH X "= X TK*1X") 422" 1) (239)

A3: X JHH' X 2)=80 Xn>4n ' 204ty TaQ¥(
(2.30)

The goal of this theory is to determine the various th-order corrections. The zeroth-
order in Equation (2.33) is an unperturbed solution (power of A =0 anda0 = £00), whereas
there are two unknowns first-order corrections (the wavefunction and eigenvalue) in
Equation (2.34).

To solve Equation (2.34) to (2.36) “pl0is multiplied on the left followed by
integrating to normalize ¥ .  case of Equation (2.34), the result is
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which is the first-order correction to the eigenvalue. It is the expectation value of the
perturbation operator over the unperturbed wavefunction. The”™()term can be
expressed as a linear combination of the complete set of eigenfunctions o~ o), i.e.

= 3 e o (2.38)

To determine the coefficients ¢, in Equation (2.38), Equation (2.34) is multiplied on the
left by \F]0) and integrates to obtain

e o g y+(yy0111i% () = % )+ 1%0)
(2.39)

Using Equation (2.38), the expansion of Equation (2.39) is Equation (2.40)

(e J0[1QX A7)+ (MO =20, @X ") +flog)(xy 0 %(0)
(240)

Because Equation (2.40) is in the form of the orthonormality of the eigenfunctions, the
equation can be simplified to

giaf0 +( P P ¥”) = c,af” (241)
P g
C; = LC?)‘_%B)J (242)

Using the first-order eigenvalue and wavefunction corrections, the second-order
correction can be determined
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The third-order can be obtained from the first- and second-order corrections. The results
for the eigenvalue correction are

(¥<g[f [¥ ()
D= 2.43
2 jZ>oJ 10) (2.43)
and
33) - (xoVy“fer fm o ©y /(0))K ¢ty il
Pl 08)-8 ')«r-aDb

(2.44)

The example of the application of perturbation theory is Moller-Plesset perturbation.

25.1 Moller-Plesset Perturbation Theory

The application proposed by Moller and Plesset [54] (1934) is now
known as the acronym MP  where s the order of corrections in the perturbation
theory is truncated, e.g., MP2, MP3, etc. The MP approach used //(0) to be the sum of
the one-electron Fock operators, known as the non-interacting Hamiltonian

H(0)= ¥ f1 (2.45)

where is the number of basis functions and  1is defined in the usual way according
to Equation (2.23).  addition, ~ () is assigned to be the HF wavefunction, which is a
Slater determinant formed from the occupied orbitals. The eigenvalue of 1 (o) is the sum
of the occupied orbital energies.

HO¥O=27¥0 =20 (2.46)
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The ‘error’ in Equation (2.46) is caused from counting twice of electron-
electron repulsion. So, the correction term w + that is difference between counting
electron repulsion once and twice is added to improve the HF wavefunction and
eigenvalues.

occ. occ. 1 0cC. occ. 1

v = 11\ k1) (2.47)

Next, the first-order correction to the zeroth-order eigenvalue is
defined by Equation (2.46) and Equation (2.37).

a0 +a(D=W@) »-) vpor L S vp (o)

_ il (%) Ly wel()®

(2.48)

The Hartree-Fock energy (iiH) is the energy corrected through first-order in MP theory.
The a(l) t be negative to deduce the overcounted electron-electron repulsion
ina o) term.

The set of all possible excited-state eigenfunctions and eigenvalues of
the operatorw () were used to estimate the second-order correction by treating a finite
basis approximation in Equation (2.43).

X (00 v~op=£ (" Ok - 0]%(0)

j>0 j>0
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:Eo[( 0w w Q)- (t]0 ¥y
g%_AWﬂ)r+ i'D-g™NK)

£ (41> |Ff]'p &>

i>0 "

(249)

a<for each doubly excited determinant includes in the sum of the energies of the
virtual orbitals and excludes the energies of the two orbitals from which excitation has
taken place. Therefore, the second-order energy correction can be expressed as

Aj\ab]-[ia\jb ]f (250)

ipiah, £1+Sj-Sa-"b

The sum of a{J,a() ,and a9 determine the MP2 energy.

MP2 calculations can be carried out and are rapidly converged because
the scaling behavior of the MP2 method in Equation (2.50) is roughly A5 where v is the
number of basis functions. MP theory for all  orders is size-consistent. Due to basis set
limitations, the MP2 calculations always underestimating the correlation energy. The
increasing of  orders, leads to unsuccessfully converge, even though the basis set size
is limited [55], MP3 calculation is much more expensive than MP2, but obtained result
gives only little improvement over MP2.  addition, the MP4 level is much more
expensive than MP2 and MP4 since the MP4 scales is A7 so it is difficult to converge.
Figure 2.4 shows ideal calculation using HF (MP1), MP2, MP3 and MP4. The MP«
results are oscillatory. MP2 is perfectly suited to use, but cannot be applied with
periodic boundary conditions and large unit cells. Possible solutions are MP2 cluster
calculations, but MP2 calculations are computationally demanding and large clusters
may be needed to reach convergence.
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Property

A

HF

MP3

/\\ > Limiting value
\/ MP4

MP2

Figure 2.4 Typical oscillating behavior of results obtained with the MP
method [55]

For reduce computational costs, a linear combination of atom-centered
auxiliary basis functions » was used to approximate representation of products of
virtual and occupied orbitals basis function v, or products of molecular orbitals.

pw ir) Sv(r)p (1) ¥ pvi(r)= (251)

The advantage of Equation (2.51), data is reduced by minimizing the Coulomb self-
interaction of the residual density - » 1the four-center integrals

pvikA)«X (M rm ife M (2-52)

The right-hand side of Equation (2.52) consist only three center integralS(pvip) s
Equation (2.52) is called 1 approximation [56] due to it similar an insertion of a resolution
of idlentity.

For the system composed of more than hundred atoms, the resolution of
identity (1) approximation [56] together with corresponding auxiliary basis set is
included in the MP2 calculation (ri-MP2). The ri-MP2 method uses four-center-two-
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electron integrals with linear combinations of three-center integrals. This technique
allows ri-MP2 calculate to use only about 10% of the time required by conventional MP2.

The ri-MP2 energy,

(253)

EnM2 = X ﬁ ,
1552/ Hleerlj,be(J2

Using the i approximation in the Coulomb metric

[
ia€alj beazandsfa=XNA?fClm
(2.54)

where <1and < run over the spins and the « -amplitudes in the n approximation are
defined by inserting Equation (2.54) into Equation (2.55).

2 \b J-[ib \j
[ia\jb ]-[ib\ja] it q = en
ei+£j-eé-£b (255)
[ia\ib] =2 '
if <™ ocr2
£i+£)-Ea-Eb

Four-center-two-electron integral is fia\j¢]-[z€[ja] by i.j refer to spin dependent in
occupied and a.b in virtual molecular orbitals.  denote the corresponding orbital
energies.

Density functional theory method is the major approximations favorable
over the perturbation theory methods, considering the fact that DFT does not require the
use of such large flexible basis sets as is usually required for the perturbation theory
calculations. MP2 and CCSD(T) methods are significantly more computer time
consuming, scaling formally as ns and A7 respectively. Figure 2.5 summarized
traditional ab initie methods, MP2, CCSD(T) methods, and DFT methods.
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Stationary Schroedinger equation

HY =

CCsSD(T)

A

Non-relativistic Hamitonian B3LYP, B3PW91
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c
[®]
5 One-electron function y/(l)zgc‘,zﬂ(l)
% Electron density () =S|, () Generallized gradient
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E electrons system Kohn-Sham orbitals
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g
Hartree-Fock method Local density approximation
#(1).. HForbitals LDA (LSD, SVWN)
E = E[p]

1
V12..m) = —=lp (00,22, ()

Electron correlation neglected

Figure 2.5 Traditional ab initio and DFT methods [57]

2.6 Density Functional Theory

Since the late 1980s and 1990s, density functional theory (DFT) has enjoyed an
increase suddenly of interest that is an approach to the electronic structure of atoms
and molecules. 1964, Flohenberg and Kohn [58] who showed that the ground-state
energy and other properties of a system are uniquely determined by the electron density
based on one-electron orbitals [48, 52, 58-60].  Hartree-Fock theory the  any-electron
wavefunction is expressed as a Slater determinant [50] which is constructed from a set
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of N single-electron wavefunction (v being the number of electrons  the molecule).
DFT also considers single-electron functions. However, whereas Hartree-Fock theory
does indeed calculate the full n- electron wavefunction, density functional theory only
attempts to calculate the total electronic energy and the overall electronic density
distribution. The central idea underpinning DFT is that there is a relationship between
the total electronic energy and the overall electronic density. This is not a particularly
new idea; indeed an approximate model developed in the late 1920s (the Thomas-Fermi
model) [61] contains some of the basic elements.

2.6.1 Density Functions

For one-glectron wavefunction, (rs« )adraco gives the chance of
finding the electron in the spatial volume element « - with spin coordinate between o
and co+ dco.

For a many-electron system with wavefunction "(r1,( 1, 2, (02,...,7.c0,)
then

Ar,,00, 202, xa comjedTldcold rda>2...d Trdoon  (2.56)

gives the probability of finding simultaneously electron 1 inatxdcox, electron 2
dr2dco?....electron  drrdcon. The probability that electron 1is in drrda>y with other
electrons anywhere is found by averaging over the remaining electrons.

J"(---J|'T(r,00,r2,02,...,m,9nfd 7 2da...d T (0n)d na(0f (2.57)

and, because electrons are indistinguishable, the probability must be the same for al
electrons. We therefore define the one-electron density function as

pfa,a>x) = n (V= \\¥ ijxa)rTla>i...xnlonfd r2da)i--d Tnd(oH)  (2.58)

The two-electron density function is
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Pi(r,O15h,02) =n(n- 1) 4-J A(i5EL250204» )2 r a8t 1 chdd),)
(259)

which is related to the probability that any two electrons will be found simultaneously at
point r,, (,and r2,( 2.

For every electron wavefunction that is an eigenfunction of the electron
spin operator”2, the one-electron density function always comprises an a2spin part
and a /?2spin part, with no cross-term involvingap .

A2y = pa(ryaz1) +)r)2(®)  (260)

The electron densities for o and for p Spin electrons are always equal

a singlet spin state, but in non-singlet spin states the densities may be different,

giving a resultant spin density. Ifwe evaluate the spin density function at the position of

certain nuclei, it gives a value proportional to the isotropic hyperfine coupling constant
that can be measured from electron spin resonance experiments.

2.6.2 The Hohenberg-Kohn Theorem

Flohenberg and Kohn's 1964 paper [58] was widely regarded by
physicists, but its true importance in chemistry has only become apparent during the
last decade or so. Density functional theory has become an increasingly important topic
in chemistry. This culminated in the award of a half-part of the 1998 Chemistry Nobel
Prize to Walter Kohn [62],

Theorem 1

The electron density p (r) determines the external potential. Suppose
there are two external potentials v,(r) and vz(r)arising from the same electron



40

density yO(r). There will be two Hamiltonians 1 1 and 1 2 with the same electron density
with different wavefunctions T1and T2.If £1and ¢ 2are the ground-state energies for
I, and w 2 respectively, then
£1< T (Y out (2.61)
that can rearrange the right-hand side as follows:
J 1d SJA2H 2% dT + CH 2y ¥2H (2.62)
which gives e1<e2+] P(NK(r) - v2rdr (2.63)
The above argument can be repeated with subscripts interchanged to give
e2<£1+Jp(n[va(r)-v,(r)]dr (2.64)
Addition of these two in equalities, Equation (2.63) and Equation (2.64), gives
E1+£2<E2+£1 (2.65)
which is a contradiction.
Thus v(r) is unique function of the electron density; since v(r) fixes
the Hamiltonian we see that the full many-particle ground state is a unique functional of

the electron density. Note that the theorem is restricted to electronic ground states.
Therefore, the energy functional is given by

E(p(r]): ] viryp(rydr + EHK[p(r)1dT (2.66)

=KAp]+Fnklp]

where FHKis Hohenberg-Kohn function.
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Theorem 2

The second theorem proves by Hohenberg and Kohn in their 1964
contribution [58].  plain words, this theorem states that FHK[/?(r)], the functional that
delivers the ground state energy of the system, delivers the lowest energy if and only if
the input density is the true ground state density, p . Thus,

Elp] <E[p]=T(pl +Vipl+ [p] (2.67)
=TV + VIfiL+VIp)

E(p () assumes its minimum value for the correct p (r) 1if the admissible functions
n(x) satisfies the condition

Jp(ydr=n (2.68)

where n is the number of electrons. Any approximate densityp (x)1 by theorem 1,
determines the Hamiltonian and wavefunction T . Using this wavefunction in the
variational expression we obtain

i oprarome e

ITW o o> £ [p(r)]

The main problem relating to practical applications of the Hohenberg
and Kohn theorems are existence theorem and do not give us any clues as to
calculation of the quantities involved.

2.6.3 The Kohn-Sham Equations

Kohn-Sham [60] provided a way to calculation Equation (2.69). For non-
interacting system,
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Elp] = Fik[p] + \]p(r)v(r)dr (2.70)
= Tp] + \p{x)v{j)dx

Applying non-interacting wavefunction 1/S=

1 K
Ts[p] = Z<¢,“S-5V?¢, ) (2.71)
For interacting system,
Efp]=Ts[p1+ VIp]+J[p]+(T[pl+ VIp]- Ts[p]- J[p] (2.72)

=Ts[p]+Vip]+Ap]+Excp]

is Kohn-Sham orbital which can be obtained from the Kohn-Sham equation.

| KS(0* (X i) = A (Xi) (2.73)

which the one-electron Kohn and Sham operator f KSdefined as

VXCis a so-called functional derivative.

The Kohn-Sham equations very similar to standard HF equations both
include terms for the Kkinetic energy of electrons, electron-nuclei interaction, and
classical Coulomb interaction between electron densities [47, 48, 52, 62], The Kohn-
Sham equations differ from HF equations in that the exchange term is replaced with an
exchange-correlation potential (EXC) its form is not known. most cases, exchange

correlation functionals, is represented as a sum of exchange and correlation parts.
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Notations for the majority of functional is derived from the initials of functional authors in
some cases supplemented by the year of its publication. The combinations of
exchange-correlation functional are divided into three groups.

2.6.4 The Local Density and Local Spin-Density Approximations

There is no systematic way in which the exchange correlation functional
Vxc[p] can be systematically improved, starting from a model for which there is an

exact solution, the uniform electron gas, EX can be written in the following form
ExLOA[p] =\ p(r)Exc(p(r))dr (2.75)

Here, xc(p{r)) is the exchange-correlation energy per particle of a
uniform electron gas of density p{x). This energy per particle is weighed with the
probability that there is in fact an electron at this position in space. Writing EXC in this
way defines the local density approximation, LDA for short [52], The quantity

Exc(p(r))can be further split into exchange and correlation contributions,

«xe (Mr)) = £x(p(r)) + £c(p(r)) (2.76)

The exchange part,£X, which represents the exchange energy of an
electron in a uniform electron gas of a particular density is, apart from the pre-factor,
equal to the form found by Slater in his approximation of the Hartree-Fock exchange and

was originally derived by Bloch [63] and Dirac [64] in the late 1920°s

__3,[3p® (2.77)
4 T

On the basis of these results various authors have presented analytical
expressions of £Cbased on sophisticated interpolation schemes. The most widely used

representations of £care the ones developed by Vosko, Wilk, and Nusair [65], 1980,
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while the most recent and probably also most accurate one has been given by Perdew
and Wang [66], 1992. The common short hand notation for the former implementations
of the correlation functional is VWN. Hence, instead of the abbreviation LDA, which
defines the model of the local density approximation, one frequently finds the acronym
SVWN to identify the particular functional. For open-shell situations with an unequal
number of d and P electrons, functionals of the two spin densities consistently lead to
more accurate results. But also for certain situations with an even number of electrons,
such as the H2 molecule at larger separation, the unrestricted functionals perform
significantly better because they allow symmetry breaking. Up to this point the local
density approximation was introduced as a functional depending solely on p{x). Ifwe
extend the LDA to the wunrestricted case, we arrive at the local spin-density

approximation, or LSDA.

Ex~iPa'Pp] = jp('|')£xc(pa('|')p/}(*))& (2.78)

Just as for the simple, spin com pensated situation where P&, = Pp{i) - 112/ (r) Lthere
are related expressions for the exchange and correlation energies per particle of the
uniform electron gas characterized by pa(, A pdc the so-called spin polarized case.
The degree of spin polarization is often measured through the spin-polarization

parameter

£=Pat _~Pp" (2.79)
Pir)
£ attains values from 0 (spin compensated) to 1 (fully spin polarized, i.e., all electrons
have only one kind of spin).  the following we do not differentiate between the local
and the local spin-density approximation and use the abbreviation LDA for both, unless

otherwise noted.

general case of an open-shell atom or molecule. At a certain position
r in this system we have the corresponding spin densities pa(r) and Ppf{r). the
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local spin-density approximation we now take these densities and insert them into
Equation (2.79) obtaining EXC(r). Thus, we associate with the densitiespa(r) and
Pp(x)\he exchange and correlation energies and potentials that a homogeneous
electron gas of equal, but constant density and the same spin polarization would
have. This is now repeated for each point in space and the individual contributions are
integrated as schematically indicated in Figure 2.6. Obviously, this approximation
hinges on the assumption that the exchange-correlation potentials depend only on the

local values of pa(r) and Pp(r).

from inhomogeneous system

P(r) E )
p(r) ' &,.p(r;)

from homogeneous eléctron gas

Figure 2.6 The local density approximation [52]

2.6.5 The Generalized Gradient Approximation

The situation changed significantly in the early eighties when the first
successful extensions to the purely local approximation were developed. The logical first
step in that direction was the suggestion of using not only the information about the
density p( ) at a particular point r, but to supplement the density with information
about the gradient of the charge density, V/?(r)in order to account for the non-

homogeneity of the true electron density.  other words, we interpret the local density
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approximation as the first term of  Taylor expansion of the uniform density and expect
to obtain better approximations of the exchange-correlation functional by extending the

series with the next lowest term. Thus we arrive at (with <7and cr'indicating a or

p spin)

ExT[Pa>Pfi] = | p"xc(Pa:Pp)dx'l' ijc (Pa’'Pfi) _ p ? i-dX+"'
(2.80)

This form of functional is termed the gradient expansion approximation
(GEA) and it can be shown that it applies to a model system where the density is not
uniform but very slowly varying. Functionals include the gradients of the charge density
and where the hole constraints have been restored in the above manner are collectively
known as generalized gradient approximations (GGA) [52], These functionals are the

workhorses of current density functional theory and can be generically written as

ET[P.,P,A\i(p.,pfyp ™ p tisl)

practice, E » A\ usually split into its exchange and correlation contributions

EXCA = EXGA + ECGA (2.82)

and approximations for the two terms are sought individually.  fact, some of these
functionals are noteven based on any physical model.  other words, the actual form of
EMga and EGRAusually does not assist the understanding of the physics these
functionals try to describe. This underlines the pragmatic character so typical for
approximate density functional theory in general. We rewrite the exchange part of E GGA

as

- DA‘.(;J F(sa)p™(r)dr (2.83)

The argument of the function Fis the reduced density gradient for spin cr
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0= pM (24

Pa

0. isto be understood as local inhomogeneity parameter. Itassumes large values not
only for large gradients, but also in regions of small densities, such as the exponential
tails far from the nuclei. Likewise, small values of 0.occur for small gradients, typical for
bonding regions, but also for regions of large density. For example, the combination of
large density gradients and large densities close to the nuclei typically leads to values of

0. in this region which are in between the reduced density gradients in the bonding and
tail regions, respectively. Of course, the homogeneous electron gas is characterized by

0 =0 everywhere. Finally, aword on why we divide by the 4/3 power of p and not just
by p itself. This is needed to make 0. a dimensionless quantity: the dimension of the
density is the inverse dimension of volume and hence [r]~3. Its gradient has therefore
dimensions of [r]“4. But this is just the same dimension that pmhas, because of

([r]“3)413 = [r]-4and we arrive at the desired dimensionless reduced gradient.

For the function F two main classes of realizations, the first one is based
on a GGA exchange functional developed by Becke [67], 1988h. As outlined above, this

functional is abbreviated simply as B (sometimes one also finds B88)

F = 1+ 6/%Qsinh-Lscr (289)

p is an empirical parameter that was determined to 0.0042 by a least-squares fit to the
exactly known exchange energies of the rare gas atoms Fie through Rn.  addition to
the sum rules, this functional was designed to recover the exchange energy density

asymptotically far from a finite system.

The second class of GGA exchange functionals use for F a rational
function of the reduced density gradient. Prominent representatives are the early
functionals by Becke [68], 1986 (B86) and Perdew [69], 1986 (P), the functional by

Lacks and Gordon, 1993 (LG) or the recent implementation of Perdew, Burke, and
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Ernzerhof, 1996 (PBE) [70]. As an example, we explicitly write down F of Perdew's 1986
exchange functional, which, just as for the more recent PBE functional, is free of

semiempirical parameters:

( v o7 6V /15

\2
P - 1+ 1296 (2 4 9(1/3 + 14\/(2 4 @X]B) + 02\ (2 4 6)(]]3
2.86)

Among the mostwidely used choices is the correlation counterpart of the
1986 Perdew exchange functional, usually termed p or P86. This functional employs an
empirical parameter, which was fitted to the correlation energy of the neon atom. A few
years later Perdew and Wang [69], 1991, refined their correlation functional, leading to
the parameter free PW91. Another, nowadays even more popular correlation functional
isdue to Lee, Yang, and Parr [71], 1988 (LYP). Unlike all the other functionals mentioned
so far, LYP is not based on the uniform electron gas but is derived from an expression
for the correlation energy of the helium atom based on an accurate, correlated
wavefunction presented in the context of wavefunction based theory by Colie and
Salvetti [72], 1975. The LYP functional contains one empirical parameter. It differs from

the other GGA functionals in that itcontains some local components.

principle, each exchange functional could be combined with any of
the correlation functionals, but only a few combinations are currently in use. The
exchange part is almost exclusively chosen to be Becke’s functional which is either
combined with Perdew’s 1986 correlation functional or the Lee, Yang, Parr usually
abbreviated as BP86 and BLYP, respectively. Sometimes also the PWO91 correlation
functional is employed, corresponding to BPW91. To be fair, all these flavors of gradient-
corrected KS-density functional theory deliver results of similar quality as demonstrated

by several studies which assess the performance of these functional.
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2.7 Basis Set

A basis set is a set of functions used to describe the shape of the orbitals in an
atom. Molecular orbitals and all wavefunctions are created by taking linear combinations
of basis functions and angular functions [52], The basis functions should have large
amplitude in regions of space where the electron probability density is also large, and
small amplitudes where the probability density is small. There are two guidelines for
choosing the basis functions. One is that they should have a behavior which agrees with
the physics of the problem; this ensures that convergence as more basis functions are
added is reasonably rapid. The second guideline is practical: the chosen functions

should make iteasy to calculate all the required integrals.

The orbitals Xiwhich are expressed through the {/7*1 are used to construct the
approximate wavefunction. It has long been recognized that very large basis sets are
needed if high quality wavefunctions that take also into account electron correlation are
the target. particular, basis functions with complex nodal structures (polarization
functions) are necessary and in highly correlated calculations the basis set
requirements soon lead to computationally very demanding procedures. On the other
hand, in the Kohn-Sham scheme the orbitals play an indirect role and are introduced

only as a tool to construct the charge density according to

p(r)=2Z M r)2 (2.87)

One should therefore expect that the basis set requirements in Kohn-Sham
calculations are less severe than in wavefunction based ones. conventional
wavefunction based approaches, such as the Hartree-Fock or configuration-interaction
schemes, the set j j is almost universally chosen to consist of so-called cartesian

Gaussian-type-orbitals, GTO of the general form

GO = 'Nx'ymnexp[-orr2] 2.88,
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N is a normalization factor which ensures that = 1 (but note that the 1
are not orthogonal, i.e, (?1 ™ * 0 for jUMv). a represents the orbital exponent
which determines how compact (large a ) or diffuse (small @ ) the resulting function is.
L=1+m+n isused to classify the GTO as s-functions (L: 0), p-functions (L = 1)1d-
function (LZZ), efC. Note, however that for L>1 the number of cartesian GTO
functions exceeds the number of (2/+ 1) physical functions of angular momentum /.
Forexample, among the six cartesian functions with L- 2,one is spherically symmetric
and is therefore not a d-type but an s-type functions. Similarly the ten cartesian

L = 3functions include an unwanted set of three p-type functions.

The preference for GTO basis functions in HF and related methods is motivated
by the computational advantages these functions offer, because very efficient
algorithms exist for analytically calculating the huge number of four-center-two-electron
integrals occurring in the Coulomb and HF-exchange terms. On the other hand, from a
physical point of view, Slater-type-orbitals (STO) seem to be the natural choice for basis
functions [49, 52], They are simple exponentials that mimic the exact eigenfunctions of
the hydrogen atom. Unlike the GTO functions, Slater-type-orbitals exhibit the correct
cusp behavior at r— 0 with a discontinuous derivative (while a GTO has a slope of zero
at r—0) and the desired exponential decay in the tail regions as r—» 00 (GTO fall off

rapidly). A typical STO is expressed as

7770 = N retexpl 31 YMoyo) (2.89)

Flere, corresponds to the principal quantum number, the orbital exponent is termed
Cand Yimare the usual spherical harmonics that describe the angular part of the
function.  fact as a rule of thumb one usually needs about three times more GTO than
STO functions to achieve certain accuracy. Unfortunately, many-center integrals are
notoriously difficult to compute with STO basis sets so we employ contracted GTO basis
sets, in which several primitive Gaussian Functions (typically between three and six

linear combination to give one contracted Gaussian function (CGF)
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A
CGF GI0
T Yadarrfa (2-90)

The original motivation for contracting was that the contraction coefficients
dSTcan be chosen in a way that the CGF resembles as much as possible a single STO

function.

We should also mention that basis sets which do not actually comply with the
LCAO scheme are employed under certain circumstances in density functional
calculations, I.e., plane waves. These are the solutions of the Schrodinger equation of a

free particle and are simple exponential functions of the general form

TIPW = exp[/AX] (2.91)

where the vector K is related to the momentum p of the wave through p =hk . Plane
waves are not centered at the nuclei but extend throughout the complete space. They
enjoy great popularity in solid state physics for which they are particularly adapted
because they implicitly involve the concept of periodic boundary conditions.
Unfortunately, the number of plane waves needed to arrive at an acceptable accuracy is
usually daunting at best and for this and other reasons applications employing plane
wave basis sets are very rare in molecular quantum chemistry. Irrespective of whether
we use Gaussian functions, Slater type exponentials of numerical sets, certain
categories of functions that can help to characterize the quality of a basis set have
become customary in quantum chemistry. The simplest and least accurate expansion of
the molecular orbitals utilizes only one basis function (or one contracted function in the
case of CGF sets) for each atomic orbital up to and including the valence orbitals. These
basis set are for obvious reasons called minimal sets. A typical representative is the
STO-3G basis set. For carbon, this basis set consists of five functions, one each
describing the 7s and 25 atomic orbitals and three functions for the 2p shell (px, py, and
pz). One should expect no more than only qualitative results from minimal sets and

nowadays they are hardly used anymore. The next level of sophistication is the double-
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zeta basis sets. Here, the set of functions is doubled, fe., there are two functions for
each orbital (the generic name ‘double-zeta’ for such basis set still points to the
beginnings of computational quantum chemistry, when STO functions were in use,
where the orbital exponent is called Zeta (C). If we take into account that it is in the
valence space where change in the electronic wavefunction occur during chemical
processes, we can limit the double set of functions to the valence orbitals, while the
chemically mostly inert core electrons are still treated in a minimum set. This defines the
split-valence basis sets. Typical examples are the 3-21G or 6-31G Gaussian basis set
developed by Pople and coworkers [73]. For example 6-31G has two sizes of basis
function for each valence orbital. The core consists of 6 GTOs which are not split, while
the valence orbitals are described by one orbital constructed from 3 primitive GTOs and

one single GTO.

most applications, such basis sets are augmented by polarization functions,
l.e., functions of higher angular momentum than those occupied in the atom, €.g., p-
functions for hydrogen or d-functions for the first row elements. Polarization functions
have by definition more angular nodal planes than the occupied atomic orbitals and thus
ensure that the orbitals can distort from their original atomic symmetry and better adapt
to the molecular environment. Polarized double-zeta ar split valence basis set are the
mainstay of routine quantum chemical applications since usually they offer a balanced
compromise between accuracy and efficiency.  terms of CGF type basis sets, typical
examples are the standard 6-31G(d,p) sets of Hehre, Ditchfield, and Pople [74], 1972,
and Hariharan and Pople, 1973, or the more recent SVP (split-valence polarization) sets
of Schafer, Horn, and Ahlrichs, 1992. Equivalents consisting of two STO functions per
atomic orbital or two numerical functions are of comparable importance in their
respective domains.  the latter case the doubing of the numerical functions can be
achieved, for example, by adding numerically generated atomic orbitals from

calculations only doubly or even higher positively charged ions.

Itis obvious how these schemes can be extended by increasing the number of

functions in the various categories. This results in triplet- or quadruple-zeta basis sets
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which are augmented by several sets of polarization functions including functions of

even higher angular momentum.

The exponents and contraction coefficient of most Gaussian basis sets have
been optimized within the Hartree-Fock or correlated wavefunction based schem es.
the beginning itwas not at all clear whether one could in fact use basis sets that were
optimized for representing molecular orbitals in a HF or configuration interaction context
to construct the density, as in the Kohn-Sham scheme. Flowever, it fortunately turned out
that the results are fairly insensitive with respect to the way the exponents and
contraction coefficients have been determined, in particular for the calculation of
properties such as energies or equilibrium geometries. Flence, in general it is probably
not necessary to,use basis sets explicitly optimized for a density functional approach,
even though there are a number of special cases where this statement is an
oversimplification. Nevertheless, most modern applications of Kohn-Sham density
functional theory using Gaussian functions simply employ one of the many standard
basis sets, irrespective of their origin in wavefunction based approaches. most
contemporary program packages the popular sets are provided in an internal basis set
library. Should the desired set not be included in that internal library of the program
chosen, it can usually be conveniently downloaded even in the appropriate input format
from http:/lwww.emsl.pnl.gov:2080/forms/basisform.htm| (Feller, Schuchardt, and Jones,

1998) [52],

2.8 Zero-Point Energy (ZPE)

The nuclei motion on the Born-Oppenheimer potential energy surface that is
also accounted for in a quantum mechanical way, energy is ‘tied up’ in molecular
vibrations. One consequence of the unpredictability principle is that polyatomic
molecules, even at absolute zero, the molecules must always be moving, with a sum of

potential and kinetic energy that exceeds the energy of the nearest minimum by some


http://www.emsl.pnl.gov:2080/forms/basisform.html
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non-zero amount. Within the harmonic oscillator approximation, the energy of the lowest

vibrational level can be determined from

£ :fl +2% ho (2.92)

where is the vibrational quantum number, h is Planck's constant (6.6261x 103 J )

and s the vibrational frequency.

The sum of all of the harmonic-oscillator ground state energies overall molecular
vibrations defines the Zero-point energy (ZPE). Thus the internal energy for a molecule

at 0 Kwas defined by

modes 1

» = K z (2.93)

where E£'66is the energy for the stationary point on the Born-Oppenheimer PES.  Ois
also often written as £0in thermochemical literature. Mode is a function of the atomic

masses for the nuclei involved in the motion.

order to predict the stretching frequency within the harmonic oscillator
equation, all that is needed is the second derivative of the energy with respect to bond
stretching computed atthe equilibrium geometry, i.e., AThe importance of K has led to
considerable effort to derive analytical expressions for second derivatives, and they are
now available for HF, MP2, DFT, QCISD, CCSD, MCSCF and select other levels of
theory, although they can be quite expensive at some of the more highly correlated

levels of theory.

Scaling factor of ZPE in the range of 0.9-1.0 that depend on the calculation
method and basis set used [75]. Due to overestimate frequencies of the most
calculation methods were compared with the experimental values. This overestimation is
due partially to the harmonic approximation and partially to electronic structure

calculations. The scaling factors for the theoretical harmonic vibrational frequencies
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were determined by comparison with the corresponding experimental fundamentals
utilizing a total of 1066 individual vibrations. Scaling factors suitable for low-frequency
vibrations were obtained from least-squares fits of inverse frequencies. ZPE scaling
factors were obtained from a comparison of the computed ZPVEs (derived from
theoretically determined harmonic vibrational frequencies) with ZPVEs determined from
experimental harmonic frequencies and anharmonicity corrections for a set of 39
molecules. Finally, scaling factors for theoretical frequencies that are applicable for the
computation of thermal contributions to enthalpy and entropy have been derived. A
complete set of recommended scale factors is presented. The most successful

procedures overall are B3-PW 91/6-31G(d), B3-LYP/6-31G(d), and HF/6-31G(d).
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