การตั้งตำรับและเภสัชจลนพลศาสตร์ของยาเหน็บทวารหนักออกฤทธิ์นาน คีโตโปรเฟน

นางสาวนวรัตน์ อมรชีวิน

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหาบัณฑิต สาขาวิชาเภสัชกรรม ภาควิชาเภสัชกรรม บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2541 ISBN 974-331-954-9 ลิขสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

FORMULATIONS AND PHARMACOKINETICS OF PROLONGED RELEASE KETOPROFEN RECTAL SUPPOSITORIES

MISS NAWARUT AMONCHEEWIN

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Pharmacy
Department of Pharmacy
Graduate School
Chulalongkorn University
Academic year 1998

ISBN 974-331-954-9

Thesis Title Formulations and Pharmacokinetics of Prolonged

Release Ketoprofen Rectal Suppositories.

By Miss Nawarut Amoncheewin

Department Pharmacy

Thesis Advisor Associate Professor Uthai Suvanakoot, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Dean of Graduate School

(Professor Supawat Chutivongse, M.D.)

Thesis Committee

Pranom Pathiyawant Chairman

(Associate Professor Pranom Pothiyanont, M.Sc.)

UOL Thesis Advisor

(Associate Professor Uthai Suvanakoot, Ph.D.)

Carbyson Ly Member

(Associate Professor Parkpoom Tengumnuay, Ph.D.)

Withay Futhersort Member

(Assistant Professor Withaya Janthasoot, M.Sc.)

พิมพ์ตันฉบับบทคัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

นวรัตน์ อมรชีวิน: การตั้งตำรับและเภสัชจลนพลศาสตร์ของยาเหน็บทวารหนักออกฤทธิ์นานคีโตโปรเฟน (FORMULATIONS AND PHARMACOKINETICS OF PROLONGED RELEASE KETOPROFEN RECTAL SUPPOSITORIES) อ.ที่ปรึกษา: รศ. ดร. อุทัย สุวรรณกูฏ; 154 หน้า. ISBN 974-331-954-9.

ศึกษาการตั้งตำรับและเภสัชจลนพลศาสตร์ของชาเหน็บทวารหนักออกฤทธินานคีโดโปรเฟน การตั้งตำรับ ดำเนินการโดยใช้ยาพื้นชนิดชอบน้ำ 3 สูตรร่วมกับสารทำให้ยาออกฤทธินาน 2 ชนิด (ยูเดรจิต เอส 100 และ เอช พี 55) ปริมาณสารแต่ละชนิดที่ใช้ขึ้นอยู่กับสัดส่วนของยาต่อสารนั้น ๆ ยาพื้นแต่ละสูตรจะใช้หลายสัดส่วนของยาต่อยูเดรจิต เอส 100 หรือ เอช พี 55 นอกจากนี้ใช้ยาพื้นชนิดไม่ชอบน้ำที่ผลิตจำหน่ายทั่วไป (ชัพโพชายร์ เอ เอ็ม) ร่วมด้วยเพื่อการเปรียบ เทียบ ทุกตำรับประกอบด้วยคีโดโปรเฟน 100 มิลลิกรัมและเดรียมโดยใช้วิธีการหลอมละลาช การประเมินผลในหลอด ทดลองพบว่าชาเหน็บทุกตำรับได้มาตรฐานความสม่ำเสมอของน้ำหนักและปริมาณตัวยาสำคัญตามข้อกำหนดของเภสัช ตำรับอังกฤษ 1993 การปลดปล่อยตัวชาออกจากขาพื้นช้าและใช้เวลานานเมื่อเทียบกับตำรับที่เตรียมจากยาพื้นที่ปราศจาก ยูเดรจิต เอส 100 และ เอช พี 55 ตำรับที่ประกอบด้วยสัดส่วนของชาต่อยูเดรจิต เอส 100, 1:1 ในยาพื้นสูตรที่ 1 และ ตำรับที่มีสัดส่วนของยาต่อเอช พี 55, 1:4 ในยาพื้นสูตรที่ 3 ผ่านการพิจารณาคัดเลือกนำไปศึกษาในสัตว์ทดลอง

ดำเนินการศึกษาเภสัชจลนพลศาสตร์ของยาเหน็บทวารหนักชนิดออกฤทธิ์นานคีโตโปรเฟน 2 ตำรับที่ได้รับการคัดเลือกร่วมกับอีก 1 ตำรับที่เตรียมโดยใช้ชัพโพชายร์ เอ เอ็ม ในกระต่ายพันธุ์นิวชีแลนด์สีชาวจำนวน 9 ตัว กระต่าย แต่ละตัวได้รับยาเหน็บทวารหนักออกฤทธิ์นานคีโตโปรเฟน 100 มิลลิกรัมเพียงครั้งเดียว ตามวิธีการทดลองข้ามสลับ เก็บ ตัวอย่างเลือดตามเวลาที่กำหนดไว้หลังการให้ยาและตรวจหาความเข้มข้นของคีโตโปรเฟนโดยใช้เอชพีแอลซี ผลปรากฏว่า เภสัชจลนพลศาสตร์ของคีโตโปรเฟนจากยาเหน็บทั้ง 3 ตำรับมีลักษณะเหมือนกันเป็นแบบจำลองชนิดมัลติคอมพาร์ตเมนท์ การวิเคราะห์ความแปรปรวนตามวิธีการทดลองข้ามสลับแบบ 3 ทางพบว่าค่าพารามิเตอร์เภสัชจลนพลศาสตร์ไม่แตกค่าง กันอย่างมีนัยสำคัญทางสธิติที่ระดับความเชื่อมั่นร้อยละ 95 ยาเหน็บทวารหนักออกฤทธิ์นานคีโตโปรเฟนทั้ง 2 สูตรตำรับมี ชีวสมมูลกับตำรับอ้างอิงทั้งในเชิงอัตราเร็วและปริมาณยาที่ถูกดูดชืมเข้าสู่ร่างกาย สารทำให้ยาออกฤทธิ์นานทั้ง 2 ชนิดที่นำ มาใช้มีประสิทธิผลเท่าเทียมกันแต่ยูเดรจิต เอส 100 มีคุณสมบัติเหนือกว่าเล็กน้อยพิจารณาจากปริมาณที่ใช้ในตำรับมี จำนวนน้อยกว่า และความง่ายในการเตรียมตำรับยาเหน็บ

ภาควิชาเกสีซกรรม	ลายมือชื่อนิสิต	นอร์ทน์	อมาสู่วิ	น
สาขาวิชา เกลีซกรรม	ลายมือชื่ออาจารย์ที่	ปรึกษา	Anu	Klundz
ปีการศึกษา <u>2541</u>	ลายมือชื่ออาจารย์ที่เ	ปรึกษาร่วม .	/	1-04

#407 65133 33 :MAJOR PHARMACY

KEY WORD: : FORMULATIONS / PHARMACOKINETICS / PROLONGED RELEASE / KETOPROFEN/ RECTAL SUPPOSITORIES

NAWARUT AMONCHEEWIN: FORMULATIONS AND PHARMACOKINETICS OF PROLONGED RELEASE KETOPROFEN RECTAL SUPPOSITORIES. THESIS ADVISOR: ASSOC. PROF. UTHAI SUVANAKOOT, Ph.D. 154 pp. ISBN 974-331-954-9.

Formulations and pharmacokinetics of prolonged release ketoprofen rectal suppositories were studied. Formulations were conducted using three hydrophilic suppository bases and two prolonged release carriers (Eudragit S-100 and HP55). The amount of each carrier used was dependent on the drug to carrier ratios. Various ratios of the drug to Eudragit S-100 or HP55 were individually assigned to each base. A commercially available hydrophobic base (Suppocire [®]AM) was also used for comparison. All formulations with 100 mg ketoprofen were prepared by fusion method. *In vitro* evaluations showed that they met the requirements for uniformity of weight and uniformity of content according to the British Pharmacopoeia 1993. All release profiles were slow and prolonged compared to those without the two carriers. The formulation with Eudragit S-100 at the ratio of 1:1 in Base 1 and that with HP55 at the ratio of 1:4 in Base 3 were subsequently selected for *in vivo* studies.

Pharmacokinetics of the two selected formulations and the one with Suppocire® AM were performed using nine New Zealand White rabbits. Each rabbit received a single rectal dose of 100 mg prolonged release ketoprofen rectal suppository in a crossover manner. Blood samples were collected at predetermined time intervals post dose and determined for ketoprofen concentrations by HPLC. Results demonstrated that the pharmacokinetic patterns of ketoprofen from all three formulations were similar and appeared to be multicompartment model. Analysis of variance for three way crossover design revealed that there were no significant differences (p>0.05) among all the corresponding relevant pharmacokinetic parameters obtained. Both formulated products were bioequivalent with the reference formulation with respect to the rate and the extent of drug absorption. The two carriers produced the same efficacies but Eudragit S-100 was slightly superior based on the amount being used was lesser and the ease of preparation.

ภาควิชา	เภสัชกรรม	ลายๆเลดผลๆเสต		Amoncheavin.
37 777 3 2 7777	เกล้ชกรรม	ลายมือชื่ออาจารย์ที่ปรึกเ		^
ปีการศึกษา	2541	ลายมือชื่ออาจารย์ที่ปรึกเ	ษาร่วม	

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude and infinite thanks to my advisor, Associate Professor Dr. Uthai Suvanakoot, for his invaluable advice, continual guidance, and encouragement during the entire course of this study.

I am greatly indebted to the Graduate School, Chulalongkorn University for granting partly financial support to fulfill this study. Special acknowledgements are also given to all staff members in the Department of Pharmacy. I would like to express my thanks to those whose names have not been mentioned but their assistance and encouragement firmly deserve acknowledgements.

Special thanks to my lovely friends for their love, cheerfulness, and encouragement. Greatest thanks and love go to my family for their kindness, love, and continued support throughout these past years.

CONTENTS

	Page
TĤAI ABSTRACT	iv
ENGLISH ABSTRACT	v
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF TABLES	viii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xvii
CHAPTER	
I. INTRODUCTION	1
II. REVIEW OF LITERATURES	4
III. MATERIALS AND METHODS	42
IV. RESULTS AND DISCUSSION	57
V. CONCLUSIONS	115
REFERENCES	117
APPENDICES	123
VITA	154

LIST OF TABLES

Table		Page
I	Specifications of standard quality of Suppocire®	20
2	Classification of hydroxypropyl methylcellulose phthalate	40
3	A three way crossover design for in vivo study	52
4	The displacement values of each compositions in suppository	
	bases	57
5	Weight of each suppository (g) from three formulations of	
	conventional hydrophilic and one conventional hydrophobic	
	ketoprofen rectal suppositories	61
6	Uniformity of content of ketoprofen (%L.A.) from four formulations	
	of conventional ketoprofen rectal suppositories	62
7	Weight of each suppository (g) from three formulations of prolonged	
	release ketoprofen rectal suppositories using Eudragit S-100 as	
	prolonged release carrier.	64
8	Uniformity of content of ketoprofen (%L.A.) from three formulations	
	of prolonged release ketoprofen rectal suppositories using Eudragit S-	
	100 as prolonged release carrier	65
9	Weight of each suppository (g) from two formulations of prolonged	
	release ketoprofen rectal suppositories using HP 55 as prolonged	
	release carrier	66
10	Uniformity of content of ketoprofen (%L.A.) from two formulations	
	of prolonged release ketoprofen rectal suppositories using HP 55 as	
	prolonged release carrier	67
11	Percent released of ketoprofen (Mean \pm S.D.) from three formulations	
	of conventional hydrophilic ketoprofen rectal suppositories	69

Table	e (cont.)	Page
12	Release rate constant of ketoprofen (hr ⁻¹) from three formulations of	
	conventional ketoprofen rectal suppositories	71
13	Percent released of ketoprofen (Mean + S.D.) from conventional	
	hydrophobic ketoprofen rectal suppositories	72
14	Percent released of ketoprofen (Mean ± S.D.) from three formulations	
	of prolonged release ketoprofen rectal suppositories using Eudragit S-	
	100 as prolonged release carrier	75
15	Release rate constant of ketoprofen (hr -1) from three formulations of	
	prolonged release ketoprofen rectal suppositories using Eudragit S-	
	100 as prolonged release carrier	79
16	Percent released of ketoprofen (Mean ± S.D.) from two formulations	
	of prolonged release ketoprofen rectal suppositories using HP55 as	
	prolonged release carrier	81
17	Release rate constant of ketoprofen (hr -1) from two formulations of	
	prolonged release ketoprofen rectal suppositories using HP55 as	
	prolonged release carrier	84
18	Summary of in vitro studies of all formulations of ketoprofen rectal	
	suppositories	85
19	Plasma ketoprofen concentration (µg/mL) of nine rabbits after	
	administration of 100 mg prolonged release ketoprofen rectal	
	suppositories using Eudragit S-100 as prolonged release carrier	89
20	Plasma ketoprofen concentration (µg/mL) of nine rabbits after	
	administration of 100 mg prolonged release ketoprofen rectal	
	suppositories using HP55 as prolonged release carrier	90
21	Plasma ketoprofen concentration (µg/mL) of nine rabbits after	
	administration of 100 mg prolonged release ketoprofen rectal	
	suppositories using Suppocire® AM as base	91
	suppositories using suppocite Aivi as base	71

Table	(cont.)	Page
22	Log of peak plasma ketoprofen concentration (log C_{max}) of nine	
	rabbits after administration of three formulations of 100 mg	
	prolonged release ketoprofen rectal suppositories	102
23	Analysis of variance for three way crossover design of log C_{max} of	
	nine rabbits after administration of three formulations of 100 mg	
	prolonged release ketoprofen rectal suppositories ($\alpha = 0.05$) and 90	
	percent confidence interval for the difference of C _{max} means	102
24	The time to peak plasma ketoprofen concentrations (t_{max}) of nine	
	rabbits after administration of three formulations of 100 mg	
	prolonged release ketoprofen rectal suppositories	105
25	Analysis of variance for three way crossover design of time to peak	
	plasma ketoprofen concentrations (t _{max}) of nine rabbits after	
	administration of three formulations of 100 mg prolonged release	
	ketoprofen rectal suppositories ($\alpha = 0.05$)	105
26	Log of area under plasma ketoprofen concentration-time curves (log	
	AUC) of nine rabbits after administration of three formulations of	
	100 mg prolonged release ketoprofen rectal suppositories	106
27	Analysis of variance for three way crossover design of log AUC of	
	nine rabbits after administration of three formulations of 100 mg	
	prolonged release ketoprofen rectal suppositories ($\alpha = 0.05$) and 90	
	percent confidence interval for the difference of AUC means	106
28	Elimination rate constant (Kel) of ketoprofen of nine rabbits after	
	administration of three formulations of 100 mg prolonged release	
	ketoprofen rectal suppositories	107
29	Analysis of variance for three way crossover design of elimination	
	rate constant (Kel) of nine rabbits after administration of three	
	formulations of 100 mg prolonged release ketoprofen rectal	
	suppositories ($\alpha = 0.05$)	107

Table	e (cont.)	Page
30	Elimination half-lives (t _{1/2}) of ketoprofen of nine rabbits after	
	administration of three formulations of 100 mg prolonged release	
	ketoprofen rectal suppositories	108
31	Analysis of variance for three way crossover design of elimination	
	half-lives (t _{1/2}) of nine rabbits after administration of three	
	formulations of 100 mg prolonged release ketoprofen rectal	
	suppositories ($\alpha = 0.05$)	108
32	Mean residence time (MRT) of ketoprofen of nine rabbits after	
	administration of three formulations of 100 mg prolonged release	
	ketoprofen rectal suppositories	109
33	Analysis of variance for three way crossover design of mean	
	residence time (MRT) of nine rabbits after administration of three	
	formulations of 100 mg prolonged release ketoprofen rectal	
	suppositories ($\alpha = 0.05$)	109
34	Volume of distribution (V _d / F) of ketoprofen of nine rabbits after	
	administration of three formulations of 100 mg prolonged release	
	ketoprofen rectal suppositories	110
35	Analysis of variance for three way crossover design of volume of	
	distribution (V _d / F) of nine rabbits after administration of three	
	formulations of 100 mg prolonged release ketoprofen rectal	
	suppositories ($\alpha = 0.05$)	110
36	Total plasma clearance (CL / F) of ketoprofen of nine rabbits after	
	administration of three formulations of 100 mg prolonged release	
	ketoprofen rectal suppositories	112
37	Analysis of variance for three way crossover design of total plasma	
	clearance (CL / F) of nine rabbits after administration of three	
	formulations of 100 mg prolonged release ketoprofen rectal	
	suppositories ($\alpha = 0.05$)	112

Table	e (cont.)	Page
38	Estimated pharmacokinetic parameters of ketoprofen (Mean ± S.D.)	
	from nine rabbits after administration of three formulations of 100	
	mg prolonged release ketoprofen rectal suppositories	113
39	Accuracy of analytical method for determination of ketoprofen in	
	phosphate buffer pH 7.2 at $\lambda = 260$ nm	127
40	Accuracy of analytical method for determination of ketoprofen in	
	chloroform at $\lambda = 255$ nm.	128
41	Accuracy of analytical method for determination of ketoprofen in	
	methanol at $\lambda = 255 \text{ nm}$.	128
42	Within run precision of analytical method for determination of	
	ketoprofen in phosphate buffer pH 7.2 at $\lambda = 260 \text{ nm}$	129
43	Within run precision of analytical method for determination of	
	ketoprofen in chloroform at $\lambda = 255 \text{ nm}$	130
44	Within run precision of analytical method for determination of	
	ketoprofen in methanol at $\lambda = 255$ nm	130
45	Between run precision of analytical method for determination of	
	ketoprofen in phosphate buffer pH 7.2 at $\lambda = 260$ nm	131
46	Between run precision of analytical method for determination of	
	ketoprofen in chloroform at $\lambda = 255$ nm	132
47	Between run precision of analytical method for determination of	
	ketoprofen in methanol at $\lambda = 255 \text{ nm}$	132
48	Typical calibration curve data for determination of ketoprofen in	
	phosphate buffer pH 7.2 estimated using linear regression	133
49	Typical calibration curve data for determination of ketoprofen in	
	chloroform estimated using linear regression	135
50	Typical calibration curve data for determination of ketoprofen in	
	methanol estimated using linear regression	137

Table	e (cont.)	Page
51	Typical data for determination of the release rate constant according	
	to sigma-minus method	140
52	Accuracy of analytical method for determination of ketoprofen in	
	rabbit plasma	141
53	Within run precision of analytical method for determination of	
	ketoprofen in rabbit plasma	142
54	Between run precision of analytical method for determination of	
	ketoprofen in rabbit plasma	143
55	Typical calibration curve data for determination of ketoprofen in	
	rabbit plasma estimated using linear regression	144

LIST OF FIGURES

Figure		Page
1	Veinous drainage of the human rectum	8
2	The apparatus for the disintegration of suppositories	30
3	Cross-sectional diagram of the in vitro release and diffusion rate	
	apparatus	33
4	Diagram of the apparatus used in the modified dialysis membrane	
	method	34
5	Percent released of ketoprofen from three formulations of	
	conventional hydrophilic ketoprofen rectal suppositories	70
6	Percent released of ketoprofen from conventional hydrophobic	
	ketoprofen rectal suppositories	73
7	Percent released of ketoprofen from three formulations of	
	prolonged release ketoprofen rectal suppositories using ketoprofen	
	: Eudragit S-100 = 1:1	76
8	Percent released of ketoprofen from three formulations of	
	prolonged release ketoprofen rectal suppositories using ketoprofen	
	: Eudragit S-100 = 1:1.5	77
9	Percent released of ketoprofen from three formulations of	
	prolonged release ketoprofen rectal suppositories using ketoprofen	
	: Eudragit S-100 = 1:2	78
10	Percent released of ketoprofen from three formulations of	
	prolonged release ketoprofen rectal suppositories using ketoprofen	
	: HP55 = 1:3.	82
11	Percent released of ketoprofen from three formulations of	
	prolonged release ketoprofen rectal suppositories using ketoprofen	
	: HP55 = 1:4	83

gure	(cont.)
12	High performance liquid chromatograms of ketoprofen (A) and
	diclofenac sodium (B)
13	Plasma ketoprofen concentration-time curves of rabbit No. 1 after
	administration of three formulations of prolonged release
	ketoprofen rectal suppositories
14	Plasma ketoprofen concentration-time curves of rabbit No. 2 after
	administration of three formulations of prolonged release
	ketoprofen rectal suppositories
15	Plasma ketoprofen concentration-time curves of rabbit No. 3 after
	administration of three formulations of prolonged release
	ketoprofen rectal suppositories
16	Plasma ketoprofen concentration-time curves of rabbit No. 4 after
	administration of three formulations of prolonged release
	ketoprofen rectal suppositories
17	Plasma ketoprofen concentration-time curves of rabbit No. 5 after
	administration of three formulations of prolonged release
	ketoprofen rectal suppositories
18	Plasma ketoprofen concentration-time curves of rabbit No. 6 after
	administration of three formulations of prolonged release
	ketoprofen rectal suppositories
19	Plasma ketoprofen concentration-time curves of rabbit No. 7 after
	administration of three formulations of prolonged release
	ketoprofen rectal suppositories
20	Plasma ketoprofen concentration-time curves of rabbit No. 8 after
	administration of three formulations of prolonged release
	ketoprofen rectal suppositories

Figure	Figure(cont.)	
21	Plasma ketoprofen concentration-time curves of rabbit No. 9 after	
	administration of three formulations of prolonged release	
	ketoprofen rectal suppositories	100
22	Comparison of plasma ketoprofen concentration-time curves of	
	nine rabbits after administration of three formulations of	
	prolonged release ketoprofen rectal suppositories	101
23	Typical calibration curve for determination of ketoprofen in	
	phosphate buffer pH 7.2 at $\lambda = 260$ nm	134
24	Typical calibration curve for determination of ketoprofen in	
	chloroform at $\lambda = 255 \text{ nm}$	136
25	Typical calibration curve for determination of ketoprofen in	
	methanol at $\lambda = 255 \text{ nm}$	138
26	Typical calibration curve for determination of ketoprofen in rabbit	
	plasma	145

LIST OF ABBREVIATIONS

NSAIDs non-steroidal antiinflammatory drugs **PEG** polyethylene glycol GI gastrointestinal tract °C degree Celsius -°F degree Fahrenheit nanometer nmL.A. labeled amount microgram μg milligram mg gram g Kg kilogram microliter μL milliliter mLL liter Conc. concentration min minute hr hour BP British Pharmacopoeia **USP** United States Pharmacopoeia **HPLC** high performance liquid chromatography UV ultraviolet λ wavelength PAR peak area ratio ANOVA analysis of variance d.f. degree of freedom SS sum of squares MS mean square S.D. standard deviation

LIST OF ABBREVIATIONS (cont.)

C.V.	=	coefficient of variation
r ²	=	coefficient of determination
C_{max}	=	peak plasma concentration
t _{max}	=	time to peak plasma concentration
AUC	=	area under the plasma
		concentration-time curve
AUMC	=	area under the moment curve
Kel	25	elimination rate constant
t _{1/2}	=	elimination half-life
MRT	=	mean residence time
F	=	fraction of drug absorbed
V _d /F	=	volume of distribution divided
		by fraction of drug absorbed
CL / F	=	total plasma clearance divided
		by fraction of drug absorbed