ROLES OF METAL CATALYSTS ON THE HYDROGEN STORAGE BEHAVIORS OF LIAIH₄/LiBH₄

Ms. Labhatrada Phuirot

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2010

530026

Thesis Title:	Roles of Metal Catalysts on the Hydrogen Storage Behaviors
	of LiAlH ₄ /LiBH ₄
By:	Ms. Labhatrada Phuirot
Program:	Petrochemical Technology
Thesis Advisors:	Assoc. Prof. Pramoch Rangsunvigit
	Asst. Prof. Boonyarach Kitiyanan
	Dr. Santi Kulprathipanja

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

... Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

• :

nochi

(Assoc. Prof. Pramoch Rangsunvigit)

Sant: Kulprathij

(Dr. Santi Kulprathipanja)

....

(Assoc! Peof. Vissanu Meeyoo)

B. Janar

(Asst. Prof. Boonyarach Kitiyanan)

ull

(Assoc. Prof. Thirasak Rirksomboon)

ABSTRACT

5171005063: Petrochemical Technology Program

Labhrada Phuirot: Roles of Metal Catalysts on the Hydrogen Storage Behaviors of LiAlH₄/LiBH₄

Thesis Advisors: Assoc. Prof. Pramoch Rangsunvigit, Asst. Prof. Boonyarach Kitiyanan, Dr. Santi Kulprathipanja 71 pp.

Keywords: Hydrogen Storage/Hydrogen Desorption/LiAlH₄/LiBH₄/Metal Catalyst

The hydrogen storage capacities of both undoped and doped Li-Al-H, Li-B-H, and Li-Al-B-H systems were studied through thermo-volumetric analysis. All samples were mixed by mechanical ball milling. The hydrogen desorption was performed from room temperature to 300°C (to 350°C for Li-B-H systems) with a heating rate of 2°C min⁻¹ and the absorption was done at 300°C (at 120°C for Li-Al-H systems) and 8.5 MPa hydrogen for 6 h. In the case of the undoped systems, LiAlH₄ decomposes into two steps starting at 145°C and continues to 220°C with the total hydrogen amount of 7.6 wt%. LiBH₄ desorbs a small amount of hydrogen of 0.1-1.0 wt% between 95 and 300°C. For the LiAlH₄-LiBH₄ mixtures, a 2:1 LiAlH₄:LiBH₄ molar ratio releases the highest amount of hydrogen at 6.6 wt% in the temperature range of 100-220°C. In the case of the doped systems, 1 mol% of metal catalysts (TiCl₃, TiO₂, VCl₃, or ZrCl₄) was doped to the systems. For LiAlH₄, all of the additives lower the temperature in the first and second steps of the hydrogen desorption and improve the amount of hydrogen released. For LiBH₄, a small amount of a catalyst can improve the reversibility for at least three cycles. The LiAlH₄-LiBH₄ mixture in the presence of TiCl₃ desorbs hydrogen at the lowest temperature (40°C). Furthermore, 3 and 5 mol% TiCl₃ were added to the LiAlH₄-LiBH₄ mixture. The hydrogen desorption capacity decreases with the increase in the doping amount. No hydrogen absorption was observed for any of the doped $LiAlH_4-LiBH_4$ samples. In addition, XRD patterns indicate Al and LiH in the Li-Al-H and Li-Al-B-H systems after the desorption corresponding to the decomposition reaction of LiAlH₄.

บทคัดย่อ

ลภัสรคา ผุยรอด: บทบาทของตัวเร่งปฏิกิริยาชนิดโลหะต่อพฤติกรรมการกักเก็บไฮโดร เจนของลิเทียมอะลูมิเนียมไฮไดรด์/ลิเทียมโบโรไฮไดรด์ (Roles of Metal Catalysts on the Hydrogen Storage Behaviors of LiAlH4/LiBH4) อ. ที่ปรึกษา: รศ. ดร. ปราโมช รังสรรค์ วิจิตร ผศ.ดร. บุนยรัชต์ กิติยานันท์ และ ดร. สันติ กุลประทีปัญญา 71 หน้า

งานวิจัยนี้ศึกษาความสามารถในการเก็บก๊าซไฮโดร์เจนของระบบลิเทียม–อะลูมิเนียม– ใฮโครเจน (Li–Al–H) ถิเทียม–โบรอน–ไฮโครเจน (Li–B–H) และ ลิเทียม–อะลูมิเนียม– โบรอน–ไฮโครเจน (Li–Al–B–H) โคยใช้เทคนิคการปลดปล่อยก๊าซที่ปริมาตรคงที่จากอุณหภูมิ ห้องถึง 300°C (ถึง 350°C สำหรับระบบ Li–B–H) และการดูคซึมก๊าซที่ 300°C (ที่ 120°C ้สำหรับระบบ Li–Al–H) ภายใต้ความดัน 8.5 MPa ของไฮโดรเจนเป็นเวลา 6 ชั่วโมง การเตรียม สารตัวอย่างทำโดยใช้เครื่องบดแบบเหวี่ยง ผลการทดลองพบว่า สำหรับระบบที่ไม่ได้เติมตัวเร่ง ้ปฏิกิริยา ลิเทียมอะลูมิเนียมไฮไครค์แตกตัวเพื่อปลคปล่อยุไฮโครเจนในสองขั้นตอน เริ่มต้นที่ 145°C ถึง 220°C และปลคปล่อยไฮโครเจนได้ทั้งหมด 7.6% โดยน้ำหนัก ลิเทียมโบโรไฮไครด์ ปลดปล่อยไฮโครเจนในปริมาณเพียงเล็กน้อยประมาณ 0.1 – 1.0% โดยน้ำหนัก ระหว่างอุณหภูมิ 95°C ถึง 300°C ส่วนระบบลิเทียม–อะลูมิเนียม–โบรอน–ไฮโครเงน พบว่าสัคส่วนโคยโมลงอง ลิเทียมอะลูมิเนียมไฮไครค์ต่อลิเทียมโบโรไฮไครค์ที่ 2:1 ปลคปล่อยไฮโครเจนไค้สูงสุค 6.6% โดยน้ำหนัก ระหว่างอุณหภูมิ 100°C ถึง 220°C การเติม 1% โดยโมลของตัวเร่งปฏิกิริยาได้แก่ ใททาเนียมไตรคลอไรค์ (TiCl3) ไททาเนียมไคออกไซค์ (TiO2) วานาเดียมไตรคลอไรค์ (VCl3) หรือเซอโครเนียมเตตระคลอไรค์ (ZrCl4) พบว่า สำหรับลิเทียมอะลูมิเนียมไฮไครค์ ตัวเร่ง ปฏิกิริยาสามารถลดอุณหภูมิการปลคปล่อยไฮโครเจนทั้งสองขั้นตอน และปลคปล่อยไฮโครเจน ้ได้มากขึ้น สำหรับลิเทียมโบโรไฮไดรค์ ตัวเร่งปฏิกิริยาทำให้เกิดปฏิกิริยาผันกลับได้อย่างน้อย 3 วัฏจักร ส่วนสารผสมระหว่างลิเทียมอะลูมิเนียมไฮไครค์และลิเทียมโบโรไฮไครค์ พบว่าสารผสม ที่เติมไททาเนียมไตรคลอไรค์สามารถปลคปล่อยไฮโครเงนได้ที่อุณหภูมิต่ำสุดคือ 40°C การเพิ่ม ปริมาณไททาเนียมไตรคลอไรค์เป็น 3% และ 5% โดยน้ำหนัก ทำให้สารผสมปลคปล่อย ้ไฮโครเจนได้น้อยลงเมื่อปริมาณตัวเร่งปฏิกิริยาเพิ่มขึ้น และไม่เกิดเกิดปฏิกิริยาผันกลับ นอกจากนี้ พบว่าลิเทียมอะลูมิเนียมไฮไครค์และสารผสมลิเทียมอะลูมิเนียมไฮไครค์และลิเทียมโบโรไฮไครค์ เปลี่ยนรูปไปเป็นอะลูมิเนียม (Al) และ ลิเทียมไฮไดรค์ (LiH) หลังการปลคปล่อยไฮโครเจนซึ่ง สอดคล้องกับปฏิกิริยาการสลายด้วของลิเทียมอะลูมิเนียมไฮไดรด์

ACKNOWLEDGEMENTS

This work could not be accomplished without the facilities and financial supports of the following organizations as well as these individual assistances.

First of all, I am deeply grateful to Assoc. Prof. Pramoch Rangsunvigit for his gainful guidance, beneficial recommendations, significant suggestions, and encouragement. I also would like to praise his being steady and calm to me, including his patience for proofread my thesis.

I would like to express the truthful appreciation to my US co-advisor, Dr. Santi Kulprathipanja, for his useful advices. His ideas and point of views are favorable. As well as another co-advisor, Asst. Prof. Boonyarach Kitiyanan, I am thankful for his mercies.

My gratitude is extended to the thesis committees, Assoc. Prof. Thirasak Rirksomboon and Assoc. Prof. Vissanu Meeyoo, for their important comments.

I sincerely appreciate Mr. Atsadawuth Siangsai and Ms. Pattaraporn Sridechprasat, who provided me useful information, helpful explanation and practical techniques throughout of this work.

Special thanks are forwarded not only to all professors for establishment the knowledge to me but also all entire PPC friends and staffs for their support and helps until this work got done.

All facilities and financial support were provided by the National Excellence Center for Petroleum, Petrochemicals, and Advanced Materials, Thailand; The Petroleum and Petrochemical College (PPC), Chulalongkorn University, Thailand; National Science and Technology Development Agency (Reverse Brain Drain Project, RDB), Thailand; The 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund); and UOP, A Honeywell Company, USA.

Last but not least, I would like to express the deepest appreciation to my parents who play the greatest roles in this success. Thanks for their invaluable support and encouragement.

TABLE OF CONTENTS

		PAGE
Title	Page	i
Abst	ract (in English)	iii
Abst	ract (in Thai)	iv
Ackı	nowledgements	v
Tabl	e of Contents	vi
List	of Tables	viii
List	of Figures	xi
СНАРТЕ	R	
Ι	INTRODUCTION	1
II	THEORETICAL BACKGROUND	
	AND LITERATURE REVIEW	3
III	EXPERIMENTAL	21
	3.1 Materials	21
	3.2 Sample Prepration	21
	3.3 Experimental Set-up	22
	3.4 Hydrogen Sorption Data Collection	23
	3.4.1 Desorption	23
	3.4.2 Absorption	25
	3.5 Characterization	25
IV	RESULTS AND DISCUSSION	27
	4.1 Effect of Combination of Li-Al-B-H System	27
	4.2 Effect of Catalysts on Hydrogen Desorption in	
	the Li-Al-H System	28
	4.2.1 Effect of Catalysts	28

CHAPTER

V

IAGE	P	A		G	E
------	---	---	--	---	---

		422 Reversibility		30
	13	Effect of Catalysts on Hydrogen Desorption in		50
	4.5	the Li D. U. Sustang		20
				20
		4.3.1 Effect of Catalysts		30
		4.3.2 Reversibility		32
	4.4	Effect of Catalysts on Hydrogen Desorption in		
		the Li–Al–B–H System		37
		4.4.1 Effect of Catalysts		37
		4.4.2 Effect of TiCl ₃ Loading		38
÷		4.4.3 Reversibility		38
	4.5	Phase Transformation during the Desorption/Absorption		41
		4.5.1 Phase Transformation during the Desorption/		
		Absorption of Li–Al–H Systems		41
		4.5.2 Phase Transformation during the Desorption/		
		Absorption of Li–Al–B–H Systems		45
	4.6	Roles of Metal Catalysts on the LiAlH ₄ /LiBH ₄		49
	СО	NCLUSION AND RECOMMENDATIONS		50
	5.1	Conclusions		50
	5.2	Recommendations		51
	RE	FERENCES	÷	52
	AP	PENDICES		55
	CU	RRICULUM VITAE		71

LIST OF TABLES

TABI	ABLE	
2.1	Theoretical hydrogen capacity of metal hydrides and	
	complex hydrides	13
2.2	Examples of inter-metallic compounds	14
3.1	Compressibility factors at different temperature ranges	25
4.1	Desorption amount (wt%) and temperature (°C) of LiAlH ₄ -	
	LiBH ₄ mixtures	27
4.2	Dehydrogenation amount (wt%) and temperature (°C) of	
	doped LiAlH ₄ in the first (R1) and second (R2) steps	29
4.3	Desorption amount (wt%) and temperature (°C) of doped	
	2LiAlH ₄ + LiBH ₄ in the first (R1) and second (R2) steps	39
4.4	Desorption amount (wt%) and temperature (°C) of TiCl3-	
	doped 2LiAlH ₄ + LiBH ₄ in the first (R1) and second (R2)	40
	steps	
A1	Hydrogen capacities of LiBH ₄ in the 1 st cycle of the	
	hydrogen desorption/absorption	55
A2	Hydrogen capacities of LiBH ₄ in the 1 st cycle of the	
	hydrogen desorption/absorption	55
A3	Hydrogen capacities of $LiBH_4$ in the 3^{rd} cycle of the	
	hydrogen desorption/absorption	55
B1	Changed pressure of as-milled LiAlH ₄	56
B2	Changed pressure of 1 mol% TiO ₂ -LiAlH ₄	56
B3	Changed pressure of 1 mol% TiCl ₃ -LiAlH ₄	57
B4	Changed pressure of 1 mol% VCl ₃ -LiAlH ₄	57
B5	Changed pressure of 1 mol% ZrCl ₄ -LiAlH ₄	58
B6	Changed pressure of as-milled LiBH ₄	58

. . .

*

PAGE

B7	Changed pressure of 1 mol% TiO ₂ -LiBH ₄ in the 1 st	
	desorption	59
B8	Changed pressure of 1 mol% TiO ₂ -LiBH ₄ in the 2 nd	50
	desorption	59
B9	Changed pressure of 1 mol% TiO ₂ -LiBH ₄ in the 3 rd	60
	desorption	
B10	Changed pressure of 1 mol% TiCl ₃ -LiBH ₄ in the 1 st	
	desorption	60
B11	Changed pressure of 1 mol% TiCl-LiBH, in the 2 nd	
	desorption	61
B12	Changed pressure of 1 mol% TiCl ₂ -LiBH ₄ in the 3 rd	01
	desorption	61
B13	Changed pressure of 1 mol% VCl ₂ -LiBH ₄ in the 1 st	01
	desorption	62
B14	Changed pressure of 1 mol% VCl ₃ -LiBH ₄ in the 2^{nd}	02
	desorption	62
B15	Changed pressure of 1 mol% VCl ₃ -LiBH ₄ in the 3 rd	02
	desorption	63
B16	Changed pressure of 1 mol% ZrCl ₄ -LiBH ₄ in the 1 st	00
	desorption	63
B17	Changed pressure of 1 mol% ZrCl ₄ -LiBH ₄ in the 2 nd	00
	desorption	64
B18	Changed pressure of 1 mol% ZrCl ₄ -LiBH ₄ in the 3 rd	01
	desorption	64
B19	Changed pressure of a 1:1 LiAlH ₄ :LiBH ₄ molar ratio mixture	65
B20	Changed pressure of a 2:1 LiAlH ₄ :LiBH ₄ molar ratio mixture	65
B21	Changed pressure of a 3:1 LiAlH ₄ :LiBH ₄ molar ratio mixture	66
B22	Changed pressure of a 4:1 LiAlH ₄ :LiBH ₄ molar ratio mixture	66

TABLE

B23	Changed pressure of a 1:2 LiAlH ₄ :LiBH ₄ molar ratio mixture	67
B24	Changed pressure of 1 mol% TiO ₂ -2LiAlH ₄ + LiBH ₄	67
B25	Changed pressure of 1 mol% VCl ₃ -2LiAlH ₄ + LiBH ₄	68
B26	Changed pressure of 1 mol% ZrCl ₄ -2LiAlH ₄ + LiBH ₄	68
B27	Changed pressure of 1 mol% TiCl ₃ -2LiAlH ₄ + LiBH ₄	69
B28.	Changed pressure of 3 mol% TiCl ₃ -2LiAlH ₄ + LiBH ₄	69
B29	Changed pressure of 5 mol% TiCl ₃ -2LiAlH ₄ + LiBH ₄	70

LIST OF FIGURES

FIGU	FIGURE	
2.1	Hydrogen sorption on the surface of the solid.	5
2.2	Model of the metal hydrides interaction.	9
2.3	Absorption and desorption of metal hydrides.	9
2.4	Potential energy of a hydrogen molecule and of two hydro-	
	gen atoms.	10
2.5	Pressure-concentration-temperature curve (PCT diagram)	
	and Van't Hoff plot.	12
2.6	Comparison of metal hydrides, carbon nanotubes, and other	
	hydrocarbons	15
3.2	Photograph of the experimental set-up.	23
4.1	Correlation between temperature and hydrogen capacity	
	during the desorption of (a) as-milled LiAlH ₄ ; (b) $2LiAlH_4$ +	
	LiBH ₄ ; (c) 3LiAlH ₄ +LiBH ₄ ; (d) 4LiAlH ₄ +LiBH ₄ (e) LiAlH ₄	
	+LiBH ₄ ; (f) LiAlH ₄ +2LiBH ₄ ; and (g) as-milled LiBH4.	28
4.2	Correlation between temperature and hydrogen capacity	
	during the desorption of: (a) 1 mol% ZrCl ₄ -LiAlH ₄ ; (b) 1	
	mol% VCl ₃ -LiAlH ₄ ; (c) 1 mol% TiCl ₃ -LiAlH ₄ (d) 1 mol%	20
	TiO ₂ -LiAlH ₄ ; and (e) as-milled LiAlH ₄ .	30
4.3	Correlation between temperature and hydrogen capacity	14
	during the 1 st desorption of: (a) 1 mol% ZrCl ₄ -LiBH ₄ ; (b) 1	
	mol% VCl ₃ -LiBH ₄ ; (c) 1 mol% TiCl ₃ -LiBH ₄ ; (d) 1 mol%	
	TiO ₂ -LiBH ₄ ; and (e) as-milled LiBH ₄ .	31
4.4	Correlation between temperature and hydrogen capacity	
	during the 2 nd desorption of: (a) 1 mol% ZrCl ₄ -LiBH ₄ ; (b) 1	
	mol% VCl ₃ -LiBH ₄ ; (c) 1 mol% TiCl ₃ -LiBH ₄ ; and (d)	
	1mol% TiO ₂ -LiBH ₄ .	32

FIGURE

4.5	Correlation between temperature and hydrogen capacity	
	during the 3 rd desorption of: (a) 1 mol% ZrCl ₄ -LiBH ₄ ; (b) 1	
	mol% VCl ₃ -LiBH ₄ ; (c) 1 mol% TiCl ₃ -LiBH ₄ ; (d) and 1	
	mol% TiO ₂ LiBH ₄ .	33
4.6	Correlation between temperature and hydrogen capacity	
	during the desorption of 1 mol% $ZrCl_4$ -LiBH ₄ in the: (a) 1 st	
	desorption; (b) 2 nd desorption; and (c) 3 rd desorption.	34
4.7	Correlation between temperature and hydrogen capacity	
	during the desorption of 1 mol% VCl_3 -LiBH ₄ in the: (a) 1 st	
	desorption; (b) 2 nd desorption; and (c) 3 rd desorption.	35
4.8	Correlation between temperature and hydrogen capacity	
	during the desorption of 1 mol% TiCl ₃ -LiBH ₄ in the: (a) 1 st	
	desorption; (b) 2 nd desorption; and (c) 3 rd desorption.	36
4.9	Correlation between temperature and hydrogen capacity	
	during the desorption of 1 mol% TiO_2 -LiBH ₄ in the: (a) 1 st	
	desorption; (b) 2 nd desorption; and (c) 3 rd desorption.	37
4.10	Correlation between temperature and hydrogen capacity	
	during the desorption of: (a) 1 mol% ZrCl ₄ -2LiAlH ₄ +LiBH ₄ ;	
	(b) 1 mol% VCl ₃ -2LiAlH ₄ +LiBH ₄ ; (c) 1 mol% TiCl ₃ -	
	$2LiAlH_4+LiBH_4$; (d) 1 mol% $TiO_2-2LiAlH_4+LiBH_4$; and	
	(e) $2LiAlH_4+LiBH_4$.	39
4.11	Correlation between temperature and hydrogen capacity	
	during the desorption of: (a) 2LiAlH ₄ +LiBH ₄ ; (b) 1 mol%	
	TiCl ₃ -2LiAlH ₄ +LiBH ₄ ; (c) 3 mol% TiCl ₃ -2LiAlH ₄ +LiBH ₄ ;	
	and (d) 5 mol% TiCl ₃ -2LiAlH ₄ +LiBH ₄ .	40
4.12	XRD patterns of: (a) as-received LiAlH ₄ ; (b) milled LiAlH ₄	
	for 15 min; and (c) desorbed LiAlH ₄ at 300°C.	42

PAGE

FIGURE

PAGE

43

43

44 :

44

45

46

- 4.13 XRD patterns of: (a) as-received LiAlH₄; (b) milled 1 mol%
 ZrCl₄-LiAlH₄ for 120 min; and (c) desorbed 1 mol% ZrCl₄-LiAlH₄ at 300°C.
- 4.14 XRD patterns of: (a) as-received LiAlH₄; (b) milled 1 mol% VCl₃-LiAlH₄ for 120 min; and (c) desorbed 1 mol% VCl₃-LiAlH₄ at 300°C.
- 4.15 XRD patterns of: (a) as-received LiAlH₄; (b) milled 1 mol% TiCl₃-LiAlH₄ for 120 min; and (c) desorbed 1 mol% TiCl₃-LiAlH₄ at 300°C.
- 4.16 XRD patterns of: (a) as-received LiAlH₄; (b) milled 1 mol% TiO_2 -LiAlH₄ for 120 min; and (c) desorbed 1 mol% TiO_2 -LiAlH₄ at 300°C.
- 4.17 XRD patterns of: (a) milled LiAlH₄; (b) milled
 2LiAlH₄+LiBH₄ for 120 min; (c) desorbed LiAlH₄ at 300°C;
 and (d) desorbed 2LiAlH₄+LiBH₄ at 300°C.
- 4.18 XRD patterns of : (a) milled 2LiAlH₄+LiBH₄ for 120 min;
 (b) desorbed 2LiAlH₄+LiBH₄ at 300°C; (c) milled 1 mol% ZrCl₄-2LiAlH₄+LiBH₄ for 120 min; and (d) desorbed 1 mol% ZrCl₄-2LiAlH₄+LiBH at 300°C.
- 4.19 XRD patterns of : (a) milled 2LiAlH₄+LiBH₄ for 120 min;
 (b) desorbed 2LiAlH₄+LiBH₄ at 300°C; (c) milled 1 mol% VCl₃-2LiAlH₄+LiBH₄ for 120 min; and (d) desorbed 1 mol% VCl₃-2LiAlH₄+LiBH₄ at 300°C.
- 4.20 XRD patterns of : (a) milled 2LiAlH₄+LiBH₄ for 120 min;
 (b) desorbed 2LiAlH₄+LiBH₄ at 300°C; (c) milled 1 mol% TiO₂-2LiAlH₄+LiBH₄ for 120 min; and (d) desorbed 1 mol% TiO₂-2LiAlH₄+LiBH₄ at 300°C.

47

46

4.21	XRD patterns of : (a) milled 2LiAlH ₄ +LiBH ₄ for 120 min;	
	(b) desorbed 2LiAlH ₄ +LiBH ₄ at 300°C; (c) milled 1 mol%	
	TiCl ₃ -2LiAlH ₄ +LiBH ₄ for 120 min; and (d) desorbed 1	
	mol% TiCl ₃ -2LiAlH ₄ +LiBH ₄ at 300°C.	47
4.22	XRD patterns of : (a) milled 2LiAlH ₄ +LiBH ₄ for 120 min;	
	(b) desorbed 2LiAlH ₄ +LiBH ₄ at 300°C; (c) milled 3 mol%	
	TiCl ₃ -2LiAlH ₄ +LiBH ₄ for 120 min; and (d) desorbed 3	
	mol% TiCl ₃ -2LiAlH ₄ +LiBH ₄ at 300°C.	48
4.23	XRD patterns of : (a) milled 2LiAlH ₄ +LiBH ₄ for 120 min;	
	(b) desorbed 2LiAlH ₄ +LiBH ₄ at 300°C; (c) milled 5 mol%	
	TiCl ₃ -2LiAlH ₄ +LiBH ₄ for 120 min; and (d) desorbed 5	
	mol% TiCl ₃ -2LiAlH ₄ +LiBH ₄ at 300°C.	48

PAGE