REFERENCES

- Aboul-Gheit, A.K., Aboul-Fotouh, S.M., and Aboul-Gheit, N.A.K. (2005).
 Hydroconversion of cyclohexene using catalysts containing Pt, Pd, Ir and Re supported on H-ZSM-5 zeolite. <u>Applied Catalysis A: General</u>, 283, 157–164.
- Aguado, J., Serrano, D.P., Sotelo, J.L., Van Grieken, R., and Escola, J.M. (2006). Influence of the Operating Variables on the Catalytic Conversion of a Polyolefin Mixture over HMCM-41 and Nanosized HZSM-5. <u>Ind. Eng.</u> <u>Chem. Res.</u>, 40, 5696-5704.

.

.....

- Álvarez-Rodríquez, J.A., Guerrero-Ruiz, A., Rodríguez-Ramos, I., and Arcoya-Martín, A. (2005). Modifications of the citral hydrogenation selectivities over Ru/KL-zeolite catalysts induced by the metal precursors. <u>Catalysis</u> <u>Today</u>, 107–108, 302–309.
- Arribas, M.A., Concepción, P., and Martinez, A. (2004). The role of metal sites during the coupled hydrogenation and ring opening of tetralin on bifunctional Pt(Ir)/USY catalysts. <u>Applied catalysis A: General</u>, 267, 111-119.
- Arribas, M.A., and Martinez, A. (2002). The influence of zeolite acidity for the coupled hydrogenation and ring opening of 1-methylnaphthalene on Pt/USY catalysts. <u>Applied catalysis A: General</u>, 230, 203-217.
- Barrer, R.M. and Villiger, H. (1969). CRYSTAL STRUCTURE OF SYNTHETIC ZEOLITE L. Crystallography, 128, 352-361.
- Bécue, T., Maldonado-Hodar, F.J., Antunes, A.P., Silva, J.M., Ribeiro, M.F., Massiani, P., and Kermarec, M. (1999). Influence of Cesium in Pt/NaCsβ on the Physico-Chemical and Catalytic Properties of the Pt Clusters in the Aromatization of n-Hexane. Journal of Catalysis, 181, 244-255.
- Berrueco, C., Esperanza, E., Mastral, F.J., Ceamanos, J., and Garcia-Bacaicoa, P. (2005). Pyrolysis of waste tyres in an atmospheric static-bed batch reactor: Analysis of gases obtained. Journal of Analytical and Applied Pyrolysis, 74, 245-253.

- Bonetto, L., Cambolr, M.A., Corma, M.A., and Perez-Pariente, J. (1992). Optimization of zeolite-β in cracking catalysts influence of crystallite size. <u>Applied catalysis A: General</u>, 82, 37-50.
- Byggningsbacka, R., Kumar, N., and Lindfors, L.-E. (1998). Simultaneous dehydrogenation and isomerization of *n*-butane to isobutene over ZSM-22 and zinc-modified ZSM-5 zeolites. <u>Catalysis Letters</u>, 55, 173–176.
- Shen, B., Wu, C., Wang, R., Guo, B., and Liang, C. Pyrolysis of scrap tyres with zeolite USY. (2006). Journal of Hazardous Materials, B137, 1065–1073.
- Chaala, A., and Roy, C. (1996). Production of coke from scrap tire vacuum pyrolysis oil. <u>Fuel Processing Technology</u>, 46, 227-239
- Castaňo, P., Pawelec, B., Fierro, J.L.G., Arandes, J.M., and Bilbao, J. (2006). Aromatics reduction of pyrolysis gasoline (PyGas) over HY-supported transition metal catalysts. <u>Applied Catalysis A: General</u>, 315, 101–113.
- Choosuton A. (2007). <u>Development of Waste Tire Pyrolysis for the Production of</u> <u>Commercial Fuels: Effect of Noble Metals and Supports</u>. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Conliffe, A.M., and William, P.T. (1998). Composition of oils derived from the batch pyrolysis of tyres. Journal of analytical and applied pyrolysis, 44, 131-152.
- Corma A., Gonźalez-Alfaro V., and Orchillesy A.V. (2001). Decalin and Tetralin as Probe Molecules for Cracking and Hydrotreating the Light Cycle Oil. <u>Journal of Catalysis</u>, 200, 34–44.
- Corma, A., Martinez, A., and Martinez-Soria, V. (1997). Hydrogenation of Aromatics in diesel fuels on Pt/MCM-41 catalysts. Journal of Catalysis, 169, 480-489.
- Cypres, R. (1987). AROMATIC HYDROCARBONS FORMATION DURING COAL PYROLYSIS. <u>Fuel Processing Technology</u>, 15, 1-15.
- Dai, X., Yin, X., Wu, C., Zhang, W., and Chen, Y. (2001). Pyrolysis of waste tires in a circulating fluidized-bed reactor. <u>Energy</u>, 26, 385–399.

- Diez, C., Martinez, O., Calvo, L.F., Cara, J., and Moran, A. (2004). Pyrolysis of tyres. Influence of the final temperature of the process on emission and calorific value of the product recovered. <u>Waste Management</u>, 24, 463-469.
- Du, H., Fairbridge, C., Yang, H, and Ring, Z. (2005). The chemistry of selective ring-opening catalysts. <u>Applied Catalysis A: General</u>, 294, 1–21.
- Dũng, N.A, Wongkasemjit, S., and Jitkarnka, S. (2009). Effects of pyrolysis temperature and Pt-loaded catalysts on polar-aromatic content in tirederived oil. <u>Applied Catalysis B: Environmental</u>, 91, 300–307.
- Dũng, N.A. (2009). <u>LiIGHT OIL PRODUCTION FROM WASTE TIRE</u> <u>PROLYSIS USING NOBLE METAL-SUPPORTED CATALYSTS</u>. Ph.D. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Fan, Y., Bao, X., Lei, D., Shi, G., Wei, W., and Xu, J. (2005). A novel catalyst system based on quadruple silicoaluminophosphate and aluminosilicate zeolites for FCC gasoline upgrading. <u>Fuel</u>, 84, 435–442.
- Fang, X., Li, F., Zhou, Q., and Luo, L. (1997). Effects of heavy rare earth addition on properties of KL zeolite-supported platinum reforming catalyst. <u>Applied</u> <u>Catalysis A: General</u>, 161, 227-234
- Galvagno, S., Casu, S., Carsabianca, T., Calabrese, A., and Cornacchia, G. (2002). Pyrolysis process of the treatment of scrap tyres: Preliminary experimental results. <u>Waste Management</u>, 22, 917-923.
- Hattori, H. (1995). Heterogeneous Basic Catalysis. Chem. Rev, 95, 537-558.
- Ikemoto, M., Tsutsumi, K., and Takahashi, H. (1972). Acidity and Acid Strength of Zeolite Catalysts. <u>Bulletin of the Chemical Society of Japan</u>, 45, 1330-1334
- Jacobs, G., Padro, C.L., and Resascol, D.E. (1998). Comparative Study of n-Hexane Aromatization on Pt/KL, Pt/Mg(Al)O, and Pt/SiO2 Catalysts: Clean and Sulfur-Containing Feeds. Journal of catalysis, 179, 43–55.

- Jacobs, G., Ghadiali, F., Pisanu, A., Borgnal, A., Alvarez, W.E., Resasco, D.E. (1999). Characterization of the morphology of Pt clusters incorporated in a KL zeolite by vapor phase and incipient wetness impregnation. Influence of Pt particle morphology on aromatization activity and deactivation. <u>Applied</u> <u>Catalysis A: General</u>, 188, 79–98.
- Jacobs, G., Alvarez, W.E., and Resasco, D.E. (2001). Study of preparation parameters of powder and palletized Pt/KL catalysts for *n*-hexane aromatization. <u>Applied Catalysis A: General</u>, 206, 267–282.
- Jitkarnka, S., Chusaksri, B., Supaphol, P., and Magaraphan, R. (2007). Influences of thermal aging on properties and pyrolysis products of tire tread compound. J. Anal. Appl. Pyrolysis, 80, 269–276.
- Jongpatiwut, S., Sackamduang, P., Rirksomboon, T., Osuwan, S., Alvarez, W.E., and Resasco, D.E. (2002). Sulfur- and water-tolerance of Pt/KL aromatization catalysts promoted with Ce and Yb. <u>Applied Catalysis A: General</u>, 230, 177–193.
- Jongpatiwut, S., Sackamduang, P., Rirksomboon, T., Osuwan, S., and Resasco, D.E. (2003). n-Octane aromatization on a Pt/KL catalyst prepared by vapor-phase impregnation. Journal of Catalysis, 218, 1–11.
- Kanai, J., Martens, J.A., and Jacobs, P.A. (1992). On the Nature of the Active Sites for Ethylene Hydrogenation in Metal-Free Zeolites. <u>Journal of catalysis</u>, 133, 527-543.
- Kongkadee, K. (2008). Effect of Metals Loaded on Zeolytic Supports on Tire Pyrolysis Products: Ru on HMOR and HZSM5. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Kumar, M., Saxena, A.K., Negi, B.S., and Viswanadham, N. (2008). Role of pore size analysis in development of zeolite reforming catalyst. <u>Catalysis Today</u>, 130, 501–508.
- Laresgoiti, M.F., Caballero, B.M., Marco, I., Torres, A., Cabrero, M.J., and Chomón,
 M.J. (2004). Characterization of the liquid products obtained in tyre pyrolysis. Journal of Analytical and Applied Pyrolysis, 71, 917-934.

- Lee, J.M., Lee, J.S., Kim, J.R., and KIM, S.D. (1995). Pyrolysis of waste tires with partial oxidation in a fluidized-bed reactor. <u>Energy</u>, 20, 969-976.
- Leung, D.Y.C., Yin, X.L., Zhao, Z.L., Xu, B.Y. and Chen, Y. (2002). Pyrolysis of tire powder: influence of operation variables on the composition and yields of gaspus product. <u>Fuel Processing Technology</u>, 79, 141-155.
- Li, Li., Gao, J., and Meng, X. (2005). The Influencing Factors of the Catalytic Pyrolysis Processes and Their Product Distribution. <u>Petroleum Science and Technology</u>, 23(3), 243-255.
- Lin, Y.H., Sharratt, P.N., Garforth, A.A., and Dwyer, J. (1997). Deactivation of US-Y zeolite by coke formation during the catalytic pyrolysis of high density polyethylene. <u>Thermochimica Acta</u>, 294, 45-50.
- Marcilla, A., Gómez-Siurana, A., and Valdés, F. (2007). Catalytic pyrolysis of LDPE over H-beta and HZSM-5 zeolites in dynamic conditions Study of the evolution of the process. Journal of Analytical and Applied Pyrolysis, 79, 433–442.

.....

- Mastral, A.M., Murillo, R., Callen, M.S., Garcia, T., and Snape C.E. (2000). Influence of process variables on oils from tire pyrolysis and hydropyrolsis in a swept fixed bed reactor. Energy&Fuels, 14(4), 739-744.
- Meng, X., Xu, C., Zhang, Q., and Gao, J. (2006). Laboratory Evaluation Methods for the Catalytic Pyrolysis of Heavy oil. <u>Petroleum Science and</u> <u>Technology</u>, 23, 299-306.
- Miguel, G.S., Aguado, J., Serrano, D.P., and Escola, J.M. (2006). Thermal and catalytic conversion of used tyre rubber and its polymeric constituent using Py-GC/MS. <u>Applied Catalysis B: Environmental</u>, 64, 209-219.
- Mhodmonthin, A. (2005). <u>Development of waste tire pyrolysis process for</u> <u>production of fuel and diesel oils</u>. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Murillo, R., Aylon, E., Navarro, M.V., Callen, M.S., Aranda, A., and Mastral, A.M. (2006). The application of thermal process to valorize waste tyre. <u>Fuel</u> <u>Processing Techonlogy</u>, 87, 143-147.

- Olorunyolemi, T., and Kydd, R.A. (19990). The effect of fluoride addition on the catalytic activity of gallium-aluminum mixed oxides and Ni-Mo supported on them. <u>Catalysis Letters</u>, 63, 173-178.
- Ou, J.D., Risch, M.A., and Aronson, B.J. (2006). Combined oxydehydrogenation and cracking catalyst for production of olefins. U.S. Patent 7,145,051 B2, Date of patent: Dec. 5, 2006
- Park, C.K., and Ihm, K.S. (2000). Comparison of Pt/zeolite catalysts for nhexadecane hydroisomerization. <u>Applied Catalysis A: General</u>, 203, 201– 209.
- Pintoo, E. (2008). <u>Study on uses and possibilities of quality upgrading of oil</u> <u>obtained from tire pyrolysis: case of Pd/H-BETA</u>. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Rodriguez, I.M., Laresgoiti, M.F., Cabrero, M.A., Torres, A., Chomón, M.J., and Caballero, B. (2001) Pyrolysis of scrap tyres. <u>Fuel Processing Technology</u>, 72, 9-22.
- Roldán, R., Romero, F.J., Jiménez-Sanchidrián, C., Marinas, J.M., and Gómez, J.P. (2005). Influence of acidity and pore geometry on the product distribution in the hydroisomerization of light paraffins on zeolites. <u>Applied Catalysis</u> <u>A: General</u>, 288, 104–115.
- Roy, C., Chaala, A., and Darmstadt, H. (1999). The vacuum pyrolysis of used tires End-uses for oil and carbon black products. <u>Journal of Analytical and</u> <u>Applied Pyrolysis</u>, 51, 201-221.
- Sato, T., Kunimori, K., and Hayashi, S. (1999). Dynamics of benzene, cyclohexane and n-hexane in KL zeolite studied by ²H NMR. <u>Phys. Chem. Chem. Phys.</u> 1(16), 3839-3843
- Santikunaporn, M., Herrera, J.E., Jongpatiwut, S., Resasco, D.E., Alvarez, W.E., and Sughrue, E.L. (2004). Ring opening of decalin and tetralin on HY and Pt/HY zeolite catalysts. Journal of Catalysis, 228, 100-113.

- Serra, J.M., Guillon, E., and Corma, A. (2005). Optimizing the conversion of heavy reformate streams into xylenes with zeolite catalysts by using knowledge base high-throughput experimentation techniques. <u>Journal of Catalysis</u>, 232, 342–354.
- Shen, B., Wu, C., Wang, R., Guo, B., and Liang, C. (2006). Pyrolysis of scrap tyres with zeolite USY. <u>Hazardous Materials B</u>, 137, 1065–1073.
- Singh, A.K., and Fernando, S.D. (2008). Transesterification of Soybean Oil Using Heterogeneous Catalysts. <u>Energy & Fuels</u>, 22, 2067–2069.
- Smirniotis, P.G., and Ruckenstein, E. (1995). Increased aromatization in the reforming of mixtures of n-hexane, methylcyclopentane and methylcyclohexane over composites of Pt/BaKL zeolite with Pt/13 or Pt/USY zeolites. <u>Applied Catalysis A: General</u>, 123, 59-88.
- Song, C., Garcés, J.M., and Sugi, Y. (2000). <u>Shape Selective Catalysis: Chemicals</u> <u>Synthesis and Hydrocarbon Processing</u>. Washington DC; ACS symposium series 738, 381-389.
- Stakheev, A.Y., and Shpriro, E.S. (1995). Electronic state location of Pt metal clusters in KL zeolite: FTIR study of CO chemisorption. <u>Catalysis Letters</u>, 32, 147-158.
- Trakarnroek, S., Ittisanronnachai, S., Jongpatiwut, S., Rirksomboon, T., Osuwan, S., and Resasco, D.E. (2007) EFFECT OF ZEOLITE CRYSTALLITE SIZE ON Pt/KL CATALYSTS USED FOR THE AROMATIZATION OF n-OCTANE. <u>Chemical Engineering Communications</u>, 194, 946-961.
- Trakarnroek, S., Jongpatiwut, S., Rirksomboon, T., Osuwan, S., and Resasco, D.E. (2006). n-Octane aromatization over Pt/KL of varying morphology and channel lengths. <u>Applied Catalysis A: General</u>, 313, 189–199.
- Vitolo, S., Seggiani, M., Frediani, P., Ambrosini, G., and Politi, L. (1999). Catalytic upgrading of pyrolytic oils to fuel over different zeolite. <u>Fuel</u>, 78, 1147-1159.
- Wawui, K., Satoh, K.I., Sawada, G., Shiozawa, K., Matano, K.I., Suzuki, K., Hayakawa, T., Murata, K., Yoshimura, Y., and Mizukami, F. (1999). Catalytic cracking of n-butane over rare earth-loaded HZSM-5 catalysts. <u>Applied Catalysis A: General</u>, 42, 307-314.

- Wakui, K., Satoh, K., Sawada, G., Shiozawa, K., Matano, K., Suzuki, K., Hayakawa, T., Yoshimura, Y., Murata, K. and Mizukami, F. (2002). Dehydrogenative cracking of n-butane using double-stage reaction. <u>Applied Catalysis A:</u> <u>General</u>, 230, 195-202.
- Weitkamp, J., Raichle, and A. Traa, Y. (2001). Novel zeolite catalysis to create value from surplus aromatics: preparation of C₂₊-n-alkanes, a high-quality synthetic steamcracker feedstock. <u>Applied Catalysis A: General</u>, 222, 277– 297.
- Williams, P.T., Besler S., and Taylor D.T. (1990). The pyrolysis of scrap automotive tyres: the influence of temperature and heating rate on product composition. <u>Fuel</u>, 69, 1474-1482.
- Williams, P.T., and Brindle, A.J. (2002). Catalytic pyrolysis of tyres: influence of tyres: influence of catalyst temperature. <u>Fuel</u>, 81, 2425-2434.
- Williams, P.T., and Brindle, A.J. (2003). Aromatic chemicals from the catalytic pyrolysis of scrap tyres. Journal of Analytical and Applied Pyrolysis, 67, 143-164.

http://en.wikipedia.org/wiki/File:Vulcanization.png.

http://ptech.pcd.go.th/p2/ waste-util-article-view.php?aid=49.

http://www.aipma.net/info/plasticprocess.htm.

www.chemistry.nus.edu.sg.

www.personal.utulsa.edu.

APPENDICES

A. Operating Temperature

 Table A1 Pyrolysis conditions: non-catalytic pyrolysis

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Zone Temperature: set value = 500 °C

Time (min)	TI	T2	Time (min)	TI	T2	Time (min)	T1	T2	Time (min)	T1	T2
2	32.6	28.3	32	389.9	501.0	62	367.8	495.3	92	342.0	495.0
4	51.1	43.9	34	389.9	500.3	64	366.1	506.1	94	345.9	499.6
6	78.9	71.1	36	389.1	499.4	66	366.5	498.7	96	344.7	498.9
8	113.6	107.3	38	390.5	501.8	68	361.7	501.0	98	338.3	501.1
10	154.7	153.7	40	379.1	497.8	70	362.2	495.8	100	341.3	499.0
12	200.5	206.2	42	381.7	502.6	72	357.4	501.1	102	336.1	500.2
14	251.7	268.5	44	383.3	494.3	74	354.4	498.7	104	334.5	500.5
16	301.2	332.8	46	3.76.7	508.9	76	353.0	502.7	106	335.0	500.6
18	315.6	411.6	48	375.1	501.0	78	354.4	503.2	108	331.7	500.8
20	330.7	458.9	50	373.5	508.3	80	351.6	501.0	110	339.0	498.5
22	350.5	468.8	52	377.1	495.9	82	350.3	493.3	112	331.6	500.4
24	355.3	501.8	54	375.3	492.2	84	347.8	506.9	114	328.4	500.4
26	363.2	494.6	56	372.2	506.8	86	351.2	500.4	116	329.6	499.8
28	375.1	497.8	58	372.2	500.4	88	348.3	506.6	118	328.2	504.4
30	385.3	506.0	60	367.1	503.5	90	347.6	499.3	120	327.8	497.0

Figure A1 Operating temperature vs time on stream of non-catalytic pyrolysis.

 Table A2
 Pyrolysis conditions: non-catalytic pyrolysis

Tire = 30 g, N_2 flow = 30 ml/min

Pyrolysis Zone Temperature: set value = 500 °C

Time (min)	TI	T2	Time (min)	Tl	T2	Time (min)	Tl	Т2	Time (min)	T1	Т2
2	31.9	25.7	32	379.1	523.2	62	303.2	504.2	92	308.3	496.0
4	53.4	37.7	34	370.2	502.7	64	306.7	494.0	94	311.5	507.4
6	96.0	69.3	· ·36	363.8	505.4	66	301.5	504.3	96	313.1	496.0
8	112.2	82.2	38	354.0	501.9	68	297.4	498.1	98	314.5	505.4
10	162.2	127.7	40	340.5	485.0	70	305.9	506.1	100	314.2	499.6
12	241.7	179.4	42	336.8	470.4	72	305.8	498.9	102	314.8	502.7
14	250.8	220.6	-44	334.9	452.5	74	310.7	505.0	104	315.1	494.1
16	301.4	284.8	46	323.6	441.3	76	307.7	501.0	106	314.3	499.9
18	317.7	374.6	48	320.5	452.3	78	306.5	492.0	108	304.8	494.8
20	322.5	402.0	- 50	316.9	497.4	80	301.0	502.2	110	301.7	504.9
22	345.5	479.2	52	317.2	505.7	82	303.5	499.8	112	298.4	497.5
24	347.2	480.6	54	309.4	498.4	84	305.7	494.2	114	308.9	501.6
26	363.7	492.2	. 56	303.7	493.0	86	300.5	503.3	116	309.7	495.3
28	376.5	488.1	58	303.4	500.5	88	296.6	502.6	118	312.7	505.8
30	376.9	518.9	60	300.0	500.4	90	299.4	503.6	120	312.9	502.2

Figure A2 Operating temperature vs time on stream of non-catalytic pyrolysis.

 Table A3 Pyrolysis conditions: catalytic pyrolysis using KL

Tire = 30 g, KL = 7.5 g, N_2 flow = 30 ml/min

Pyrolysis Zone Temperature: set value = 500 °C

Time (min)	ТІ	T2	Time (min)	ТІ	T2	Time (min)	TI	T2	Time (min)	T1	T2
2	29.3	28.4	32	369.8	504.9	62	357.4	505.4	92	335.0	498.7
4	38.7	42.4	34	372.2	499.5	64	355.8	500.4	94	333.3	499.9
6	50.4	61.5	36	372.2	504.3	66	353.8	501.4	96	331.1	504.9
8	69.4	95.5	38	374.3	485.3	68	352.3	494.8	98	327.8	497.5
10	93.0	137.0	40	374.1	501.6	70	350.5	506.3	100	325.9	504:5
12	124.6	186.9	42	373.7	500.5	72	349.0	499.7	102	325.0	495.8
14	166.5	·252.7	44	372.2	506.2	74	347.1	504.1	104	323.4	502.3
16	195.9	302.6	46	370.6	496.2	76	346.0	495.9	106	322.6	500.8
18	238.0	390.9	48	369.1	504.8	78	344.1	507.0	108	321.1	497.8
20	299.7	439.9	50	367.5	498.7	80	342.6	501.4	110	320.7	494.3
22	323.1	477.5	52	366.3	502.1	82	341.9	500.6	112	319.3	506.5
24	349.6	512.2	54	364.5	496.0	84	340.1	496.2	114	318.8	497.9
26	359.8	500.4	56	362.9	505.8	86	338.9	507.2	116	317.8	503.8
28	363.5	504.4	58	361.0	499.6	88	337.2	499.4	118	316.9	495.3
30	366.8	497.0	60	359.6	498.8	90	336.3	506.5	120	316.0	506.3

Figure A3 Operating temperature vs time on stream of KL zeolite.

 Table A4
 Pyrolysis conditions: catalytic pyrolysis using KL

Tire = 30 g, KL = 7.5 g, N_2 flow = 30 ml/min

Pyrolysis Zone Temperature: set value = 500 °C

Time (min)	Tl	T2	Time (min)	T1	T2	Time (min)	TI	Т2	Time (min)	TI	Т2
2	27.1	28.5	32	369.1	498.2	62	355.8	500.7	92	331.8	498.4
4	33.4	41.0	34	373.1	504.9	64	354.3	502.1	94	330.5	495.5
6.	46.8	66.7	36	373.8	497.6	66	352.5	497.3	96	329.2	504.9
8	62.9	98.2	38	373.3	505.6	68	351.2	504.1	98	328.6	496.9
1.0	87.5	114.6	40	373.0	495.2	70	349.2	498.7	100	326.5	501.9
12	117.8	193.0	42	372.7	504.6	72	347.5	504.4	102	322.7	497.7
14 -	158.3	262.4	44	371.3	497.2	74	345.8	495.2	104	324.7	506.8
16 :	189.5	313.4	46	370.4	502.1	76	343.0	497.0	106	323.6	497.9
18	233.5	394.8	48	368.9	492.0	78	342.0	504.1	108	321.4	504.0
20	302.5	445.4	50	367.2	500.6	80	340.5	501.5	110	321.8	496.1
22	332.3	484.7	52	366.0	502.3	82	339.4	504.6	112	321.4	495.2
24	354.5	513.2	54	364.0	501.7	84	337.4	492.5	114	319.5	499.4
26.	358.8	507.9	56	361.2	495.9	86	336.0	500.8	116	319.1	500.0
28	364.7	500.5	58	359.9	494.2	88	334.8	501.0	118	318.3	499.9
30	366.9	506.0	60	358.2	507.2	90	333.2	503.6	120	317.8	501.5

Figure A4 Operating temperature vs time on stream of KL zeolite.

Table A5 Pyrolysis conditions: catalytic pyrolysis using Y

Tire = 30 g, Y = 7.5 g, N_2 flow = 30 ml/min

Pyrolysis Zone Temperature: set value = 500 °C

Catalyst Zone Temperature: set value = 300 °C

Time (min)	Т1	T2	Time (min)	TI	T2	Time (min)	T1	T2	Time (min)	Tl	T2
2	35.8	40.9	32	357.4	502.0	62	346.6	500	92	327.1	504.8
4	48.4	60.5	34	359.1	502.9	64	345	505.9	94	326.6	499.3
6	65.5	93.2	36	357.7	504.8	66	343.3	496.3	96	325.3	501.9
8	88.5	132.8	38	357.7	502.6	68	341.6	507	98	324.9	495.9
10	120.7	180.8	40	356.0	492.0	70	340.4	499.4	100	323.9	502.5
12	160.6	234.0	42	355.6	499.7	72	338.9	508.5	102	322.6	502.1
14	204.1	292.6	44	355.6	499.8	74	337.3	498.9	104	322.1	499.6
16	250,5	368.6	46	355.1	500.3	76	335.6	498.6	106	320	506.6
18	321.7	429.8	48	354.7	501.4	78	334.5	503.6	108	319.2	497.5
20	330.4	477.3	50	354.2	494.0	80	333.2	502.9	110	318.7	503.7
22	345.1	514.3	52	353.0	506.7	82	331.9	500	112	317.5	494.4
24	350.6	506.7	54	352.3	500.3	84	330.4	504.6	114	316.7	506.3
26	352.6	500.0	56	350.6	506.5	86	330.1	500.2	116	316.1	500.2
28	353.7	501.0	58	349.3	496.4	88	328.4	507	118	315.2	506
30	354.1	490.6	60	347.6	506.1	90	327.9	498.4	120	314.8	497.3

Figure A5 Operating temperature vs time on stream of Y zeolite.

 Table A6
 Pyrolysis conditions: catalytic pyrolysis using Y

Tire = 30 g, Y = 7.5 g, N_2 flow = 30 ml/min

Pyrolysis Zone Temperature: set value = 500 °C

Catalyst Zone Temperature: set value = 300 °C

Time (min)	TI	T2	Time (min)	TI	T2	Time (min)	Tl	T2	Time (min)	T1	T2
2	26.3	23.9	32	340.0	494.9	62	316.2	505.6	92	308.8	506.6
4	31.9	28.6	34	344.2	502.9	64	314.2	499.5	94	308.0	499.3
6	44.1	41.7	36	345.7	500.4	66	312.6	502.8	96	306.0	506.4
8	59.1	59.9	38	341.9	500.7	68	312.0	503.1	98	304.3	496.6
10	82.8	92.1	40	343.9	494.4	70	310.4	501.2	100	298.8	506.6
12	111.1	127.5	42	342.6	505.4	72	309.0	505.2	102	299.1	499.0
14	149.3	175.7	44	341.7	504.3	74	307.2	496.4	104	310.3	501.3
16	200.1	239.5	46	339.2	505.1	76	305.4	506.0	-106	313.9	496.7
18	234.7	299.9	48	337.5	500.3	78	303.0	497.8	108	314.3	505.6
20	310.5	399.9	50	334.9	491.9	80	300.0	505.2	110	317.0	500.3
22	332.4	487.0	52	331.0	489.3	82	299.4	493.9	112	315.5	501.3
24	337.0	517.3	54	327.8	504.8	84	306.4	504.4	114	312.5	505.5
26	344.5	508.3	56	324.8	498.2	86	309.6	502.9	116	309.7	499.4
28	338.4	497.3	58	322.3	504.8	88	310.4	505.1	118	307.2	504.1
30	339.4	503.7	60	319.6	494.0	90	310.0	496.0	120	305.0	495.9

Figure A6 Operating temperature vs time on stream of Y zeolite.

Table A7 Pyrolysis conditions: catalytic pyrolysis using Y and KL (Y + KL at $Ø_{KL} = 0.25$)

Tire = 30 g, KL = 1.875, Y = 5.625, N₂ flow = 30 ml/min

Pyrolysis Zone Temperature: set value = 500 °C

Time (min)	TI	T2	Time (min)	TI	T2	Time (min)	Tl	Т2	Time (min)	T1	T2
2	29.3	26.5	32	352.8	496.6	62	322.6	501.8	92	307.3	498.4
4	36.0	33.1	34	353.1	504.6	64	320.7	493.1	94	309.3	501.5
6	49.6	49.5	36	350.9	497.7	66	318.3	505.5	96	309.1	494.3
8	66.4	72.2	38	348.2	500.3	68	316.6	497.0	98	308.4	507.3
10	91.6	105.2	40	346.0	488.5	70	315.2	504.0	100	307.3	498.7
12	123.3	146.9	42	343.6	499.7	72	312.8	492.4	102	306.3	503.6
14	165.2	200.9	44	342.2	502.6	74	310.7	506.3	104	304.8	494.6
16	205.8	256.4	46	340.4	503.4	76	309.4	497.3	106	303.3	506.1
18	254.0	333.3	48	338.6	498.4	78	307.4	502.3	108	302.1	497.4
20	318.5	419.4	50	336.4	506.1	80	305.9	493.7	110	300.4	503.1
22	337.9	483.3	52	334.8	500.4	82	303.6	506.9	112	298.3	493.8
24	351.2	511.3	54	332.2	503.5	84	304.2	499.2	114	296.4	507.6
26	356.9	511.2	56	329.8	494.1	86	300.2	505.4	116	298.8	500.2
28	356.6	499.6	58	327.1	506.2	88	298.4	495.1	118	303.4	503.9
30	355.2	505.2	60	325.5	497.3	90	304.4	505.2	120	312.3	496.5

Figure A7 Operating temperature vs time on stream of Y + KL at $Ø_{KL} = 0.25$.

Table A8 Pyrolysis conditions: catalytic pyrolysis using Y and KL (Y + KL at $Ø_{KL} = 0.5$)

Tire = 30 g, KL = 3.75, Y = 3.75, N₂ flow = 30 ml/min

Pyrolysis Zone Temperature: set value = 500 °C

Time (min)	Т١	T2	Time (min)	TI	T2	Time (min)	ТІ	Т2	Time (min)	Tl	T2
2	28.0	28.6	32	348.4	506.3	62	312.5	504.2	92	306.4	502.2
4	35.4	42.5	34	350.2	501.4	64	309.6	494.6	94	308.1	503.8
6	49.4	68.0	36	350.6	501.0	66	306.4	506.6	96	301.7	498.4
8	66.8	102.1	38	348.5	496.1	68	302.9	502.0	98	299.5	504.8
10	92.6	149.3	40	344.6	501.6	70	301.1	500.6	100	297.4	494.6
12	125.5	203.7	42	342.3	502.3	72	298.3	507.4	102	299.5	505.5
14	159.9	257.7	44	339.9	504.7	74	306.0	500.2	104	309.7	499.1
16	205.2	327.3	46	336.1	493.0	76	309.3	502.4	106	313.8	500.7
18	250.8	403.9	48	333.4	502.0	78	312.4	496.9	108	314.0	493.4
20	319.4	458.3	50	331.3	501.2	80	313.7	506.5	110	313.0	506.9
22	346.4	499.6	52	322.8	504.9	82	314.4	497.8	112	310.3	498.4
24	350.7	512.2	54	325.1	500.1	84	313.1	503.4	114	309.0	506.1
26	352.0	501.8	56	321.4	492.2	86	311.3	494.3	116	307.3	498.5
28	350.4	501.3	58	318.9	506.9	88	310.1	505.1	118	302.7	499.7
30	349.3	496.7	60	315.1	496.7	90	308.3	497.4	120	300.5	504.3

Figure A8 Operating temperature vs time on stream of Y + KL at $Ø_{KL} = 0.5$.

Table A9 Pyrolysis conditions: catalytic pyrolysis using Y and KL (Y + KL at $Ø_{KL} = 0.75$)

Tire = 30 g, KL = 5.625, Y = 1.875, N₂ flow = 30 ml/min

Pyrolysis Zone Temperature: set value = 500 °C

Time (min)	T1	Т2	Time (min)	TI	T2	Time (min)	T1	T2	Time (min)	TI	T2
2	29.1	27.6	32	351.9	493.6	62	314.2	498.8	92	312.6	504.5
4	40.1	43.8	34	347.6	506.2	64	311.1	501.9	94	312.4	495.6
6	54.2	66.7	36	347.8	500.0	66	308.9	496.1	96	312.9	506.5
8	72.3	96.6	38	346.2	501.2	68	305.3	506.8	98	312.8	495.4
10	101.0	146.4	40	343.1	508.9	70	303.8	499.7	100	312.2	498.2
12	134.0	196.7	42	342.0	505.8	72	301.2	507.8	102	311.5	503.3
14	170.8	253.7	44	340.0	504.2	74	299.1	498.5	104	309.9	500.9
16	225.7	349.7	46	339.4	501.2	76	302.2	506.5	106	308.4	501.0
18	270.0	427.1	48	337.3	491.2	78	307.2	498.0	108	305.2	494.7
20	319.3	459.7	50	333.0	496.7	80	309.4	501.7	110	303.3	505.5
22	338.4	505.8	52	330.2	504.2	82	309.8	495.0	112	301.4	499.0
24	342.2	509.1	54	325.8	502.9	84	310.5	505.6	114	299.6	504.3
26	342.3	506.7	56	323.9	501.6	86	311.4	499.4	116	297.1	493.8
28	345.8	504.2	58	320.0	491.2	88	311.5	504.5	118	299.9	508.6
30	344.9	503.7	60	316.8	506.6	90	312.7	496.3	120	307.9	503.4

Figure A9 Operating temperature vs time on stream of Y + KL at $Ø_{KL} = 0.75$.

Table A10 Pyrolysis conditions: catalytic pyrolysis using Y and KL (Y ---> KL at $Ø_{KL} = 0.25$)

Tire = 30 g, KL = 1.875, Y = 5.625, N₂ flow = 30 ml/min

Pyrolysis Zone Temperature: set value = 500 °C

Time (min)	Tl	Т2	Time (min)	ТІ	T2	Time (min)	ті	Т2	Time (min)	T1	T2
2	29.1	29.9	32	343.7	496.5	62	318.8	502.6	92	305.2	500.2
4	41.4	51.1	34	340.3	500.0	64	314.9	493.2	94	311.0	503.5
6	51.7	69.2	36	333.2	477.8	66	310.6	507.1	96	313.4	490.8
8	78.6	116.3	38	329.4	473.9	68	309.6	503.2	98	314.1	497.9
10	104.2	156.3	40	323.4	494.4	70	305.0	501.5	100	310.9	498.8
12	132.9	203.9	42	317.8	497.4	72	299.0	498.7	102	307.5	502.7
14	190.2	291.1	44	314.1	503.4	74	298.9	507.6	104	302.2	493.4
16	215.6	327.0	46	308.2	490.9	76	300.3	503.3	106	299.7	504.0
18	264.3	410.4	48	303.1	497.9	78	308.6	505.4	108	298.8	504.3
20	328.9	454.6	50	300.1	503.6	80	311.2	493.9	110	306.7	505.4
22	342.0	497.6	52	298.0	508.1	82	309.8	499.0	112	311.8	507.8
24	347.7	498.0	54	308.4	503.2	84	309.6	498.5	114	312.8	496.4
26	349.2	500.6	56	315.1	493.6	86	306.8	503.3	116	312.0	500.8
28	349.3	495.6	58	316.6	504.6	88	300.1	504.4	118	310.4	498.0
30	346.2	501.4	60	318.6	495.4	90	298.1	504.2	120	307.8	500.0

Figure A10 Operating temperature vs time on stream of Y ---> KL at $Ø_{KL} = 0.25$.

Table A11 Pyrolysis conditions: catalytic pyrolysis using Y and KL (Y ---> KL at $Ø_{KL} = 0.5$)

Tire = 30 g, KL = 3.75, Y = 3.75, N_2 flow = 30 ml/min

Pyrolysis Zone Temperature: set value = 500 °C

Time (min)	T1	T2	Time (min)	TI	T2	Time (min)	T1	T2	Time (min)	T1	T2
2	28.9	29.7	32	337.7	464.3	62	318.7	499.4	92	313.6	497.2
4	36.8	45.6	34	346.0	455.6	64	316.9	504.1	94	312.9	501.9
6	47.9	68.7	36	342.6	463.0	66	315.0	493.2	96	311.2	494.4
8	64.4	100.4	38	341.5	485.1	68	312.6	504.2	98	310.0	501.6
10	89.4	144.3	40	342.9	495.7	70	309.6	498.2	100	309.0	498.6
12	130.2	208.8	42	342.3	497.3	72	307.5	499.9	102	306.6	497.7
14	159.2	248.6	44	340.6	498.5	74	306.4	500.0	104	304.1	505.7
16	1 9 4.2	316.4	46	338.2	505.0	76	304.4	504.4	106	302.2	501.8
18	240.7	401.5	48	336.0	498.5	78	301.8	504.1	108	300.8	496.2
20	299.5	430.6	50	333.7	498.1	80	300.3	494.4	110	298.2	507.9
22	327.8	476.6	52	329.4	505.2	82	298.6	500.8	112	298.1	499.4
24	339.4	503.6	54	326.7	496.4	84	305.0	500.0	114	305.5	502.2
26	349.7	502.7	56	325.2	504.1	86	308.8	502.7	116	311.4	492.2
28	349.0	490.9	58	322.6	492.2	88	311.6	495.4	118	313.4	508.9
30	347.4	476.1	60	320.9	498.7	90	313.1	505.2	120	313.8	498.7

Figure A11 Operating temperature vs time on stream of Y ---> KL at $Ø_{KL} = 0.5$.

Table A12 Pyrolysis conditions: catalytic pyrolysis using Y and KL (Y ---> KL at $Ø_{KL} = 0.75$)

Tire = 30 g, KL = 5.625, Y = 1.875, N₂ flow = 30 ml/min

Pyrolysis Zone Temperature: set value = 500 °C

Time (min)	TI	T2	Time (min)	TI	Т2	Time (min)	T1	Т2	Time (min)	T1	T2
2	29.8	29.3	32	360.1	507.4	62	316.4	500.4	92	301.0	501.8
4	40.4	43.1	34	362.0	501.3	64	307.5	496.9	94	298.5	495.1
6	53.2	63.1	36	362.2	499.1	66	304.4	501.0	96	304.4	509.1
8	72.8	92.8	38	359.8	494.3	68	301.7	499.3	98	310.2	496.2
10	99.8	132.0	40	357.5	501.7	70	299.0	502.4	100	312.1	502.5
12	137.5	184.9	42	353.7	491.3	72	300.6	506.3	102	311.1	495.5
14	172.8	231.8	44	349.3	503.6	74	308.1	498.6	104	309.3	502.1
16	216.7	293.6	46	344.7	499.5	76	311.9	499.4	106	307.6	499.8
18	264.7	379.9	48	339.2	492.2	78	312.9	504.6	108	305.0	495.1
20	335.0	439.6	50	335.0	506.3	80	312.3	492.0	110	301.8	504.3
22	352.9	491.8	52	330.1	501.2	82	311.2	503.6	112	299.1	495.2
24	350.1	508.6	54	326.1	493.5	84	310.0	497.0	114	296.0	501.2
26	353.5	501.8	56	322.3	503.9	86	307.4	502.8	116	308.0	504.5
28	356.3	505.4	58	318.8	495.8	88	304.9	506.7	118	311.3	501.0
30	359.2	500.7	60	316.1	506.8	90	303.2	496.5	120	311.3	499.8

Figure A12 Operating temperature vs time on stream of Y ---> KL at $Ø_{KL} = 0.75$.

Table A13 Pyrolysis conditions: catalytic pyrolysis using Y and KL (KL ---> Y at $Ø_{KL} = 0.25$)

Tire = 30 g, KL = 1.875, Y = 5.625, N₂ flow = 30 ml/min

Pyrolysis Zone Temperature: set value = 500 °C

Time (min)	TI	T2	Time (min)	TI	T2	Time (min)	T1	Т2	Time (min)	Tl	T2
			()	2110	470.0	()		102.0	()		
2	28.1	27.9	32	344.0	478.0	62	313.3	493.0	92	307.3	503.1
4	35.6	41.0	34	341.2	504.3	64	314.9	505.4	94	303.2	490.8
6	52.9	70.9	36	337.6	497.9	66	314.0	497.0	96	297.5	497.8
8	66.5	96.7	38	334.2	501.5	68	312.9	504.4	98	299.4	498.3
10	90.2	140.3	40	330.7	486.0	70	310.0	492.1	100	310.3	501.2
12	125.5	195.2	42	324.5	498.7	72	306.7	501.0	102	312.1	502.9
14	160.1	247.5	44	320.9	499.0	74	302.9	506.5	104	310.4	495.0
16	215.8	328.7	46	317.7	503.1	76	297.4	492.5	106	306.6	508.9
18	259.3	393.4	48	312.3	490.8	78	300.4	502.3	108	303.3	496.3
20	326.3	442.2	50	308.7	502.3	80	301.2	509.6	110	299.9	503.1
22	347.4	484.6	52	306.5	501.0	82	314.8	495.4	112	295.8	498.6
24	348.1	509.7	54	302.7	504.2	84	316.4	506.6	114	297.0	506.9
26	343.4	501.3	56	298.4	492.8	86	316.0	494.6	116	307.7	505.1
28	347.0	500.9	58	302.4	505.1	88	314.3	505.4	118	316.5	507.7
30	345.9	480.2	60	307.0	502.2	90	311.5	498.0	120	320.5	494.5

Figure A13 Operating temperature vs time on stream of KL ---> Y at $Ø_{KL} = 0.25$.

Table A14 Pyrolysis conditions: catalytic pyrolysis using Y and KL (KL ---> Y at $Ø_{KL} = 0.5$)

Tire = 30 g, KL = 3.75, Y = 3.75, N₂ flow = 30 ml/min

Pyrolysis Zone Temperature: set value = 500 °C

Time (min)	TI	T2	Time (min)	T1	T2	Time (min)	T1	T2	Time (min)	TI	T2
2	30.3	34.5	32	352.3	505.9	62	312.8	507.0	92	303.3	505.9
4	40.8	55.8	34	351.4	492.4	64	310.5	496.1	94	301.0	498.1
6	50.1	89.0	36	349.6	479.2	66	308.2	501.9	96	298.9	505.5
8	80.3	138.4	38	347.0	485.0	68	306.1	493.4	98	302.7	494.1
10	100.0	176.6	40	344.6	505.6	70	303.8	509.1	100	308.0	507.3
12	158.5	273.9	42	341.7	503.4	72	301.5	497.3	102	309.4	501.0
14	193.2	324.4	44	338.9	490.2	74	298.7	508.5	104	308.9	503.5
16	229.3	386.6	46	336.1	500.9	76	300.9	499.9	106	307.9	495.6
18	303.7	434.6	48	333.4	500.1	78	307.7	505.0	108	306.3	507.1
20	318.1	474.0	50	330.0	504.1	80	310.2	496.5	110	302.3	496.3
22	342.4	509.1	52	326.4	495.5	82	311.1	498.0	112	298.0	509.2
24	347.0	500.2	54	324.0	504.6	84	310.2	504.5	114	305.0	499.9
26	350.3	505.8	56	321.3	502.1	86	308.5	497.3	116	313.1	505.1
28	352.9	495.8	58	319.0	501.0	88	307.3	501.4	118	315.9	498.7
30	352.9	500.6	60	315.7	491.8	90	304.9	493.6	120	316.7	508.5

Figure A14 Operating temperature vs time on stream of KL ---> Y at $Ø_{KL} = 0.5$.

Table A15 Pyrolysis conditions: catalytic pyrolysis using Y and KL (KL ---> Y at $Ø_{KL} = 0.75$)

Tire = 30 g, KL = 5.625, Y = 1.875, N_2 flow = 30 ml/min

Pyrolysis Zone Temperature: set value = 500 °C

Time (min)	T1	T2	Time (min)	Tl	T2	Time (min)	T1	T2	Time (min)	T1	T2
2	29.6	28.5	32	354.7	502.9	62	307.8	497.4	92	308.3	505.9
4	36.6	39.3	34	355.1	499.8	64	303.7	504.3	94	309.1	499.2
6	49.0	59.1	36	353.8	504.2	66	296.5	500.7	96	308.6	503.9
8	69.5	91.0	38	350.6	495.7	68	298.3	505.7	98	307.5	499.4
10	90.0	127.3	40	346.2	476.6	70	311.7	497.6	100	305.5	506.3
12	121.1	173.9	42	341.9	488.4	72	314.7	505.6	102	303.2	498.2
14	157.9	226.7	44	339.2	506.3	74	316.3	492.7	104	299.3	505.5
16	214.9	316.9	46	336.0	501.8	76	314.9	504.7	106	295.4	498.5
18	252.2	368.3	48	332.6	500.1	78	313.3	501.1	108	299.8	507.3
20	301.5	437.6	50	328.3	500.9	80	309.5	501.3	110	305.6	507.1
22	338.4	472.9	52	323.2	493.1	82	308.9	497.0	112	305.6	505.3
24	348.1	505.3	54	320.6	505.0	84	305.3	504.9	114	317.0	498.7
26	350.6	496.9	56	316.7	498.3	86	301.1	497.1	116	316.7	505.9
28	353.5	500.7	58	311.8	502.9	88	298.2	503.2	118	315.7	497.4
30	353.5	500.2	60	309.6	498.2	90	304.6	494.4	120	312.4	504.3

Figure A15 Operating temperature vs time on stream of KL ---> Y at $Ø_{KL} = 0.75$.

 Table A16 Pyrolysis conditions: catalytic pyrolysis using Pt/KL

Tire = 30 g, Pt/KL = 7.5 g, N_2 flow = 30 ml/min

Pyrolysis Zone Temperature: set value = 500 °C

Time (min)	TI	T2	Time (min)	T1	T2	Time (min)	TI	T2	Time (min)	Tl	T2
2	29.0	31.5	32	347.4	492.6	62	305.6	507.8	92	300.6	501.7
4	43.8	67.4	34	344.5	478.2	64	305.2	499.0	94	300.4	499.7
6	58.2	95.1	36	343.3	473.0	66	303.9	507.2	96	298.4	503.5
8	84.5	142.2	38	338.7	455.2	68	303.6	498.4	98	300.7	495.7
10	133.8	216.6	40	333.5	464.8	70	303.3	501.7	100	308.8	506.9
12	155.6	251.3	42	330.8	488.6	72	303.3	505.0	102	310.6	500.9
14	211.3	330.0	44	326.1	506.6	74	303.2	499.6	104	310.6	507.2
16	242.6	377.1	46	323.7	498.3	76	303.7	495.8	106	308.3	494.2
18	295.6	447.1	48	319.2	505.6	78	304.0	507.4	108	309.4	495.8
20	328.7	485.0	50	313.9	496.4	80	303.5	508.1	110	308.7	507
22	334.5	516.5	52	310.4	500.5	82	303.7	497.2	112	308.4	499.4
24	343.4	498.3	54	306.1	505.5	84	303.2	503.6	114	307.9	500.9
26	342.2	513.3	56	302.2	502.2	86	303.1	493.3	116	306.2	508.1
28	347.7	510.0	58	299.9	502.5	88	302.9	498.2	118	306.3	495.4
30	346.6	503.6	60	304.4	492.3	90	302.4	508.9	120	305.6	494.1

Figure A16 Operating temperature vs time on stream of Pt/KL zeolite.

Table A17 Pyrolysis conditions: catalytic pyrolysis using Pt/Y

Tire = 30 g, Pt/Y = 7.5 g, N_2 flow = 30 ml/min

Pyrolysis Zone Temperature: set value = 500 °C

Catalyst Zone	Temperature:	set value =	300	°C
---------------	--------------	-------------	-----	----

Time (min)	T1	T2	Time (min)	Tl	T2	Time (min)	Tl	T2	Time (min)	T1	T2
2	29.8	29.4	32	344.3	499.1	62	316.7	499.7	92	305.4	500.9
4	39.9	44.7	34	342.3	503.0	64	319.6	504.5	94	302.0	497.2
6	62.2	78.3	36	338.8	496.3	66	319.3	492.5	96	299.3	505.1
8	81.2	107.1	38	336.5	497.1	68	317.8	504.5	98	297.2	496.9
10	106.6	148.9	40	332.4	505.8	70	312.6	503.5	100	305.9	502.5
12	139.9	201.7	42	328.3	499.3	72	310.5	496.4	102	311.2	501.7
14	180.0	260.8	44	323.8	497.2	74	306.8	507.1	104	312.0	499.4
16	227.6	329.6	46	319.3	505.0	76	303.6	501.8	106	310.0	502.0
18	290.3	411.4	48	314.5	497.1	78	297.1	506.1	108	307.2	494.4
20	328.7	440.4	50	310.1	502.6	80	295.0	492.2	110	303.9	5 06.2
22	351.9	489.0	52	305.7	499.8	82	302.5	506.3	112	299.1	501.3
24	353.4	505.8	54	300.9	501.3	84	312.5	505.0	114	296.6	503.2
26	353.6	503.7	56	299.6	502.0	86	313.3	504.2	116	295.2	492.4
28	344.3	493.6	58	306.6	496.6	88	312.4	492.7	118	306.6	501.9
30	344.3	502.3	60	310.5	495.8	90	309.6	506.5	120	313.0	501.1

Figure A17 Operating temperature vs time on stream of Pt/Y.

Table A18 Pyrolysis conditions: catalytic pyrolysis using Pt/Y and Pt/KL (Pt/Y + Pt/KL at $Ø_{Pt/KL} = 0.25$)

Tire = 30 g, Pt/KL = 1.875 g, Pt/Y = 5.625 g, N₂ flow = 30 ml/min

Pyrolysis Zone Temperature: set value = 500 °C

Time (min)	T1	T2	Time (min)	TI	T2	Time (min)	T1	T2	Time (min)	T1	T2
2	28.6	25.9	32	335.7	499.0	62	306.5	504.9	92	-314.4	491.5
4	52.3	57.8	34	333.7	504.2	64	301.4	503.0	94	311.1	497.7
6	54.3	60.8	36	330.5	491.5	66	298.2	500.2	96	307.7	496.6
8	77.2	94.3	38	324.5	494.2	68	295.6	490.1	98	303.3	502.6
10	108.2	140.3	40	317.3	496.3	70	310.3	505.6	100	297.3	498.5
12	141.3	189.3	42	314.6	506.3	72	314.8	499.4	102	297.6	506.3
14	190.2	265.8	44	309.5	493.5	74	315.4	505.0	104	306.0	504.0
16	227.8	323.8	46	305.6	495.1	76	315.5	491.0	106	313.3	495.4
18	273.0	402.7	48	301.2	500.2	78	312.1	502.5	108	312.4	498.7
20	327.7	447.6	50	296.4	508.4	80	307.6	503.7	110	310.0	500.0
22	335.6	492.2	52	305.6	503.0	82	303.9	497.3	112	305.6	496.2
24	323.0	505.2	54	315.8	496.1	84	300.0	497.6	114	301.7	504.4
26	336.5	501.2	56	318.2	502.2	86	303.6	509.1	116	. 297.7	492.7
28	335.8	490.3	58	316.6	503.4	88	312.2	499.6	118	305.6	511.2
30	333.9	505.6	60	313.2	493.1	90	313.3	505.6	120	310.6	506.4

Figure A18 Operating temperature vs time on stream of Pt/Y + Pt/KL at $\emptyset_{Pt/KL} = 0.25$.

Table A19 Pyrolysis conditions: catalytic pyrolysis using Pt/Y and Pt/KL (Pt/Y + Pt/KL at $\emptyset_{Pt/KL} = 0.5$)

Tire = 30 g, Pt/KL = 3.75 g, Pt/Y = 3.75 g, N_2 flow = 30 ml/min

Pyrolysis Zone Temperature: set value = 500 °C

Time (min)	T1	T2	Time (min)	T1	Т2	Time (min)	Tl	T2	Time (min)	Tl	T2
2	82.8	105.3	32	318.1	498.8	62	309.5	499.4	92	302.7	505.6
4	105.3	134.3	34	315.4	505.0	64	310.8	493.9	. 94	305.1	503.2
6	129.8	169.3	36	310.6	501.6	66	309.0	502.2	96	303.0	494.6
8	165.7	222.8	38	306.2	493.4	68	306.5	497.3 .	98	299.2	505.1
10	199.2	272.6	40	300.5	499.6	70	302.7	502.8	100	301.4	502.0
12	273.7	395.8	42	303.7	503.9	72	298.6	493.0	102	308.4	505.0
14	318.0	433.6	44	306.9	499.7	74	300.1	509.6	104	310.1	498.6
16	330.8	478.6	46	310.9	505.4	76	307.7	500.8 [.]	106	311.6	504.6
18	335.2	497.9	48	311.4	499.4	78	308.1	501.5	108	312.8	499.0
20	337.7	505.4	50	308.5	500.9	80	308.6	505.4	· 110	310.0	499.7
22	336.0	503.6	52	305.9	497.0	82	309.2	495.5	112	307.0	494.9
24	331.1	493.1	54	302.2	503.1	84	308.0	499.3	114	303.1	502.7
26	329.4	497.4	56	298.2	491.7	86	305.4	500.5.	116	298.0	503.7
28	326.6	500.6	58	299.0	508.8	88	301.3	500.7	118	298.7	500.3
30	323.2	505.4	60	308.7	505.0	90	296.3	490.0	120	308.9	497.7

Figure A19 Operating temperature vs time on stream of Pt/Y + Pt/KL at $Ø_{Pt/KL} = 0.5$.

Table A20 Pyrolysis conditions: catalytic pyrolysis using Pt/Y and Pt/KL (Pt/Y + Pt/KL at $Ø_{Pt/KL} = 0.75$)

Tire = 30 g, Pt/KL = 5.625 g, Pt/Y = 1.875 g, N₂ flow = 30 ml/min

Pyrolysis Zone Temperature: set value = 500 °C

Time (min)	T1	T2	Time (min)	TI	T2	Time (min)	T1	T2	Time (min)	T1	T2
2	29.3	32.4	32	330.6	491.3	62	320.3	493.2	92	309.3	507.5
4	32.2	60.5	34	375.7	494.5	64	310.9	504.2	94	308.0	490.3
6	36.3	88.3	36	362.4	506.0	66	310.2	500.5	96	304.1	504.7
8	41.9	123.6	38	360.0	496.7	68	303.1	505.4	98	301.2	498.9
10	56.0	170.8	40	351.1	495.4	70	299.8	495.3	100	298.6	501.5
12	73.9	229.8	42	349.2	501.8	72	297.7	494.5	102	300.4	495.5
14	98.6	299.0	44	348.7	505.4	74	308.3	509.3	104	307.7	507.0
16	117.8	348.7	46	349.0	497.4	76	310.6	497.5	106	308.3	500.7
18	154.0	435.2	48	345.3	500.4	78	310.8	503.5	108	309.1	508.5
20	180.4	453.5	50	340.2	497.6	80	307.5	502.6	110	310.3	503.2
22	204.9	510.5	52	335.6	502.4	82	305.1	500.5	112	311.4	494.2
24	252.9	503.3	54	331.2	499.6	84	301.7	506.5	114	311.7	506.6
26	271.3	501.4	56	326.4	496.3	86	295.4	492.8	116	312.4	497.9
28	349.1	505.9	58	322.4	506.8	88	298.1	505.3	118	311.5	504.2
30	330.1	501.4	60	321.4	503.6	90	307.9	497.2	120	309.6	492.5

Figure A20 Operating temperature vs time on stream of Pt/Y + Pt/KL at $Ø_{Pt/KL} = 0.75$.

Table A21 Pyrolysis conditions: catalytic pyrolysis using Pt/Y and Pt/KL $(Pt/Y ---> Pt/KL at Ø_{Pt/KL} = 0.25)$

Tire = 30 g, Pt/KL = 1.875, Pt/Y = 5.625, N₂ flow = 30 ml/min

Pyrolysis Zone Temperature: set value = 500 °C

Time (min)	Tl	T2	Time (min)	TI	T2	Time (min)	Tl	T2	Time (min)	T1	T2
2	27.8	27.3	32	334.5	502.0	62	325.5	499.8	92	303.3	503.2
4	35.6	42.2	34	344.4	499.3	64	322.2	499.7	94	300.5	497.8
6	50.8	70.8	36	352.2	494.8	66	317.0	499.2	96	298.6	506.7
8	78.6	119.8	38	354.4	504.2	68	314.2	499.1	98	306.8	497.3
10	99.3	149.9	40	350.8	501.9	70	310.2	499.9	100	309.4	505.6
12	137.2	227.7	42	353.9	504.6	72	305.2	499.2	102	311.5	500.5
14	159.2	263.8	44	353.3	498.6	74	300.7	495.3	104	311.5	504.2
16	195.3	327.4	46	352.4	506.0	• 76	299.0	505.4	106	310.0	499.2
18	241.1	416.0	48	347.5	498.7	. 78	299.5	498.9	108	307.4	502.5
20	307.3	457.2	50	347.1	505.8	80	307.3	502.1	110	304.4	504.5
22	330.1	492.3	52	346.3	496.4	82	312.2	495.8	112	301.2	499.9
24	261.2	513.2	54	342.5	503.6	84	313.3	503.1	114	298.4	505.0
26	277.8	507.9	56	334.4	500.1	-86	311.5	501.9	116	298.3	495.7
28	308.1	502.3	58	334.3	501.9	88	309.5	502.1	118	308.3	507.8
30	324.1	500.2	60	329.1	500.4	90	304.5	505.6	120	311.5	503.4

Figure A21 Operating temperature vs time on stream of Pt/Y ---> Pt/KL at $Ø_{Pt/KL} = 0.25$.

Table A22 Pyrolysis conditions: catalytic pyrolysis using Pt/Y and Pt/KL (Pt/Y ---> Pt/KL at $Ø_{Pt/KL} = 0.5$)

Tire = 30 g, Pt/KL = 3.75, Pt/Y = 3.75, N₂ flow = 30 ml/min

Pyrolysis Zone Temperature: set value = 500 °C

Time (min)	T1	T2	Time (min)	TI	T2	Time (min)	T1	T2	Time (min)	Tl	T2
2	35.7	37.4	32	341.2	-505.2	62	307.9	497.0	92	309.5	501.4
4	48.0	56.3	34	336.6	498.1	64	304.8	502.1	94	311.8	500.2
6	68.9	88.8	36	330.2	494.4	66	301.5	494.7	96	312.1	497.7
8	97.1	131.2	38	323.4	504.3	68	297.9	502.6	98	309.3	508.5
10	137.8	198.7	40	320.4	501.7	70	300.9	498.8	100	305.5	497.2
12	165.1	242.3	42	318.7	500.7	72	308.7	508.1	102	302.7	504.9
14	201.9	301.0	44	312.5	496.1	74	312.6	501.1	104	299.4	494.0
16	248.2	371.8	46	308.6	· 494.6	76	315.6	499.8	106	297.0	493.7
18	305.4	437.3	48	302.7	. 502.0	78	313.7	492.3	108	308.4	507.8
20	347.2	474.1	50	299.4	500.1	80	311.3	499.3	110	312.5	500.0
22	347.1	506.0	52	298.8	507.6	82	307.6	496.2	112	315.4	495.9
24	345.3	498.7	54	308.7	501.8	84	303.7	502.1	114	313.3	501.4
26	347.0	503.7	56	311.5	.490.3	86	299.4	496.1	116	312.8	497.2
28	348.2	491.8	58	311.4	504.9	88	297.3	509.8	118	309.1	508.6
30	344.5	495.0	60	310.8	495.5	90	303.4	507.8	120	305.8	494.7

Figure A22 Operating temperature vs time on stream of Pt/Y ---> Pt/KL at $Ø_{Pt/KL} = 0.5$.

Table A23 Pyrolysis conditions: catalytic pyrolysis using Pt/Y and Pt/KL (Pt/Y ---> Pt/KL at $Ø_{Pt/KL} = 0.75$)

Tire = 30 g, Pt/KL = 5.625, Pt/Y = 1.875, N₂ flow = 30 ml/min

Pyrolysis Zone Temperature: set value = 500 °C

Time (min)	Tl	Т2	Time (min)	TI	T2	Time (min)	T1	T2	Time (min)	TI	T2
2	29.6	38.5	32	• 344.6	492.0	62	316.1	497.2	92	308.2	498.3
4	46.0	72.6	34	342.2	503.9	64	317.2	492.9	94	304.2	506.4
6	64.0	105.8	36	336.4	500.0	66	314.7	506.0	96	300.0	499.3
8	91.8	150.5	38	331.5	499.1	68	311.9	496.9	98	296.5	506.2
10	119.2	198.7	40	327.6	501.4	70	309.4	504.8	100	309.8	500.7
12	146.3	251.7	42	.324.3	502.2	72	305.2	495.1	102	313.9	503.4
14	179.6	316.8	44	320.5	501.3	74	301.1	508.6	104	315.9	493.9
16	240.0	430.5	46 ·	· 316.1	506.2	76	295.5	506.0	106	314.1	506.3
18	279.4	454.5	48	. 310.0	495.9	78	306.7	499.1	108	312.5	500.0
20	337.1	490.3	50	·306.9	505.8	80	311.9	496.3	110	308.5	505.3
22	340.5	504.4	52	301.7	500.4	82	315.4	508.2	112	299.2	506.5
24	342.1	502.3	54	. 299.2	505.7	84	318.7	497.7	114	296.1	503.4
26	344.7	499.6	56	302.5	497.7	86	317.0	502.7	116	299.1	499.2
28	343.1	497.7	58	310.2	506.3	88	314.6	493.4	118	307.0	507.1
30	345.5	478.3	60	313.5	501.4	90	312.0	502.1	120	312.7	500.9

Figure A23 Operating temperature vs time on stream of Pt/Y ---> Pt/KL at $Ø_{Pt/KL} = 0.75$.

Table A24 Pyrolysis conditions: catalytic pyrolysis using Pt/Y and Pt/KL $(Pt/KL ---> Pt/Y at Ø_{Pt/KL} = 0.25)$

Tire = 30 g, Pt/KL = 1.875, Pt/Y = 5.625, N₂ flow = 30 ml/min

Pyrolysis Zone Temperature: set value = 500 °C

Time (min)	Tl	T2	Time (min)	TI	T2	Time (min)	T 1	T2	Time (min)	TI	T2
2	31.3	33.1	32	342.5	503.8	62	314.8	499.1	92	307.9	507.1
4	43.2	54.4	34	339.3	502.2	64	311.6	505.9	94	306.4	496.7
6	61.5	85.9	36	338.6	505.5	66	308.5	497.3	96	304.1	505.1
8	88.1	129.0	38	337.3	488.5	68	305.9	502.4	98	302.2	499.7
10	117.7	175.0	40	335.1	505.8	70	301.4	504.8	100	300.0	505.9
12	154.7	235.4	42	334.1	506.5	72	300.9	504.3	102	296.5	495.5
14	198.7	309.5	44	332.5	497.4	74	298.4	500.8	104	298.9	505.7
16	256.0	402.6·	46	329.9	497.5	76	301.5	503.2	106	308.9	497.8
18	311.0	446.5	48	329.0	495.5	78	308.1	493.6	108	312.8	507.7
20	340.2	447.1 ·	50	327.0	503.3	80	318.8	505.6	110	315.0	497.7
22	345.5	508.8	52	325.1	505.1	82	315.7	504.1	112	316.9	500.7
24	348.2	502.7 .	54	323.5	496.5	84	311.8	502.7	114	316.9	504.1
26	349.1	495.6	56	320.5	505.4	86	312.0	497.3	116	315.9	502.0
28	350.1	504.6	58	319.0	499.2	88	311.1	506.4	118	314.5	500.0
30	347.5	499.3	60	317.1	505.7	90	309.8	499.1	120	312.8	493.8

Figure A24 Operating temperature vs time on stream of Pt/KL ---> Pt/Y at $Ø_{Pt/KL} = 0.25$.

Table A25 Pyrolysis conditions: catalytic pyrolysis using Pt/Y and Pt/KL (Pt/KL ---> Pt/Y at $Ø_{Pt/KL} = 0.5$)

Tire = 30 g, Pt/KL = 3.75, Pt/Y = 3.75, N_2 flow = 30 ml/min

Pyrolysis Zone Temperature: set value = 500 °C

Time (min)	T 1	T2	Time (min)	TI	T2	Time (min)	TI	T2	Time (min)	T1	T2
2	28.6	29.5	32	341.4	506.9	62	313.8	502.4	92	307.3	497.0
4	36.5	45.2	34	340.1	504.7	64	312.6	497.9	94	305.6	506.8
6	49.8	70.1	36	337.7	499.3	66	310.3	501.3	96	304.3	497.2
8	70.5	120.0	38	336.6	506.5	68	309.3	508.6	98	300.2	497.5
10	105.0	169.2	40	336.5	501.9	70	305.0	504.4	100	299.8	504.9
12	128.5	207.9	42	334.0	506.8	72	301.5	496.3	102	302.8	495.1
14	179.2	285.3	44	333.4	498.6	74	297.7	504.6	104	307.8	508.3
16	203.6	333.4	46	332.0	507.3	76	302.4	497.8	106	309.8	501.9
18	248.1	413.0	48	330.2	493.2	78	311.2	505.4	108	310.9	505.7
20	323.2	463.9	50	328.2	500.6	80	312.3	494.3	110	311.4	502.7
22	340.2	493.7	52	326.1	504.5	82	314.8	498.4	112	312.6	492.3
24	345.7	507.3	54	324.8	504.6	84	314.9	506.3	114	312.7	506.5
26	344.5	502.6	56	322.8	503.0	86	314.7	504.1	116	311.6	498.9
28	345.6	490.3	58	319.8	497.0	88	312.4	497.1	118	310.2	502.2
30	343.2	503.2	60	318.6	505.4	90	309.7	504.5	120	308.8	496.8

Figure A25 Operating temperature vs time on stream of Pt/KL ---> Pt/Y at $Ø_{Pt/KL} = 0.5$.

Table A26 Pyrolysis conditions: catalytic pyrolysis using Pt/Y and Pt/KL $(Pt/KL \dots > Pt/Y \text{ at } \emptyset_{Pt/KL} = 0.75)$

Tire = 30 g, Pt/KL = 5.625, Pt/Y = 1.875, N₂ flow = 30 ml/min

Pyrolysis Zone Temperature: set value = 500 °C

Time (min)	TI	T2	Time (min)	T1	Т2	Time (min)	T1	Т2	Time (min)	TI	Т2
· ·2	35.8	40.1	32	334.1	492.0	62	317.7	503.5	92	302.5	504.9
4	43.1	52.9	34	328.3	501.5	64	314.8	503.7	94	297.7	501.5
6	57.0	78.7	36	324.7	499.0	66	312.4	497.8	96	304.9	503.9
8	80.7	116.2	38	321.0	495.2	68	309.5	504.2	98	309.2	502.2
-10	117.1	170.3	40	315.6	505.5	70	305.6	500.2	100	313.5	499.2
.12	140.2	203.2	42	312.6	502.9	72	302.3	499.6	102	313.7	494.1
14	169.5	257.3	44	308.3	503.8	74	298.5	510.1	104	312.0	505.5
· 16	218.4	312.9	46	309.3	496.5	76	299.0	505.9	106	308.3	505.9
. 18	281.7	399.2	48	306.4	500.3	78	310.5	498.1	108	305.2	500.7
20	328.7	448.9	50	303.1	500.1	80	316.2	494.8	110	301.5	492.4
22	332.2	495.4	52	298.0	499.3	82	317.4	504.0	112	297.3	504.2
24	332.6	503.7	54	300.9	508.7	84	316.0	498.2	114	299.9	503.6
. 26	336.6	502.1	56	313.2	500.8	86	313.1	496.2	116	309.2	498.5
28	336.6	499.8	58	314.3	497.8	88	309.7	505.3	118	313.2	503.4
30	337.8	487.2	60	317.8	498.3	90	305.7	497.0	120	312.7	496.5

Figure A26 Operating temperature vs time on stream of Pt/KL ---> Pt/Y at $Ø_{Pt/KL} = 0.75$.

B. Yields of Pyrolysis Products

Sheer Street

2

	Non-Catalyst	Y	KL	Pt/Y	Pt/KL
Gas	22.47	25.25	25.19	29.01	24.63
Liquid	34.38	26.95	29.26	23.45	28.33
Solid	44.92	46.40	45.55	47.29	47.04

 Table B1 Effects of KL, Y and platinum-supported catalysts

 Table B2
 Effects of physical mixtures and platinum-supported catalysts

		Y + KL		Pt/Y + Pt/KL			
		$Ø_{\rm KL} = 0.5$	$\Theta_{\rm KL} = 0.75$	$Ø_{Pt/KL} = 0.25$	$Ø_{Pl/KL} = 0.5$	$\Theta_{\text{Pt/KL}} = 0.75$	
Gas	34.20	35.03	35.40	28.40	30.04	22.58	
Liquid	20.15	19.72	19.10	27.74	26.05	32.99	
Solid	45.65	44.89	45.51	43.86	43.91	44.43	

 Table B3 Effects of packing sequence (Y ---> KL) and platinum-supported catalysts

		Y> KL		Pt/Y> Pt/KL			
	$Ø_{\rm KL} = 0.25$	$Ø_{KL} = 0.5$	$\Theta_{\mathrm{KL}} = 0.75$	$\Theta_{Pt/KL} = 0.25$	$\Theta_{Pt/KL} = 0.5$	$\Theta_{Pl/KL} = 0.75$	
Gas	29.36	32.57	32.10	24.24	27.36	29.56	
Liquid	26.60	19.01	22.82	33.30	28.66	26.76	
Solid	44.03	48.42	45.04	42.46	43.98	43.69	

Table B4 Effects of packing sequence (KL ---> Y) and platinum-supported catalysts

		KL> Y		Pt/KL>Pt/ Y			
	$\Theta_{\rm KL} = 0.25$	$Ø_{\rm KL} = 0.5$	$Ø_{\rm KL} = 0.75$	$\Theta_{Pt/KL} = 0.25$	$\Theta_{Pt/KL} = 0.5$	$\Theta_{Pt/KL} = 0.75$	
Gas	30.00	32.00	32.30	29.82	30.42	27.41	
Liquid	23.64	23.18	21.19	27.29	26.53	24.68	
Solid	46.36	44.82	46.51	42.89	43.05	47.92	

Component	Non-Catalst	Y	KL	Pt/Y	Pt/KL
Methane	4.985	5.375	5.197	6.194	4.904
Ethylene	2.381	2.390	2.451	2.691	2.416
Ethane	3.667	4.479	4.592	4.847	4.267
Propylene	2.685	3.083	2.994	3.397	2.983
Propane	1.624	2.286	2.318	2.547	2.202
C4	4.572	5.160	5.400	6.225	5.540
C5	2.411	2.386	2.191	2.997	2.219
C6	0.126	0.062	0.031	0.077	0.069
C7	0.005	0.028	0.014	0.021	0.014
C8	0.014	0.001	0.002	0.013	0.017
Total	22.47	25.25	25.19	29.01	24.63

 Table C1 Influences of various zeolites

C. Pyrolysis Gas Composition, g/100 g Tires

Figure C1 Pyrolytic gas composition obtained from using various zeolites.
Comment		Y + KL		Pt/Y + Pt/KL		
Component	$Ø_{\rm KL} = 0.25$	$Ø_{\rm KL} = 0.5$	$Ø_{\rm KL} = 0.75$	$Ø_{Pt/KL} = 0.25$	$Ø_{Pt/KL} = 0.5$	$Ø_{\rm Pt/KL} = 0.75$
Methane	6.814	6.771	8.290	6.096	6.647	4.660
Ethylene	3.463	3.169	3.534	2.618	2.713	2.151
Ethane	6.309	5.904	6.524	4.954	5.303	3.913
Propylene	4.480	3.970	4.132	3.400	3.553	2.691
Propane	3.326	3.003	3.042	2.584	2.780	2.040
C4	7.440	6.754	5.934	6.248	6.596	4.934
C5	2.228	5.412	3.898	2.350	2.279	2.114
C6	0.114	0.046	0.045	0.116	0.151	0.061
C 7	0.026	0.001	0.000	0.028	0.014	0.007
C8	0.000	0.001	0.002	0.005	0.003	0.010
Total	34.20	35.03	35.40	28.40	30.04	22.58

Table C2 Influences of physical mixtures (Y + KL) and corresponding platinumsupported beds (Pt/Y + Pt/KL)

Composed	Y> KL			Pt/Y> Pt/KL		
Component	$Ø_{\rm KL} = 0.25$	$Ø_{\rm KL} = 0.5$	$Ø_{\rm KL} = 0.75$	$Ø_{Pt/KL} = 0.25$	$Ø_{\text{Pt/KL}} = 0.5$	$Ø_{\rm PV/KL} = 0.75$
Methane	6.445	8.006	7.514	4.467	6.018	6.122
Ethylene	2.664	2.402	3.160	2.100	2.512	3.278
Ethane	5.032	6.003	5.754	4.286 4.782		5.091
Propylene	3.632	4.058	3.849	2.977 3.267		3.412
Propane	2.633	2.901	2.791	2.352	2.442	2.607
C4	6.541	6.720	6.843	5.801	5.963	6.561
C5	2.229	2.375	2.093	2.178	2.230	2.339
C6	0.156	0.084	0.066	0.064	0.124	0.117
C7	0.026	0.021	0.028	0.009	0.019	0.030
C8	0.002	0.001	0.001	0.004	0.003	0.003
Total	29.36	32.57	32.10	24.24	27.36	29.56

Table C3 Influences of packing sequence (Y ---> KL) and corresponding platinumsupported beds (Pt/Y ---> Pt/KL)

Figure C3 Pyrolysis gas composition obtained from packing sequence (Y ---> KL) and corresponding platinum-supported beds at various weight fractions of KL (\emptyset_{KL}).

Commonant		KL> Y			Pt/KL> Pt/Y		
Component	$Ø_{\rm KL} = 0.25$	Ø _{KL} = 0.5	$Ø_{\rm KL} = 0.75$	$Ø_{\rm PV/KL} = 0.25$	$Ø_{\rm Pt/KL} = 0.5$	$Ø_{PVKL} = 0.75$	
Methane	6.982	7.362	7.298	6.116	6.021	6.741	
Ethylene	2.687	3.152	3.128	2.759	2.867	2.555	
Ethane	5.134	5.816	5.848	5.259 5.376		4.833	
Propylene	3.575	3.806 3.885 3.		3.506	3.682	3.231	
Propane	2.667	2.897	2.848	2.785	2.881	2.333	
C4	6.526	6.810	6.976	6.753	6.975	5.708	
C5	2.310	2.036	2.138	8 2.471 2.41		1.881	
C6	0.095	0.090	0.137	0.137	0.117	0.108	
C7	0.022	0.029	0.040	0.027	0.018	0.017	
C8	0.004	0.002	0.004	0.005	0.002	0.002	
Total	30.00	32.00	32.30	29.82	30.42	27.41	

Table C4 Influences of packing sequence (KL ---> Y) and corresponding platinumsupported beds (Pt/KL ---> Pt/Y)

Figure C4 Pyrolysis gas composition obtained from packing sequence (Y ---> KL) and corresponding platinum-supported beds at various weight fractions of KL (\emptyset_{KL}).

D. True Boiling Point Distillation (°C)

0/0	Boiling Point							
OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics		
0	17.1	31.4	23.5	348.2	75.7	15.9		
5	183.6	190.8	289.2	366.0	240.0	193.8		
10	192.3	202.8	309.7	373.4	308.8	194.3		
15	202.5	210.6	322.7	380.5	319.1	196.9		
20	210.2	216.9	331.4	385.9	335.2	209.4		
25	216.8	223.0	340.2	390.5	366.7	224.0		
30	223.4	229.7	346.2	395.3	367.8	238.2		
35	230.7	235.9	352.5	399.7	368.8	257.1		
40	238.2	243.9	358.1	403.3	369.9	272.1		
45	247.1	251.5	363.5	406.6	371.0	284.7		
50	255.1	259.0	368.5	410.3	372.1	297.2		
55	264.5	267.2	373.9	414.2	373.2	309.0		
60	273	274.2	379.2	418.4	374.5	321.9		
65	283.1	282.9	384.9	422.9	375.8	337.6		
70	294.1	292.4	391.1	427.8	377.3	352.3		
75	308.0	304.2	397.8	433.1	379.0	370.4		
80	324.2	318.5	405.4	439.1	381.1	382.5		
85	344.8	335.9	414.6	446.3	384.3	383.6		
90	370.8	360.8	427.0	455.9	402.5	385.4		
95	391.0	392.7	446.4	470.0	433.3	400.4		
100	439.7	439.5	494.5	498.9	495.8	428.6		

 Table D1
 Non-catalytic case

Figure D1 True boiling point distillation (°C) of non-catalytic case.

 Table D2
 Non-catalytic case

0/0	Boiling Point								
OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics			
0	27.5	39.0	23.5	22.2	23.9	22.7			
5	162.3	184.2	163.8	27.1	73.3	39.2			
10	173.8	192.5	208.2	35.0	74.2	177.1			
15	189.8	203.4	231.7	76.4	75.4	190.6			
20	199.2	210.7	252.1	184.7	158.8	197.6			
25	208.0	216.8	269.9	199.8	172.8	203.8			
30	214.3	223.6	283.3	212.4	192.3	211.9			
35	222.4	230.6	291.8	226.7	213.9	222.6			
40	230.5	237.5	301.3	241.9	250.3	234.8			
45	238.6	246.5	307.6	263.3	272.8	247.7			
50	249.3	255.0	314.5	291.0	296.0	261.0			
55	259.7	264.9	321.1	323.9	313.1	274.1			
60	271.0	273.8	327.7	342.6	334.5	287.3			
65	282.2	283.8	334.1	354.7	344.0	300.0			
70	294.7	295.2	341.8	365.3	373.7	313.8			
75	310.5	309.3	349.8	376.7	383.6	329.3			
80	327.8	325.7	359.1	389.4	384.3	347.0			
85	347.9	345.8	370.4	404.7	385.2	367.5			
90	372.1	370.2	385.7	423.3	388.0	390.8			
95	400.7	401.1	410.3	451.0	415.2	424.0			
100	464.9	459.8	480.0	499.9	487.3	498.4			

Figure D2 True boiling point distillation (°C) of non-catalytic case

Table D3 KL Zeolite

0

0/	Boiling Point							
OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics		
0	36.9	75.7	23.3	21.8	23.3	22.5		
5	154.1	170.3	208.8	23.3	74.0	36.3		
10	158.1	182.4	253.7	25.2	194.8	75.1		
15	169.5	189.9	274.9	27.8	254.6	173.0		
20	172.5	197.4	286.9	30.7	282.9	193.5		
25	184.8	203.2	292.2	33.7	320.0	197.4		
30	191.3	209.4	300.0	37.1	363.0	202.8		
35	201.0	213.6	304.2	73.8	381.3	212.8		
40	207.2	219.5	307.6	234.0	381.6	227.0		
45	212.9	224.8	312.0	276.2	381.8	241.7		
50	· 219.5	230.6	316.5	308.8	382.1	257.4		
55	226.3	236.3	321.1	333.8	382.4	271.2		
60	233.4	244.0	326.0	348.3	382.7	286.4		
65	242.6	251.8	330.4	358.5	383.0	300.3		
70	252.6	260.3	336.1	368.2	383.4	315.6		
75	264.6	270.1	343.0	378.5	383.8	332.0		
80	278.0	280.9	350.5	390.0	384.4	351.0		
85	296.5	295.1	360.0	403.0	385.1	373.4		
90	323.5	316.3	373.2	418.8	386.1	394.4		
95	368.9	350.7	396.5	441.5	393.3	425.8		
100	437.0	434.1	471.6	484.7	476.7	497.1		

Figure D3 True boiling point distillation (°C) of KL zeolite.

 Table D4
 KL zeolite

0/0	Boiling Point							
OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics		
0	30.1	34.1	29.0	22.5	23.7	23.1		
5	157.0	172.1	180.7	29.9	75.5	40.9		
10	169.9	185.7	199.5	74.6	199.0	173.7		
15	178.2	192.8	219.8	196.7	234.6	190.3		
20	188.9	202.2	246.1	215.7	258.3	195.4		
25	197.3	207.8	268.4	229.2	283.6	198.4		
30	204.2	212.8	275.4	242.6	312.3	205.0		
35	211.0	218.2	286.3	256.5	325.3	213.0		
40	216.4	222.9	293.3	268.4	341.7	224.8		
45	222.1	228.6	301.8	285.9	381.2	235.8		
50	228.4	233.8	308.1	303.6	381.8	248.0		
55	234.4	239.9	315.5	322.4	382.1	260.4		
60	241.8	247.0	321.8	339.6	382.4	273.1		
65	250.2	254.2	328.3	352.0	382.8	286.7		
70	259.1	262.4	334.9	361.0	383.2	300.2		
75	269.9	271.4	342.5	370.1	383.7	315.5		
80	281.7	281.8	351.4	380,1	384.2	333.4		
85	297.9	295.3	361.7	390.4	384.9	355.2		
90	322.4	315.7	373.7	406.4	385.9	384.3		
95	362.8	349.3	393.1	432.0	391.9	413.6		
100	435.0	433.0	458.5	495.3	474.1	494.1		

Figure D4 True boiling point distillation (°C) of KL zeolite.

Table D5 Y zeolite

11

0/	Boiling Point							
OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics		
0	24.8	25.0	23.1	22.2	22.7	20.8		
5	172.5	180.5	191.1	23.3	35.8	32.4		
10	186.7	191.3	239.2	25.2	197.9	159.8		
15	193.9	200.4	262.2	27.3	218.2	168.8		
20	203.3	205.6	273.2	30.1	235.4	177.0		
25	208.4	211.9	282.6	32.9	255.2	196.1		
30	213.9	216.1	288.4	35.6	268.5	207.3		
35	219.7	221.4	294.6	38.6	287.6	226.1		
40	224.9	227.0	301.7	74.6	306.1	245.5		
45	231.6	232.4	306.6	256.4	311.9	266.6		
50	237.1	237.7	312.5	283.2	312.7	287.5		
55	245.3	245.2	317.9	312.8	315.6	308.7		
60	253.5	252.4	323.3	338.7	333.1	330.5		
65	262.6	260.2	328.7	355.0	336.7	358.9		
70	272.4	269.1	334.3	366.7	337.9	383.2		
75	283.3	278.1	340.9	377.5	345.3	383.8		
80	296.7	289.4	348.3	389.4	366.0	384.4		
85	314.8	304.3	357.9	403.4	385.2	385.0		
90	339.3	326.5	370.3	419.8	388.8	386.1		
95	380.9	362.3	391.7	445.7	418.1	396.3		
100	545.9	450.0	481.5	501.8	500.6	479.8		

Figure D5 True boiling point distillation (°C) of Y zeolite.

Table D6 Y zeolite

0/	Boiling Point							
OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics		
0	71.8	26.1	22.9	22.2	35.2	22.2		
5	156.1	169.6	39.9	25.2	67.7	28.6		
10	168.9	180.0	182.7	30.1	68.7	38.6		
15	172.0	186.7	211.5	35.8	69.3	74.4		
20	182.8	192.9	231.0	74.1	69.7	75.6		
25	188.2	201.7	248.6	78.5	70.0	190.5		
30	194.5	205.8	266.4	173.9	70.4	227.7		
35	201.8	211.9	281.7	225.3	70.8	250.6		
40	207.3	216.9	293.4	258.6	71.2	269.3		
45	213.3	222.1	304.4	280.0	71.6	284.5		
50	219.9	228.6	313.2	294.9	71.9	296.3		
55	227.5	235.0	321.1	308.7	72.6	308.3		
60	235.6	243.1	328.3	321.3	73.7	320.4		
65	247.2	252.7	335.1	332.3	75.3	332.8		
70	260.3	263.3	341.9	343.5	78.0	347.1		
75	274.7	274.4	349.2	355.1	156.4	363.7		
80	291.8	287.2	357.4	367.0	181.0	383.2		
85	314.1	304.0	367.1	380.9	256.3	386.9		
90	343.5	326.8	380.3	399.0	341.9	398.1		
95	384.0	360.8	403.7	427.2	383.5	427.3		
100	452.3	437.4	477.5	485.0	423.0	492.0		

Figure D6 True boiling point distillation (°C) of Y zeolite.

0/2	Boiling Point								
OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics			
0	75.2	74.8	26.5	22.7	23.7	22.7			
5	153.0	163.1	192.7	35.6	73.8	35.4			
10	156.8	170.9	236.9	80.7	163.6	172.4			
15	167.3	180.7	274.8	167.9	198.9	193.0			
20	170.3	186.5	292.8	172.5	230.2	197.4			
25	175.9	192.6	304.7	182.2	261.2	202.0			
30	184.1	201.1	312.5	188.0	296.6	211.0			
35	190.8	206.8	320.3	194.4	314.1	220.9			
40	199.6	212.8	326.4	202.6	337.5	232.8			
45	206.1	219.1	332.1	209.5	358.2	245.3			
50	213.2	226.4	338.3	219.8	382.1	258.5			
55	220.8	234.0	343.7	232.9	382.4	271.8			
60	230.2	243.9	349.3	256.9	382.8	285.2			
65	240.9	254.5	355.0	295.1	383.1	296.9			
70	254.9	267.1	361.3	330.8	383.5	310.1			
75	271.4	279.2	367.7	352.7	383.9	323.8			
80	288.8	293.6	375.4	364.8	384.5	340.8			
85	311.7	312.1	384.7	377.2	385.1	361.7			
90	339.7	335.5	397.3	392.3	386.2	387.4			
95	380.2	369.8	416.8	418.7	394.0	420.9			
100	442.7	441.5	475.7	485.7	474.3	493.9			

Table D7 Physical mixture (Y + KL) at $Ø_{KL} = 0.25$

Figure D7 True boiling point distillation (°C) of physical mixture (Y + KL) at $Ø_{KL} = 0.25$

0/2	Boiling Point								
OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics			
0	28.6	71.6	25.8	23.9	22.7	22.2			
5	154.4	158.8	157.7	75.6	70.6	127.2			
10	160.2	170.7	180.0	157.1	71.1	172.1			
15	169.8	181.2	195.4	168.6	71.7	188.4			
20	173.6	187.9	215.4	171.3	72.9	194.4			
25	184.3	195.6	247.7	175.3	156.8	195.9			
30	191.1	202.5	270.1	184.7	173.9	200.4			
35	200.5	209.7	282.6	188.8	196.7	207.9 ·			
40	206.8	215.5	290.4	194.3	222.5	215.4			
45	213.9	221.8	297.7	202.8	258.8	227.5			
50	221.5	229.7	304.4	208.6	294.9	239.7			
55	230.6	237.5	310.7	218.4	313.5	254.6.			
60	240.6	248.0	317.2	231.4	336.9	268.9			
65	253.6	258.7	324.3	259.4	350.3	284.0 .			
70	267.7	270.1	331.2	300.6	381.9	297.1			
75	281.5	281.5	339.3	313.5	383.1	311.5			
80	297.5	294.9	348.0	326,4	383.7	328.0			
85	316.8	312.0	358.5	339.7	384.4	349.1			
90	340.2	333.4	371.9	354.9	385.4	376.6			
95	375.1	364.9	393.7	378.4	392.5	407.7			
100	436.7	432.5	462.0	458.2	473.3	489.8			

Table D8 Phy	sical mixture	(Y +	KL) at	$Ø_{KL} =$	0.5
--------------	---------------	------	--------	------------	-----

Figure D8 True boiling point distillation (°C) of physical mixture (Y + KL) at $Ø_{KL} = 0.5$.

9/	1. S		Boiling	Point						
OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics				
0	39.4	74.7	26.9	22.7	25.4	21.6				
5	121.5	160.9	75.4	34.8	70.0	28.0				
10	152.9	170.8	172.5	71.0	70.4	72.1				
15	156.6	179.8	257.3	73.3	70.8	172.3				
20	166.6	185.3	273.4	74.1	71.3	188.8				
25	169.5	190.6	285.1	75.2	71.9	199.5				
30	172.0	198.8	291.2	76.9	72.7	208.0				
35	181.9	203.0	297.7	78.9	74.1	216.1				
40	187.6	209.6	303.6	81.5	77.3	226.5				
45	193.9	214.5	309.0	158.0	169.2	236.7				
50	201.9	220.5	315.2	190.1	195.5	248.0				
55	209.3	227.7	320.8	213.9	229.3 .	259.3				
60	216.8	235.0	327.8	251.5	301.3	270.2				
65	225.0	244.8	334.2	297.1	338.1	. 282.8				
70	235.7	255.3	341.7	313.7	380.2	294.5				
75	250.6	268.0	349.9	326.8	380.9	308.3				
80	268.3	280.6	359.2	340.2	381.6	. 325.3				
85	287.3	296.5	370.3	354.1	382.5	347.0				
90	314.3	318.6	384.9	370.5	383.7	376.9				
95	355.4	351.4	407.9	395.5	386.1	412.7				
100	422.0	423.9	477.2	467.6	456.2	485.6				

Table D9 Physical mixture (Y + KL) at $Ø_{KL} = 0.75$

х

Figure D9 True boiling point distillation (°C) of physical mixture (Y + KL) at $Ø_{KL} = 0.75$.

0/		The starts	Boiling	Point	Service -	in the let
OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics
0	26.7	73.7	24.8	22.9	23.7	22.0
5	142.9	167.4	75.6	55.2	71.6	27.1
10	154.5	172.1	85.9	74.1	71.9	35.6
15	160.1	183.9	206.5	75.9	72.3	74.8
20	169.5	190.6	252.9	79.8	72.7	187.2
25	172.3	199.6	275.2	156.7	73.1	200.2
30	183.9	205.7	287.9	172.5	73.5	206.5
35	191.1	212.4	294.7	187.8	- 74.1	214.5
40	201.3	218.7	303.7	202.9	.75.4	224.7
45	208.8	226.1	309.7	222.2	80.9	235.5
50	217.2	233.7	317.0	260.0	192.9	247.6
55	226.5	243.5	324.1	304.8	- 228.5	261.1
60	236.8	253.9	331.3	317.7	268.5	274.8
65	251.4	265.2	339.0	327.0	312.2	289.4
70	266.7	276.6	346.8	336.9	330.8	304.1
75	282.4	289.3	355.1	345.4	340.5	320.8
80	300.7	305.3	364.6	355.3	3.70.3	339.8
85	324.0	325.9	375.5	366.6	383.9	362.2
90	352.6	353.2	389.0	382.3	385.2	389.6
95	386.5	388.3	409.0	408.3	393.6	425.1
100	454.6	453.7	467.6	476.4	469.9	487.3

Table D10	Packing sequence	(Y?	> KL) at Ø _{KL}	= 0.25
-----------	------------------	-----	--------------------------	--------

Figure D10 True boiling point distillation (°C) of packing sequence (Y ---> KL) at $\emptyset_{KL} = 0.25$.

0/0		and a share	Boiling	Point	S marine .	Reality I.
OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics
0	27.8	77.1	37.1	23.3	23.1	22.7
5	113.6	158.9	171.3	75.4	71.9	36.9
10	151.5	169.9	189.0	185.2	74.1	180.9
15	154.9	177.7	204.3	204.4	74.8	195.1
20	163.1	184.3	224.9	224.1	77.4	198.4
25	168.9	191.1	254.4	252.2	179.9	204.2
30	171.8	200.2	271.3	288.8	210.6	213.0
35	182.2	205.9	280.2	304.0	254.8	225.2
40	190.0	212.4	288.7	311.2	290.5	239.3
45	200.3	218.7	296.4	319.8	312.5	255.6
50	208.5	225.8	303.9	326.1	315.8	272.1
55	218.0	233.8	311.3	332.1	336.7	288.2
60	228.4	243.6	318.8	338.9	339.5	303.9
65	241.2	254.3	326.9	344.7	356.5	322.9
70	257.3	266.0	334.5	351.0	376.7	347.5
75	274.2	277.7	343.6	357:5	384.1	383.1
80	292.4	291.3	354.2	365.2	384.7	384.6
85	314.8	309.5	366.3	374.7	385.5	385.3
90	342.3	333.5	380.5	387.3	387.4	386.6
95	381.7	370.1	404.0	409.3	408.6	402.2
100	442.3	444.3	465.3	473.5	478.9	479.8

Table D11 Packing sequence (Y ---> KL) at $Ø_{KL} = 0.5$

Figure D11 True boiling point distillation (°C) of packing sequence (Y ---> KL) at $Ø_{KL} = 0.5$.

0/0			Boiling	Point	a alleur	1.0.20
OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics
0	31.2	37.3	69.1	25.6	58.1	21.8
5	150.0	83.0	156.6	69.3	59.2	23.7
10	155.2	158.9	169.6	70.2	60.3	29.5
15	160.1	170.0	174.3	71.0	61.3	36.9
20	169.6	176.5	184.5	72.2	62.4	74.5
25	172.4	187.7	191.2	73.6	63.4	176.8
30	183.9	203.5	200.7	76.1	64.5	200.0
35	190.9	237.3	206.6	80.2	65.6	206.2
40	201.0	270.8	213.0	151.8	66.6	213.6
45	208.0	283.8	219.7	157.1	67.7	225.4
50	216.1	292.0	226.9	167.9	68.7	237.5
55	224.5	301.4	234.8	171.4	69.3	251.4
60	234.9	308.9	244.9	184.0	69.7	266.5
65	248.2	317.1	255.6	205.6	70.0	281.9
70	262.9	325.5	267.7	292.1	70.4	298.1
75	277.7	333.6	279.2	322.9	70.9	318.1
80	294.2	343.1	292.5	339.9	72.0	340.9
85	314.6	354.4	310.2	353.1	73.6	371.8
90	338.5	368.2	332.1	367.3	76.1	387.6
95	373.5	388.6	364.4	386.6	156.5	404.7
100	437.4	449.3	432.2	443.4	386.5	466.1

Table D12 Packing sequence (Y ---> KL) at $Ø_{KL} = 0.75$

Figure D12 True boiling point distillation (°C) of packing sequence (Y ---> KL) at $Ø_{KL} = 0.75$.

%		and a	Boiling	, Point		
OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics
0	32.0	34.1	38.4	27.8	27.5	21.6
5	152.2	78.9	181.1	227.7	72.5	28.6
10	155.6	155.3	193.0	246.2	73.3	73.0
15	161.5	167.6	210.5	255.2	74.8	172.7
20	169.9	170.7	· 212.9	265.7	206.1	199.5
25	172.6	178.2	224.5	272.9	274.3	210.3
30	184.4	184.8	229.9	279.7	288.5	225.4
35	191.4	191.2	233.9	287.3	297.4	240.9
40	201.7	200.4	. 244.7	292.3	305.7	256.2
45	209.1	205.1	250.4	299.9	313.5	269.3
50	217.5	213.0	259.5	306.6	321.4	282.7
55	226.4	219.7	. 266.3	314.5	329.1	294.6
60	236.7	226.5	275.4	322.8	337.9	308.8
65	250.9	236.5	. 283.5	331.4	345.8	316.4
70	265.9	248.7	293.0	340.8	354.0	331.9
75	281.2	262.6	304.8	351.7	362.9	341.8
80	299.1	277.8	319.8	363.9	372.9	360.8
85	321.9	297.5	337.1	376.3	384.2	385.2
90	349.8	326.5	361.3	393.5	398.5	388.9
95	385.5	370.6	394.6	417.2	420.2	422.3
100	454.3	447.4	462.0	472.9	481.6	491.6

Table D13 Packing sequence (KL ---> Y) at $Ø_{KL} = 0.25$

Figure D13 True boiling point distillation (°C) of packing sequence (KL ---> Y) at $Ø_{KL} = 0.25$.

0/0			Boiling	, Point	See .	e en la en en
OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics
0	28.0	75.1	30.7	29.0	33.1	22.0
5	156.0	170.1	76.2	83.0	66.0	74.2
10	- 168.1	168.1 181.5 16	162.6	6 231.6	67.0	159.4
15	172.5	189.1	210.5	252.6	68.1	185.8
20	185.2	196.8	215.4	264.7	69.1	196.5
25	192.8	202.7	230.7	273.6	69.4	205.9
30	203.1	209.6	237.0	283.1	69.8	215.5
35	210.6	215.4	248.2	289.8	70.2	235.3
40	217.8	220.8	255.4	296.9	70.6	249.1
45	224.6	227.7	264.7	303.6	71.0	262.6
50	233.0	234.9	272.6	310.1	71.3	276.9
55	243.0	243.2	279.9	317.6	72.2	291.0
60	253.9	253.0	287.4	325.7	73.7	306.2
65	265.9	263.2	295.3	333.5	76.7	312.8
70	277.7	273.3	304.7	341.9	243.8	326.9
75	291.1	284.5	315.9	351.3	293.6	337.0
80	307.5	298,6	328.3	362.5	312.3	351.1
85	326.6	317.4	342.6	374.9	328.6	383.3
90	350.5	340.6	362.2	391.6	347.6	385.2
95	384.2	375.0	388.9	416.4	371.7	394.3
100	453.8	451.5	459.7	474.5	447.0	480.9

Table D14 Packing sequence (KL ---> Y) at $Ø_{KL} = 0.5$

Figure D14 True boiling point distillation (°C) of packing sequence (KL ---> Y) at $Ø_{KL} = 0.5$.

9/2	0.0	and water and	Boiling	Point	- Ihariti	An an
OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics
0	36.9	37.7	30.7	56.9	66.6	23.3
5	149.9	169.0	76.4	69.7	67.9	156.6
10	154.6	173.7	157.3	71.0	69.0	157.9
15	159.2	185.2	191.3	72.7	69.4	163.8
20	169.2	191.7	210.1	77.0	69.7	187.9
25	172.1	201.0	213.8	112.7	70.1	198.6
30	183.7	205.8	229.0	156.7	70.5	213.0
35	191.2 · .	212.7	234.1	169.4	71.1	233.1
40	201.6	218.7	245.4	181.3	71.9	254.2
45	209.9	223.7	254.4	213.6	72.9	271.0
50	218.4	231.7	263.6	253.2	74.3	288.1
55	227.9	239.7	273.0	271.9	76.7	304.4
60	239.3	250.5	281.4	285.2	156.5	314.1
65	254.2	261.2	290.6	296.8	194.1	332.7
70	270.1	272.5	300.4	307.8	290.3	341.6
75	285.6	284.8	312.9	319.8	310.0	365.8
80	304.3	300.3	326.3	331.9	326.6	383.8
85	325.4	320.7	341.1	345.1	342.4	384.7
90	350.2	345.1	360.5	361.6	359.2	386.3
95	383.1	377.9	385.2	383.0	382.3	412.8
100	447.7	445.7	451.2	456.2	458.7	482.7

Table D15 Packing sequence (KL ---> Y) at $Ø_{KL} = 0.75$

Figure D15 True boiling point distillation (°C) of packing sequence (KL ---> Y) at $\mathcal{O}_{KL} = 0.75$.

ri.

Table D16 Pt/KL

0/			Boilin	g Point		
OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics
0	26.1	53.2	23.3	23.5	69.6	22.7
5	112.3	75.2	36.3	53.0	74.2	155.3
10	152.9	86.2	59.2	70.4	82.1	155.7
15	156.3	167.5	70.3	73.6	84.5	156.1
20	. 164.8	171.9	73.2	74.9	86.5	156.8
25	169.6	183.1	74.6	76.3	88.4	157.9
30	172.1	189.5	75.6	77.6	90.5	161.2
35 ·	. 182.2	196.7	76.6	79.9	92.8	171.8
40	188.4	203.2	77.6	83.2	95.0	196.5
45	193.7	209.8	78.5	104.8	97.5	204.3
50	202.5	214.8	79.6	107.8	98.9	212.4
55 .	. 209.5	222.2	81.7	109.0	100.1	213.2
60	215.3	229.4	84.5	110.6	101.7	213.5
65	224.0	237.3	111.6	114.2	104.0	213.9
70	232.4	248.9	120.3	118.2	108.3	215.6
75	244.7	262.4	186.9	148.3	126.5	233.6
80	260.6	278.6	210.1	160.4	134.8	262.0
85	281.4	299.0	244.1	192.0	145.8	293.6
90	- 309.8	325.8	308.6	225.8	153.6	330.1
95	350.0	362.8	373.4	353.6	168.5	376.7
100	433.0	435.5	462.1	467.9	399.7	461.5

Figure D16 True boiling point distillation (°C) of Pt/KL.

Table D17 Pt/Y

	%			Boiling	Point		
	OFF	Maltene	Saturated	Mono-	Di-	Poly-	Polar-
		Минене	Hydrocarbon	Aromatics	Aromatics	Aromatics	Aromatics
	0	22.5	61.5	32.2	33.5	63.9	22.0
	5	112.2	78.3	71.9	73.2	64.9	38.4
[10	153.6	155.6	74.3	77.1	66.0	157.2
	15	156.1	168.7	78.6	149.4	67.0	158.6
[20	160.7	171.6	156.2	158.6	68.I	164.9
• [25	169.6	180.3	190.8	170.3	69.1	177.6
	30	172.1	185.3	209.2	179.9	69.4	197.0
	35	181.7	191.7	212.3	191.7	69.8	207.8
	40	188.1	200.7	226.2	217.7	70.4	226.0
•	45	196.0	206.4	231.1	253.4	71.2	246.2
	50	204.6	213.6	236.8	271.1	72.3	265.0
	55	213.5	220.5	248.5	284.2	74.0	282.7
	60	222.9	229.3	258.4	294.3	77.3	299.8
	65	233.9	239.3	269.0	305.6	156.9	312.3
	70	248.7	252.4	278.8	317.2	175.5	320.4
	75	265.1	266.5	290.2	329.4	275.8	336.4
	80	283.2	282.0	303.4	341.8	305.7	340.6
	85	305.2	302.6	321.1	356.5	325.9	366.2
-	90	331.9	329.5	342.8	373.4	348.1	386.6
	95	368.8	368.3	374.4	397.8	374.4	414.6
ſ	100	441.8	439.2	446.5	454.3	443.9	480.8

Figure D17 True boiling point distillation (°C) of Pt/Y.

0/0	Taspiten.	C ROAL SAL	Boiling	Point	, sider	2 State and
OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics
0	38.4	56.0	23.7	25.6	72.3	21.4
5	150.9	72.9	39.9	60.3	81.2	155.1
10	155.1	77.8	54.9	71.1	83.6	155.5
15	164.9	156.9	64.7	72.6	85.6	155.7
20	170.0	170.9	70.4	73.8	87.6	155.9
25	175.6	182.7	71.6	75.1	89.7	156.1
30	184.9	190.6	72.3	77.1	91.9	156.4
35	192.2	201.3	73.0	79.9	94.1	157.0
40	202.1	209.7	73.7	85.8	96.6	158.3
45	210.2	217.2	74.3	104.7	98.6	163.5
50	218.0	225.6	74.9	106.0	99.9	170.0
55	226.5	233.8	75.6	107.4	101.5	187.3
60	235.7	244.9	76.5	109.6	104.0	204.0
65	248.3	256.0	77.7	113.4	109.0	213.0
70	261.7	269.0	79.4	117.6	126.5	215.1
75	276.3	282.1	81.5	147.9	134.1	241.3
80	293.5	297.3	84.7	159.4	144.4	276.0
85	314.6	314.8	112.7	186.7	152.9	313.5
90	340.1	335.8	201.0	195.6	168.7	347.3
95	375.6	365.9	327.0	232.8	302.6	389.4
100	445.9	431.8	437.7	417.9	443.4	468.3

Table D18	Physical	l mixture (Pt/Y	′ + Pt/KL) at Ø _{Pt/KL}	= 0.25
-----------	----------	-----------------	----------------------------------	--------

• :

Figure D18 True boiling point distillation (°C) of physical mixture (Pt/Y + Pt/KL) at $Ø_{Pt/KL} = 0.25$.

0/0	Boiling Point									
OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics				
0	22.7	46.0	24.6	34.1	68.5	20.5				
5	111.9	74.1	53.7	66.0	71.9	36.3				
10	152.9	79.5	69.6	69.5	78.2	155.2				
15	156.3	155.4	71.3	70.9	80.3	155.6				
20	166.2	169.5	72.3	72.9	82.4	155.9				
25	169.8	173.6	73.3	75.9	84.5	156.1				
30	172.8	183.8	74.4	80.7	86.5	156.3				
35	182.3	190.3	75.8	99.1	88.7	156.6				
40	188.5	199.5	78.3	100.6	90.9	157.1				
45	195.2	206.4	81.4	102.1	93.4	159.6				
50	203.2	213.3	105.1	104.1	96.2	165.4				
55	211.7	221.4	110.6	106.4	98.6	175.4				
60	219.9	231.6	120.0	109.3	100.1	194.1				
65	229.9	242.6	157.9	118.1	102.2	203.4				
70	242.9	256.0	170.4	149.6	105.5	211.0				
75	258.9	271.6	180.3	157.3	114.4	213.7				
80	277.1	288.2	189.9	170.4	134.3	230.8				
85	298.7	309.2	204.4	186.2	148.6	266.4				
90	325.2	333.1	239.1	197.3	159.4	308.3				
95	361.8	366.8	357.8	245.7	263.6	353.3				
100	438.7	439.8	454.0	436.4	437.7	452.3				

Table D19 Physical mixture (Pt/Y + Pt/KL) at $Ø_{Pt/KL} = 0.5$

Figure D19 True boiling point distillation (°C) of physical mixture (Pt/Y + Pt/KL) at $Ø_{Pt/KL} = 0.5$

0/2		Boiling Point									
OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics					
0	26.7	57.9	23.5	32.6	69.7	22.2					
5	149.4	74.5	52.6	66.4	73.2	155.6					
10	156.1	154.6	70.8	69.7	81.6	156.2					
15	167.1	171.3	74.2	71.2	84.0	157.1					
20	170.8	183.9	75.7	73.1	86.4	159.8					
25	180.6	192.2	77.2	76.4	88.5	171.5					
30	188.1	202.8	78.6	82.1	90.6	196.6					
35	195.9	211.0	81.0	100.5	92.9	206.4					
40	204.4	218.4	85.6	102.1	95.4	213.2					
45	212.4	226.5	112.0	104.1	97.9	213.7					
50	220.4	233.9	121.3	107.0	99.0	214.5					
55	229.0	243.9	157.3	110.3	100.3	229.3					
60	237.7	253.5	168.6	129.0	101.9	253.9					
65	249.0	264.2	171.7	153.4	104.1	277.7					
70	260.6	275.2	180.7	163.1	107.8	303.1					
75	273.5	288.0	187.7	171.0	124.5	322.0					
80	288.9	303.2	201.2	182.1	138.7	343.5					
85	308.7	321.6	226.8	192.7	152.0	368.0					
90	334.6	345.5	290.3	203.7	169.9	393.1					
95	372.6	379.5	366.0	.241.4	269.7	422.1					
100	446.5	451.9	456.2	437.8	440.5	486.2					

Table D20 Physical mixture (Pt/Y + Pt/KL) at $Ø_{Pt/KL} = 0.75$

Figure D20 True boiling point distillation (°C) of physical mixture (Pt/Y + Pt/KL) at $Ø_{Pt/KL} = 0.75$.

0/0	Boiling Point									
OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics				
0	30.7	47.3	23.5	25.4	57.3	20.8				
5	151.0	70.0	44.3	59.6	62.8	130.2				
10	156.5	72.6	56.9	69.8	69.4	154.9				
15	168.5	76.9	67.5	71.0	70.9	155.4				
20	172.3	155.3	70.6	72.1	72.6	155.8				
25	184.2	171.5	71.4	73.4	74.4	156.0				
30	192.6	184.9	72.3	75.3	76.1	156.3				
35	203.2	197.7	72.9	78.0	77.9	156.5				
40	212.5	208.8	73.6	81.6	79.9	156.8				
45	221.4	218.0	74.5	100.4	82.1	158.3				
50	231.0	228.4	75.4	102.3	84.6	166.5				
55	241.5	238.2 ·	76.7	103.4	87.5	191.5				
60	252.4	250.2	78.6	104.8	91.0	195.1				
65	264.1	261.9	81.0	106.7	95.5	203.1				
70	275.8	273.6	84.5	109.1	99.4	210.1				
75	289.3	286.8	109.9	111.6	103.4	222.0				
80	305.4	302.3	118.4	118.0	119.7	257.5				
85	324.9	320.6	169.6	149.3	130.9	296.2				
90	349.8	344.0	208.1	173.6	143.6	336.8				
95	382.7	376.5	320.1	275.4	158.7	385.1				
100	445.4	499.2	646.4	444.9	406.6	465.2				

Table D21 Packing sequence (Pt/Y ---> Pt/KL) at $Ø_{Pt/KL} = 0.25$

E

Figure D21 True boiling point distillation (°C) of packing sequence (Pt/Y ---> Pt/KL) at $Ø_{Pt/KL} = 0.25$.

0/0	Boiling Point									
OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics				
0	23.9	54.9	23.3	29.0	70.6	21.0				
5	135.2	72.2	34.8	70.7	75.1	38.6				
10	154.0	76.7	53.5	73.2	82.7	115.9				
15	161.4	157.3	64.3	75.2	85.2	156.6				
20	169.4	171.6	70.6	78.7	87.3	157.6				
25	173.1	183.4	72.6	100.7	89.3	159.6				
30	183.3	191.3	73.7	105.6	91.6	168.2				
35	190.3	201.7	74.5	107.9	93.9	185.4				
40	200.0	210.3	75.3	112.8	96.3	203.8				
45	207.8	217.9	76.1	120.9	98.4	212.7				
50	215.3	226.6	76.8	154.5	99.6	214.2				
55	224.7	· 235.4	77.6	160.7	101.1	224.5				
60	234.4	247.3	78.5	169.5	103.1	244.2				
65	247.5	259.2	79.9	171.8	106.4	265.2				
70	261.4	271.8	82.1	179.7	115.0	285.5				
75	276.5	285.5	85.2	184.8	134.2	306.2				
80	293.8	301.6	113.7	191.5	147.0	326.0				
85	314.9	320.0	182.3	199.5	155.2	349.9				
90	340.1	341.7	239.9	211.5	172.7	377.4				
95	374.9	372.4	348.6	236.8	250.0	410.6				
100	438.6	438.3	446.9	420.7	439.9	480.7				

Table D22 Packing sequence (Pt/Y ---> Pt/KL) at $Ø_{Pt/KL} = 0.5$

Figure D22 True boiling point distillation (°C) of packing sequence (Pt/Y ---> Pt/KL) at $Ø_{Pt/KL} = 0.5$.

%	Boiling Point									
OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics				
0	34.6	59.0	23.5	24.2	52.8	23.1				
5	117.6	74.2	43.5	54.1	77.3	83.1				
10	153.8	111.6	57.1	71.1	93.1	138.5				
15	157.4	169.6	68.3	74.2	96.4	157.3				
20	167.7	181.1	71.3	75.5	98.4	159.0				
25	170.9	189.9	72.4	77.0	99.1	167.2				
30	180.1	200.7	73.2	78.3	99.9	194.4				
35	187.4	208.9	73.9	80.3	100.7	205.0				
40	195.7	216.3	74.6	83.1	101.8	212.9				
45	204.2	224.4	75.4	103.9	103.0	213.4				
50	213.1	233.1	76.1	107.6	104.0	214.5				
55	· 221.7	244.0	77.2	108.6	105.3	223.7				
60	231.9	255.1	78.6	109.5	106.9	244.4				
65	244.4	267.8	80.6	110.8	109.3	266.4				
70	259.1	279.6	83.1	112.8	115.3	287.2				
75	274.7	292.6	105.6	117.0	136.3	306.7				
80	292.0	308.2	111.7	119.9	148.5	325.1				
85	313.0	324.6	120.2	148.6	154.9	347.1				
90	337.4	344.2	207.9	159.6	173.0	372.6				
95	371.9	372.8	315.4	302.5	342.9	407.7				
100	441.9	438.0	454.0	455.0	451.4	481.5				

Table D23 Packing sequence (Pt/Y ---> Pt/KL) at $Ø_{Pt/KL} = 0.75$

Figure D23 True boiling point distillation (°C) of packing sequence (Pt/Y ---> Pt/KL) at $Ø_{Pt/KL} = 0.75$.

0/0	Boiling Point								
OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics			
0	24.8	60.9	23.1	23.3	66.2	22.7			
5	112.0	75.4	37.7	35.6	77.5	75.2			
10	152.7	154.4	71.9	76.9	90.2	156.6			
15	156.4	169.9	75.6	82.7	92.9	157.5			
20	166.9	180.8	77.3	110.9	95.1	159.1			
25	170.3	189.2	79.2	113.4	97.0	166.0			
30	177.7	199.5	81.3	120.8	98.4	186.3			
35	185.7	207.3	84.7	157.8	99.1	204.0			
40	193.4	213.7	110.6	173.9	100.0	212.4			
45	203.1	222.2	112.7	189.1	101.1	213.0			
50	212.1	230.8	118.2	197.8	102.0	213.6			
55	220.7	241.0	151.0	203.0	103.0	215.4			
60	230.6	251.9	169.0	209.1	104.3	227.6			
65	242.5	263.8	177.7	219.7	106.0	245.0			
70	256.0	275.6	190.8	234.2	108.5	264.7			
75	271.8	288.7	206.7	255.2	114.4	284.1			
80	288.4	303.9	242.8	283:1	133.8	304.8			
85	309.1	320.7	301.5	314.5	144.4	328.9			
90	334.0	340.8	349.9	353.9	153.7	358.2			
95	369.2	369.4	393.3	399.1	168.1	396.3			
100	444.0	434.8	467.0	467.8	401.6	466.0			

Table D24 Packing sequence (Pt/KL ---> Pt/Y) at $Ø_{Pt/KL} = 0.25$

Figure D24 True boiling point distillation (°C) of packing sequence (Pt/KL ---> Pt/Y) at $Ø_{Pt/KL} = 0.25$.

0/0	Boiling Point									
OFF	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics				
0	25.4	55.4	23.3	24.4	71.6	21.8				
5	113.4	70.0	39.2	56.4	80.4	133.2				
10	153.7	72.8	56.4	71.6	97.9	155.6				
15	157.2	80.2	67.3	73.5	99.2	156.0				
20	167.5	165.6	71.3	74.9	100.1	156.5				
25	170.6	175.1	72.6	76.2	101.2	157.4				
30	178.5	187.7	73.4	78.0	102.6	159.3				
35	185.6	198.8	74.1	80.9	104.2	168.7				
40	193.1	207.8	74.8	85.3	105.8	194.6				
45	203.1	215.8	75.5	105.9	108.2	204.5				
50	212.1	224.8	76.3	107.3	113.2	213.0				
55	220.9	234.0	77.2	108.8	134.3	214.0				
60	231.0	245.8	78.5	111.1	149.6	227.5				
65	243.3	258.1	80.5	115.5	157.6	254.0				
70	257.4	270.9	83.0	121.2	203.1	283.6				
75	273.4	284.4	101.8	154.7	241.7	311.4				
80	291.5	300.5	112.1	160.6	317.2	335.8				
85	314.1	319.3	122.2	171.7	364.1	360.8				
90	341.2	342.3	203.6	187.8	393.8	387.9				
95	378.3	375.7	336.3	210.6	421.8	416.6				
100	452.0	450.0	447.2	411.1	480.8	479.9				

Table D25 Packing sequence (Pt/KL ---> Pt/Y) at $Ø_{Pt/KL} = 0.5$

Figure D25 True boiling point distillation (°C) of packing sequence (Pt/KL ---> Pt/Y) at $Ø_{Pt/KL} = 0.5$.

% OFF	Boiling Point									
	Maltene	Saturated Hydrocarbon	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics				
0	32.9	63.0	23.3	34.1	69.3	21.0				
5	118.4	70.8	38.6	60.3	72.5	130.6				
10	153.9	76.9	56.2	63.9	79.1	155.2				
15	157.3	154.4	67.3	66.8	81.3	155.6				
20	167.5	168.4	71.4	69.5	83.4	155.9				
25	170.5	173.5	72.8	71.3	85.4	156.1				
30	176.9	176.9 183.4		74.1	87.5	156.3				
35	185.2	191.4	74.3	77.8	89.6	156.5				
40	192.1	201.3	75.1	93.5	91.8	156.9				
45	202.2	210.5	75.8	97.9	94.1	158.8				
50	210.5	218.7	76.7	99.2	96.7	170.1				
55	219.0	228.8	77.6	100.7	98.7	192.6				
60	228.9	241.0	79.1	102.6	100.1	203.0				
65	240.5	253.8	81.4	104.5	101.9	210.5				
70	255.0	268.0	84.2	107.4	104.6	213.3				
75	271.0	281.7	108.4	115.6	110.6	224.0				
80	287.0	297.7	112.5	145.9	131.9	253.8				
85	307.9	316.8	124.0	159.6	144.8	291.0				
90	332.6	339.4	224.9	187.8	155.9	331.8				
95	367.9	372.2	338.1	215.3	235.4	383.7				
100	440.3	438.1	455.6	428.4	435.3	468.0				

Table D26 Packing sequence (Pt/KL ---> Pt/Y) at $Ø_{Pt/KL} = 0.75$

Figure D26 True boiling point distillation (°C) of packing sequence (Pt/KL ---> Pt/Y) at $Ø_{Pt/KL} = 0.75$.

E. Chemical Compositions of Maltenes

	Non-Catalyst	Y	KL	Pt/Y	Pt/KL
Saturated HCs	47.00	54.48	53.10	55.44	55.51
Mono-aromatics	15.60	15.01	12.00	14.92	17.46
Di-aromatics	9.73	8.96	8.72	11.29	12.02
Poly-aromatics	9.69	9.20	8.07	8.27	8.42
Polar-aromatics	15.91	12.11	15.71	7.66	5.01

Table E1 Effects of KL, Y and platinum-supported catalysts

 Table E2
 Effects of physical mixtures and platinum-supported catalysts

	Y + KL			Pt/Y + Pt/KL		
	$Ø_{\rm KL} = 0.25$	$Ø_{\rm KL} = 0.5$		$Ø_{Pt/KL} = 0.25$	$\Theta_{Pt/KL} = 0.5$	$\Theta_{Pt/KL} = 0.75$
Saturated HCs	67.87	62.15	59.95	69.68	67.99	67.30
Mono-aromatics	9.73	11.74	11.22	16.74	9.24	10.74
Di-aromatics	5.66	6.68	8.42	8.26	8.23	6.68
Poly-aromatics	9.05	11.54	14.54	3.12	5.94	5.73
Polar-aromatics	4.53	4.86	4.85	1.84	5.54	2.86

Table E3 Effects of packing sequence (Y ---> KL) and platinum-supported catalysts

		Y> KL			Pt/Y> Pt/KL		
	$Ø_{\rm KL} = 0.25$	$Ø_{\rm KL} = 0.5$	$Ø_{\rm KL} = 0.75$	$Ø_{Pt/KL} = 0.25$	$Ø_{Pt/KL} = 0.5$	$Ø_{PVKL} = 0.75$	
Saturated HCs	60.93	53.04	54.35	70.96	76.08	68.49	
Mono-aromatics	12.10	14.61	15.39	12.02	8.37	12.72	
Di-aromatics	9.13	8.45	8.83	7.21	7.18	9.13	
Poly-aromatics	12.10	14.40	15.79	4.86	6.46	7.77	
Polar-aromatics	5.31	8.03	4.65	2.89	1.44	0.98	

	KL> Y			Pt/KL>Pt/ Y		
	$\Theta_{\rm KL} = 0.25$	$Ø_{\rm KL} = 0.5$	$\Theta_{\rm KL}$ = 0.75	$Ø_{Pt/KL} = 0.25$	$\Theta_{Pt/KL} = 0.5$	$\Theta_{Pt/KL} = 0.75$
Saturated HCs	52.24	43.69	49.03	76.21	69.14	59.32
Mono-aromatics	13.82	18.24	17.73	7.14	11.38	13.35
Di-aromatics	6.91	7.42	7.20	5.45	9.66	16.05
Poly-aromatics	16.46	19.24	16.62	10.36	7.67	8.42
Polar-aromatics	7.52	7.01	6.93	0.31	1.88	0.42

•

 Table E4
 Effects of packing sequence (KL ---> Y) and platinum-supported catalysts

1

F. Carbon Number Distribution of Maltenes

 Table F1 Influences of various zeolites

No. Carbon	Non-Catalst	Y	KL	Pt/Y	Pt/KL
5	0.000	0.000	0.000	0.000	0.000
6	0.002	0.000	0.001	0.022	0.000
7	0.083	0.028	0.032	0.677	0.094
8	0.827	0.864	0.450	4.161	2.105
9	3.155	5.063	2.716	10.069	9.187
10	6.616	11.556	7.959	14.246	16.362
11	9.559	15.464	13.547	14.867	17,997
12	10.958	15.379	15.917	13.086	15 389
13	10.880	13.004	14.812	10.490	11.582
14	9.885	10.083	12.014	8.005	8,198
15	8.508	7.482	9.030	5.966	5.656
16	7.090	5.446	6.530	4.407	3.877
17	5.803	3.942	4.645	3.257	2.669
18	4.707	2.860	3.293	2.419	1.855
19	3.806	2.090	2.344	1.811	1.305
20	3.080	1.542	1.682	1.369	0.930
21	2.500	1.149	1.219	1.045	0.673
22	2.039	0.866	0.894	0.807	0.493
23	1.672	0.660	0.663	0.629	0.366
24	1.379	0.508	0.497	0.495	0.275
25	1.145	0.395	0.377	0.394	0.209
26	0.956	0.311	0.289	0.316	0.161
27	0.802	0.246	0.224	0.255	0.125
28	0.677	0.196	0.174	0.208	0.098
29	0.575	0.158	0.137	0.170	0.077
30	0.490	0.128	0.109	0.140	0.061
31	0.419	0.104	0.087	0.116	0.049
32	0.360	0.085	0.069	0.097	0.040
33	0.310	0.070	0.056	0.081	0.032
34	0.267	0.058	0.045	0.068	0.026
35	0.231	0.048	0.037	0.057	0.021
36	0.200	0.040	0.030	0.048	0.017
37	0.173	0.033	0.025	0.041	0.014
38	0.150	0.028	0.020	0.034	0.012
39	0.129	0.023	0.016	0.029	0.010
40	0.112	0.019	0.014	0.025	0.008
41	0.096	0.016	0.011	0.021	0.006
42	0.082	0.013	0.009	0.017	0.005
43	0.070	0.011	0.007	0.014	0.004
44	0.058	0.009	0.006	0.012	0.004
45	0.048	0.007	0.005	0.010	0.003
46	0.038	0.006	0.004	0.008	0.002
47	0.029	0.004	0.003	0.006	0.002
48	0.021	0.003	0.002	0.004	0.001
49	0.012	0.002	0.001	0.002	0.001
50	0.002	0.000	0.000	0.000	0.000

....

• :

.

No Corbon		Y + KL			Pt/Y + Pt/KL	
No. Carbon	$Ø_{\rm KL} = 0.25$	$Ø_{KL} = 0.5$	$Ø_{\rm KL} = 0.75$	$Ø_{PV/KL} = 0.25$	$\Theta_{PVKL} = 0.5$	$Ø_{Pt/KL} = 0.75$
5	0.000	0.000	0.000	0.000	0.000	0.000
6	0.002	0.006	0.001	0.016	0.004	0.007
7	0.219	0.268	0.178	0.473	0.315	0.300
8	2.418	2.190	2.692	3.038	3.186	2.390
9	8.065	6.656	9.765	7.936	9.733	7.085
10	13.541	11.233	16.088	12.183	15.124	.11.695
11	15.419	13.409	17.268	13.705	16.164	13.706
12	14.143	13.079	14.774	12.872	14.095	13.169
13	11.524	11.350	11.245	10.903	11.031	11.290
14	8.819	9.218	8.084	8.717	8.172	9.079
15	6.543	7.222	5.671	6.758	5.904	7.055
16	4.794	5.559	3.953	5.166	4.231	. 5.393
17	3.507	4.251	2.764	3.932	3.036	4.100
18	2.576	3.251	1.950	2.997	2.194	3.119
19	1.907	2.496	1.391	2.297	1.601	2.385
20	1.425	1.930	1.005	1,773	1.181	1.836
21	1.077	1.503	0.736	1.380	0.881	1.426
22	0.822	1.181	0.546	1.084	0.666	1.117
23	0.634	0.936	0.410	0.859	0.509	0.882
24	0.494	0.749	0.311	0.687	0.393	· 0.704
25	0.389	0.604	0.239	0.554	0.306	0.566
26	0.309	0.490	0.186	0.450	0.241	0.459
27	0.248	0.401	0.145	0.368	0.192	0.375
28	0.200	0.331	0.115	0.304	0.154	0.308
29	0.163	0.274	0.091	0.252	0.124	0.255
30	0.133	0.229	0.073	0.210	0.101	0.212
31	0.109	0.192	0.059	0.176	0.082	0.177
32	0.090	0.161	0.048	0.148	0.068	0.149
33	0.075	0.136	0.039	0.125	0.056	0.126
34	0.062	0.115	0.032	0.106	0.046	0.106
35	0.052	0.098	0.026	0.090	0.038	0.090
36	0.044	0.083	0.022	0.077	0.032	0.076
37	0.037	0.071	0.018	0.065	0.027	0.065
38	0.031	0.060	0.015	0.056	0.022	0.055
39	0.026	0.051	0.012	0.047	0.019	0.047
40	0.022	0.044	0.010	0.040	0.016	0.040
41	0.018	0.037	0.008	0.034	0.013	0.034
42	0.015	0.031	0.007	0.029	0.011	0.029
43	0.013	0.026	0.006	0.024	0.009	0.024
44	0.010	0.022	0.005	0.020	0.007	0.020
45	0.008	0.018	0.004	0.016	0.006	0.016
46	0.007	0.014	0.003	0.013	0.005	0.013
47	0.005	0.011	0.002	0.010	0.003	0.010
48	0.003	0.007	0.001	0.007	0.002	0.007
49	0.002	0.004	0.001	0.004	0.001	0.004
50	0.000	0.001	0.000	0.001	0.000	0.001

Table F2 Influences of physical mixtures (Y + KL) and corresponding platinum-supported beds (Pt/Y + Pt/KL)

No. Combon		Y> KL		Р	t/Y> Pt/K	L
No. Carbon	$Ø_{\rm KL} = 0.25$	$Ø_{\rm KL} = 0.5$	$Ø_{\rm KL} = 0.75$	$Ø_{Pt/KL} = 0.25$	$Ø_{Pt/KL} = 0.5$	$Ø_{PVKL} = 0.75$
5	0.001	0.000	0.000	0.001	0.000	0.000
6	0.059	0.000	0.028	0.045	0.038	0.046
7	0.882	0.029	0.633	0.609	0.721	0.806
8	3.938	0.750	3.483	2.761	3.652	3.902
9	8.520	4.247	8.359	6.358	8.414	8.731
10	11.945	9.933	12.275	9.634	12.137	12.353
11	12.944	13.921	13.512	11.280	13.283	13.347
12	12.047	14.561	12.575	11.273	12.367	12.319
13	10.261	12.911	10.625	10.227	10.486	10.383
14	8.309	10.444	8.505	8.751	8.434	8.315
15	6.548	8.044	6.615	7.235	6.595	6.482
16	5.093	6.048	5.077	5.870	5.089	4.991
17	3.945	4.504	3.881	4.718	3.912	3.829
18	3.059	3.352	2.973	3.782	3.011	2.943
19	2.384	2.506	2.289	3.035	2.329	2.275
20	1.869	1.887	1.775	2.444	1.814	1.770
21	1.477	1.433	1.387	1.979	1.425	1.389
22	1.177	1.099	1.094	1.612	1.128	1.099
23	0.945	0.851	0.871	1.322	0.901	0.877
24	0.766	0.666	0.699	1.091	0.726	0.706
25	0.625	0.525	0.565	0.907	0.589	0.573
26	0.514	0.418	0.461	0.758	0.482	0.469
27	0.426	0.335	0.379	0.638	0.397	0.386
28	0.355	0.271	0.313	0.540	0.330	0.320
29	0.297	0.221	0.261	0.459	0.275	0.267
30	0.250	0.181	0.218	0.392	0.231	0.224
31	0.212	0.149	0.183	0.336	0.195	0.189
32	0.180	0.123	0.155	0.290	0.165	0.160
33	0.154	0.102	0.131	0.250	0.140	0.136
34	0.131	0.085	0.111	0.216	0.119	0.116
35	0.113	0.071	0.095	0.187	0.102	0.099
36	0.097	0.060	0.081	0.163	0.087	0.084
37	0.083	0.050	0.069	0.141	0.074	0.072
38	0.071	0.042	0.059	0.122	0.064	0.062
39	0.061	0.035	0.050	0.106	0.055	0.053
40	0.052	0.030	0.043	0.092	0.047	0.045
41	0.045	0.025	0.037	0.079	0.040	0.038
42	0.038	0.021	0.031	0.068	0.034	0.033
43	0.032	0.017	0.026	0.058	0.028	0.027
44	0.027	0.014	0.022	0.048	0.024	0.023
45	0.022	0.011	0.018	0.040	0.019	0.019
46	0.017	0.009	0.014	0.032	0.015	0.015
47	0.013	0.007	0.011	0.024	0.012	0.011
48	0.009	0.005	0.007	0.017	0.008	0.008
49	0.005	0.003	0.004	0.010	0.005	0.004
50	0.001	0.001	0.001	0.002	0.001	0.001

Table F3 Influences of packing sequence (Y ---> KL) and corresponding platinum-supported beds (Pt/Y ---> Pt/KL)

<u>5</u>-

No Conhor		KL> Y		Pt/KL>Pt/ Y			
No. Carbon	$Ø_{\rm KL} = 0.25$	$Ø_{\rm KL} = 0.5$	$Ø_{\rm KL} = 0.75$	$Ø_{Pt/KL} = 0.25$	$Ø_{Pt/KL} = 0.5$	$\Theta_{Pt/KL} = 0.75$	
5	0.000	0.000	0.001	0.000	0.000	0.000	
6	0.032	0.003	0.076	0.041	0.041	0.033	
7	0.666	0.158	0.969	0.783	0.787	0.729	
8	3.524	1.417	4.014	3.923	3.953	3.914	
9	8.314	4.799	8.396	8.888	8.954	9.112	
10	12.136	8.973	11.637	12.594	12.667	12.985	
11	13.356	11.711	12.608	13.558	13.609	13.917	
12	12.461	12.309	11.799	12.442	12.463	12.661	
13	10.567	11.364	10.128	10.421	10.417	10.495	
14	8.492	9.716	8.272	8.294	8.276	8.267	
15	6.632	7.946	6.575	6.427	6.403	6.343	
16	5.110	6.342	5.157	4.921	4.896	4.812	
17	3.921	5.002	4.026	3.757	3.733	3.642	
18	3.013	3.929	3.145	2.874	2.853	2.764	
19	2.327	3.089	2.467	2.212	2.193	2.111	
20	1.810	2.439	1.947	1.714	1.698	1.626	
21	1.419	1.936	1.548	1.340	1.327	1.263	
22	1.122	1.548	1.240	1.057	1.045	0.990	
23	0.895	1.246	1.002	0.841	0.831	0.783	
24	0.720	1.011	0.815	0.675	0.667	0.626	
25	0.584	0.826	0.669	0.546	0.539	0.504	
26	0.477	0.680	0.552	0.446	0.440	0.409	
27	0.393	0.563	0.459	0.366	0.361	0.335	
28	0.325	0.469	0.384	0.303	0.299	0.276	
29	0.271	0.393	0.324	0.252	0.248	0.228	
30	0.227	0.331	0.274	0.211	0.208	0.190	
31	0.191	0.280	0.233	0.177	0.175	0.160	
32	0.162	0.238	0.198	0.150	0.147	0.134	
33	0.137	0.203	0.170	0.127	0.125	0.113	
34	0.117	0.173	0.146	0.108	0.106	0.096	
35	0.100	0.149	0.125	0.092	0.090	0.081	
36	0.085	0.127	0.108	0.078	0.077	0.069	
37	0.073	0.109	0.093	0.067	0.066	0.059	
38	0.062	0.094	0.080	0.057	0.056	0.050	
39	0.053	0.080	0.069	0.049	0.048	0.043	
40	0.045	0.069	0.059	0.042	0.041	0.036	
41	0.039	0.059	0.051	0.035	0.035	0.031	
42	0.033	0.050	0.043	0.030	0.029	0.026	
43	0.028	0.042	0.036	0.025	0.025	0.022	
44	0.023	0.035	0.030	0.021	0.021	0.018	
45	0.019	0.029	0.023	0.017	0.017	0.013	
40	0.013	0.023	0.020	0.014	0.013	0.012	
4/	0.011	0.017	0.013	0.010	0.010	0.009	
40	0.008	0.012	0.011	0.007	0.007	0.000	
50	0.004	0.001	0.000	0.004	0.004	0.003	

Table F4 Influences of packing sequence (KL ---> Y) and corresponding platinum-supported beds (Pt/KL ---> Pt/Y)

G. Petroleum Fractions of Derived Oils

	Non-Catalst	Y	KL	Pt/Y	Pt/KL
Naphtha	17.00	25.50	27.00	47.00	49.00
Kerosene	31.50	36.00	39.00	23.00	28.00
LGO	23.00	20.00	19.50	14.00	11.50
HGO	18.50	12.50	10:00	11.00	8.00
Long Residues	10.00	6.00	4.50	5.00	3.50
		•			•

Table G1 Effects of KL, Y and platinum-supported catalysts

 Table G2 Effects of physical mixtures and platinum-supported catalysts

	Y + KL			Pt/Y + Pt/KL		
	$Ø_{\rm KL} = 0.25$		$Ø_{\rm KL} = 0.75$	$Ø_{Pt/KL} = 0.25$	$Ø_{Pt/KL} = 0.5$	$Ø_{Pt/KL} = 0.75$
Naphtha	40.00	34.00	48.00	38.50	48.00	37.00
Kerosene	28.00	29.00	25.00	,27.00	24.50	28.00
LGO	14.00	18.00	14.00	16.00	12.50	18.00
HGO	12.00	13.00	9.00	13.00	10.50	12.00
Long Residues	6.00	6.00	4.00	5.50	4.50	5.00

Table G3 Effects of packing sequence (Y ---> KL) and platinum-supported catalysts

	Y> KL			Pt/Y> Pt/KL		
	$Ø_{\rm KL} = 0.25$	$Ø_{\rm KL} = 0.5$	$Ø_{\rm KL} = 0.75$	$Ø_{PUKL} = 0.25$	$Ø_{PU/KL} = 0.5$	$\Theta_{Pt/KL} = 0.75$
Naphtha	40.00	44.00	40.00	33.00	40.00	43.00
Kerosene	24.00	23.00	25.00	26.00	20.50	24.00
LGO	15.00	15.00	16.00	19.00	21.00	15.00
HGO	14.00	11.00	14.00	15.00	12.50	12.00
Long Residues	7.00	7.00	5.00	7.00	6.00	6.00
	KL> Y			Pt/KL>Pt/ Y		
---------------	---------------------	-------	--------------------------	--------------------	-------------------	-------------------
	$Ø_{\rm KL} = 0.25$		$\Theta_{\rm KL} = 0.75$	$Ø_{Pt/KL} = 0.25$	$Ø_{PU/KL} = 0.5$	$Ø_{PVKL} = 0.75$
Naphtha	39.00	37.00	39.00	43.00	43.00	44.00
Kerosene	26.00	27.00	24.00	25.00	24.00	24.00
LGO	15.00	14.00	16.00	15.00	15.00	15.00
HGO	13.00	15.00	14.00	12.00	12.00	12.00
Long Residues	7.00	7.00	7.00	5.00	6.00	5.00

 Table G4 Effects of packing sequence (KL ---> Y) and platinum-supported catalysts

H. Asphaltenes

[Casa	 	

H1 Effects of non platinum-supported catalysts

Case			
Catalyst	Ø _{kl}	Asphsltenes (g/g oil)	
Non-Catalyst	-	0.0007022750	
Pure Y	0.00	0.0002964427	
Physical Mixture	0.25	0.0001581028	
(Y + KL)	0.50	0.0002564103	
	0.75	0.0003303965	
Packing Sequence	0.25	0.0003734440	
(Y> KL)	0.50	0.0003162055	
	0.75	0.0003353057	
Packing Sequence	0.25	0.0002783300	
(KL> Y)	0.50	0.0003149606	
, , , , , , , , , , , , , , , , ,	0.75	0.0003400000	
Pure KL	1.00	0.0003333333	

H2 Effects of platinum-supported catalysts

Case			
Catalyst	Ø _{KL}	Asphsltenes (g/g oil)	
Pt/Y	0.00	0.0000598802	
Physical Mixture (Pt/Y + Pt/KL)	0.25	0.0001800000	
	0.50	0.0002186879	
· · · · · · · · · · · · · · · · · · ·	0.75	0.0002994012	
Packing Sequence	0.25	0.0002766798	
(Pt/Y> Pt/KL)	0.50	0.0001992032	
(0.75	0.0001388889	
Packing Sequence	0.25	0.0001976285	
(Pt/KL> Pt/Y)	0.50	0.0001792829	
· · · · · · · · · · · · · · · · · · ·	0.75	0.0001782178	
Pt/KL	1.00	0.0002191235	

CURRICULUM VITAE

Name: Ms. Mullika Phopaisarn

Date of Birth: May 23, 1984

Nationality: Thai

University Education:

2002-2006 Bachelor Degree of Science (Biotechnology), Faculty of Science, Mahidol University, Bangkok, Thailand

Working Experience:

.

2007-2008 Position:

2007-2006	Position:

Company name:

Company name:

Technical Sales Representative
Chemico Inter Corporation Co., Ltd.
Research and Development
Golden Line Business Co., Ltd. (Saha
Farms Group).

-