REFERENCES

- Bai, H., and Shi, G., (2007) Gas sensors based on conducting polymers. <u>Sensors</u>, 7, 267-307.
- Bhatia, S., (1990) Zeolite Catalysis: Principles and Applications, CRC Press, Inc., Boca Raton, Florida.
- Brantley, B., (2004) Characterization of nanocomposite materials for ammonia gas sensor application. USF.
- Chen, L., Kim, B.S., Nishino, M., Gong, J.P., and Osada, Y., (2000) Environmental Responses of Polythiophene Hydrogels. <u>Macromolecules</u>, 33, 1232-1236.
- Chen, T.A., Wu, X., and Rieke, R.D., (1995) Regiocontrolled Synthesis of Poly(3alkylthiophenes) Mediated by Rieke Zinc: Their Characterization and Solid-State Properties. Journal of the American Chemical Society, 117, 233-244.
- Chotpattananont, D., Sirivat, A., and Jamieson, A.M., (2004) Electrorheological properties of perchloric acid-doped polythiophene suspensions. <u>Colloid and Polymer Science</u>, 282, 357-365.
- Chotpattananont, D., Sirivat, A., and Jamieson, A.M., (2006) Creep and recovery behaviors of a polythiophene-based electrorheological fluid. <u>Polymer</u>, 47, 3568-3575.
- Chuapradit, C., Wannatong, R., Chotpattananont, D., Hiamtup, P., Sirivat, A., and Schwank, J., (2005) Polyaniline/zeolite LTA composite and electrical conductivity response toward CO. <u>Polymer</u>, 46, 947-953.
- Dalas, E., Vitoratos, E., Sakkopoulos, S., Malkaj, P., (2004) Polyaline/zeolite as the cathode in a novel gel electrolyte primary dry cell. <u>Journal of Power Sources</u>, 128, 319–325.
- Densakulprasert, N., Wannatong, L., Chotpattananont, D., Hiamtup, P., Sirivat, A., and Schwank, J., (2005) Electrical conductivity of polyaniline/zeolite composites and synergetic interaction with CO. <u>Materials Science and Engineering B</u>, 117, 276–282.
- Grey, C.P., Poshni, F.I., Gualtieri, A.F., Norby, P., Hanson, J.C., and Corbin, D.R.,(1997) Combined MAS NMR and X-ray Powder Diffraction Structural Characterization of Hydrofluorocarbon-134 Adsorbed on Zeolite Na-Y:

Observation of Cation Migration and Strong Sorbate-Cation Interactions. Journal of the American Chemical Society, 119, 1981 - 1989.

- Kim, B.S., Chen, L., Gong, J., Osada, Y., (1999) Titration behavior and spectral transitions of water-soluble polythiophene carboxylic acids. <u>Macromolecules</u>, 32, 3964-3969.
- Kim, B.S., Chen, L., Gong, J.P., and Osada, Y., (2000) Solution and Electrical Properties of the Water-Soluble Poly(3-Thiopheneacetic Acid) and its Hydrogel. <u>Molecular Crystals and Liquid Crystals</u>, 349, 335-338.
- Kim, B.S., Chen, L., Gong, J.P., and Osada, Y., (2000) Doping Effects of Water-Soluble Poly(3-thiopheneacetic acid)(P3TAA) and its Gel. <u>Korea Polymer</u> <u>Journal</u>, 8, 3, 116-119.
- Kunkeler, P.J., Zuurdeeg, B.J., van der Waal, J.C., van Bokhoven, J.A., Koningsberger, D.C., and van Bekkum, H., (1998) Zeolite Beta: The Relationship between Calcination Procedure, Aluminum Configuration, and Lewis Acidity. Journal of catalysis, 180, 234–244.
- Lamberti, C., Milanesio, M., Prestipino, C., Bordiga, S., Fitch, A.N., and Marra, G.L., (2001) Structural Determination of Catalytically-Active Ag⁺ Sites in an Ag-Y Zeolite: a Combined Anomalous XRPD and EXAFS Study. ESRF Newsletter.
- Lyu, Y.K., Kyung, K.J., and Lee, W.Y., (2009) Functionalized magnetic nanoparticle with poly(3-thiopheneacetic acid) and its application for electrogenerated chemiluminescence sensor. Synthetic Metals, 159, 571–575.
- Ma, X.F., Li, G., Xu, H., Wang, M., and Chen, H., (2006) Preparation of polythiophene composite film by in situ polymerization at room temperature and its gas response studies. <u>Thin Solid Films</u>, 515, 2700–2704.
- Norma, B., Castagnola, and Dutta, P.K., (2001) Spectroscopic Studies of Colloidal Solutions of Nanocrystalline Ru(bpy)₃²⁺-Zeolite Y. <u>Journal of Physical</u> <u>Chemistry B</u>, 105, 1537-1542.
- Park, K.H., Yoon, Y.H., Kang, H., and Lee, J.C., (2004) Poly(3-thiopheneacetic acid) surfactant complexes: Synthesis, self-assembly behavior and photoluminescence property. The 228th ACS National Meeting, in Philadelphia, PA, August 22-26.

- Phumman, P., Niamlang, S., and Sirivat, A., (2009) Fabrication of poly(pphenylene)/Zeolite composites and their responses towards ammonia. <u>Sensors</u>, 9, 8031-8046.
- Puvanatvattana, T., Chotpattananont, D., Hiamtup, P., Niamlang, S., Kunanuruksapong, R., Sirivat, A., and Jamieson, A.M., (2008) Electric field induced stress moduli of polythiophene/polyisoprene suspensions: Effects of particle conductivity and concentration. <u>Materials Science and Engineering</u> <u>C</u>, 28, 119–128.
- Ribeiro, F. R., (1984) Zeolites: Science and Technology, Martinus Nijhoff Publishers, The Hague.
- Sagarzazu, A., and González, G., (2005) Aluminum Content on the Crystallization of Zeolite Beta. <u>Microscopy and Microanalysis</u>, 11(2), 1560-1561.
- Soontornworajit, B., Wannatong, L., Hiamtup, P., Niamlang, S., Chotpattananont, D., Sirivat, A., Schwank, J., (2007) Induced interaction between polypyrrole and SO₂ via molecular sieve 13X. <u>Materials Science and Engineering B</u>, 136, 78-86.
- Thuwachaowsoan, K., Chotpattananont, D., Sirivat, A., Rujiravanit, R., Schwank, J.W., (2007) Electrical conductivity responses and interactions of poly(3thiopheneacetic acid)/zeolites L, mordenite, beta and H₂. <u>Materials Science</u> <u>and Engineering B</u>, 140, 23–30.
- Vargas, A., Hauser, A., and Daku, L.M.L., (2009) Influence of Guest-Host Interactions on the Structural, Energetic, and Mo⁻⁻ ssbauer Spectroscopy Properties of Iron(II)tris(2,2'-bipyridine) in the Low-Spin and High-Spin States: A Density-Functional Theory Study of the Zeolite-Y Embedded Complex. Journal of Chemical Theory and Computation, 5, 97–115.
- Wannatong, L., Sirivat, A., (2008) Polypyrrole and its composites with 3A zeolite and polyamide 6 as sensors for four chemicals in lacquer thinner. <u>Reactive &</u> <u>Functional Polymers</u>, 68, 1646–1651.
- Xu, X., Wang, J., and Long, Y., (2006) Zeolite-based materials for gas sensors. Sensors, 6, 1751-1764.

- Yin, F., Blumenfeld, L., Gruver, V., Fripait, J.J., (1997) NH₃ as a probe molecule for NMR and IR study of zeolite catalyst acidity. <u>Journal of Physical</u> <u>Chemistry B</u>, 101, 1824-1830.
- Zecchina, A., Marchese, L., Bordiga, S., Paze, C., and Gianotti, E., (1997) Vibrational Spectroscopy of NH4⁺ Ions in Zeolitic Materials. <u>An IR Study</u>, 101, 10128-10135.

APPENDICES

Appendix A Investigation of Characteristic Peaks of FT-IR Spectrum of Undoped and Doped Poly(3-thiopheneacetic acid)

FT-IR spectrometer (Thermo Nicolet, Nexus 670) was used to investigate spectra of poly(3-thiophenemethyl acetate) (P3TMA), undoped and doped poly(3-thiophene acetic acid) (Pth). The spectrometer was operated in the absorption mode with 32 scans and a resolution of ± 4 cm⁻¹, covering a wavenumber range of 4000-400 cm⁻¹. Optical grade KBr was used as the background material and the polymers were mixed with dried KBr at a ratio 1:20.

Figure A1 The FT-IR spectra of : a) poly(3-thiophenemethyl acetate); b) undoped poly(3-thiophene acetic acid); and c) poly(3-thiopheneacetic acid) doped with HClO₄ at mole ratio of acid to monomer unit of 10:1.

In Figure A1, distinct peaks of P3TMA and Pth appear between 3400-2400 cm⁻¹. A broad peak is the characteristic of hydroxy fuctional group of Pth which ensures us a successful synthesization of this polymer by the oxidation

polymerization. After doping with perchloric acid, some characteristic peaks of acid appear on FT-IR spectra. There are appearances of a lower absorbance at 3400-2400 cm⁻¹ and a sharp peak at 1200 cm⁻¹.

The assignments of the peaks in the spectrum are shown in Table A1. The characteristic peak of Pth appears at 3200-3000 cm⁻¹ and can be assigned to the stretching vibration of the C-H bond on the thiophene ring; peaks between 3000-2800 cm⁻¹ represent the aliphatic C-H bonds; a peak at 1700 cm⁻¹ represents the C=O stretching vibration; a peak at 1400 cm⁻¹ represents the thiophene ring stretching vibration; and peaks between 1300-1200 cm⁻¹ represent the C-O stretching vibration. The important feature peak is the extremely broad O-H absorption occurring in the region from 3400 to 2400 cm⁻¹, which is attributed to the strong hydrogen bonding of the dimer. In the same region, the C-H stretching vibrations occurs (Kim *et al.*, 1999).

Wavenumber (cm ⁻¹)	Assignments	References
3400-2400	O-H stretching vibration	Kim et al. (1999)
3200-3000	C-H stretching of thiophene ring	Kim et al. (1999)
3000-2800	C-H stretching of aliphatic	Kim et al. (1999)
1700	C=O stretching vibration	Kim et al. (1999)
1400	Thiophene ring stretching vibration	Kim et al. (1999)
1300-1200	C-O stretching vibration	Kim et al. (1999)
835	C-H stretching, out of plane of thiophene ring	Kim et al. (1999)

Table A1 The FT-IR absorption spectrum of undoped and doped PTAA with HClO₄

Appendix B Investigation of the Thermal Property of Undoped and Doped Pth

Undoped and doped poly(3-thiopheneacetic acid) (Pth) at 10:1 mole ratio of dopant to monomer unit were characterized by a thermal gravimetric analyzer (Perkin Elmer). Measurements were carried out with the temperature scan from 30 to 800 °C and a heating rate of 10 °C/min. The samples were weighed in the range of 5-20 mg and loaded into a platinum pan, and then it was heated under N₂ flow. Two transitions were observed in the undoped poly (3-thiopheneacetic acid). The first transition can be referred to the losses of water and residue solvent. The other transitions, respectively (Chotpattananont *et al.*, 2004; Hu *et al.*, 2000). After the doping, the thermal stability decreased as compared to undoped Pth. For doped poly(3-thiopheneacetic acid) (Pth), there are two transitions. The first transition can be referred to the losses of water and residue solvent. The other transition can be referred as compared to undoped Pth. For doped poly(3-thiopheneacetic acid) (Pth), there are two transitions. The first transition can be referred to the losses of water and residue solvent. The second transition can be referred to the losses of water and residue solvent. The first transition can be referred to the losses of water and residue solvent. The first transition can be referred to the losses of water and residue solvent. The first transition can be referred to the losses of water and residue solvent. The second transition can be referred to the side chain degradation (Kaneungnit *et al.*, 2007).

Table B1	Degradation	steps of undo	ped and doped 1	Pth
----------	-------------	---------------	-----------------	-----

Sample	T _d on	set (°C)	% Wei	ght loss
	1 2		1	2
Pth_u	219.0	474.7	25.52	14.94
Pth_10:1	120.7	-	58.91	-

Figure B1 TGA thermograms of undoped and doped Pth with HClO₄.

Appendix C Determination of Particle size and Size distribution of Undoped and Doped poly(3-thiopheneacetic acid)

Particle size analyser (Malvern, Mastersizer X Version 2.15) was used to measure the particle size of undoped and doped poly(3-thiophene acetic acid). Poly(3-thiopheneacetic acid) was grounded and sieved with mesh size 38 μ m before measurement were taken.

 Table C1
 Summary data of particle size of undoped and doped poly(3-thiopheneacetic acid)

Samplas	Particle diameter (µm)							
Samples	1	2	3	Avg.	STD			
Pth_U	39.29	39.01	39.54	39.28	0.2651			
Pth_10:1	39.66	39.07	39.85	39.53	0.4067			

 Table C2
 Summary data of particle size of Zeolite Y

....

•

1

.

Samplas	Particle diameter (µm)						
Samples	1	2	3	Avg.	STD		
Y	28.74	30.84	30.64	30.07	1.1590		

Partic diamet	Particle size diameter (µm)		Undope polythiophene				
Size Low	Size high	In %	Under %	In %	Under %	In %	Under %
0.05	0.12	0.00	0.00	0.00	0.00	0.00	0.00
0.12	0.15	0.00	0.00	0.00	0.00	0.00	0.00
0.15	0.19	0.00	0.00	0.00	0.00	0.00	0.00
0.19	0.23	0.00	0.00	0.00	0.00	0.00	0.00
0.23	0.28	0.00	0.00	0.00	0.00	0.00	0.00
0.28	0.35	0.00	0.00	0.00	0.00	0.00	0.00
0.35	0.43	0.00	0.00	0.00	0.00	0.00	0.00
0.43	0.53	0.00	0.00	0.00	0.00	0.00	0.00
0.53	0.65	0.00	0.00	0.00	0.00	0.00	0.00
0.65	0.81	0.00	0.00	0.00	0.00	0.00	0.00
0.81	1.00	0.00	0.00	0.00	0.00	0.00	0.00
1.00	1.23	0.62	0.62	0.65	0.65	0.62	0.62
1.23	1.51	0.61	1.23	0.63	1.29	0.61	1.23
1.51	1.86	0.53	1.76	0.55	1.84	0.61	1.84
1.86	2.30	0.54	2.30	0.56	2.40	0.61	2.45
2.30	2.83	0.49	2.79	0.51	2.92	0.61	3.06
2.83	3.49	0.56	3.35	0.58	3.50	0.54	3.60
3.49	4.30	0.71	4.07	0.73	4.22	0.70	4.30
4.30	5.29	1.07	5.13	1.07	5.30	1.05	5.35
5.29	6.52	1.61	6.75	1.63	6.92	1.59	6.94
6.52	8.04	2.26	9.00	2.28	9.20	2.24	9.18
8.04	9.91	2.73	11.73	2.77	11.97	2.71	11.89
9.91	12.21	2.63	14.35	2.70	14.67	2.60	14.49
12.21	15.04	1.96	16.32	2.05	16.72	1.93	16.42
15.04	18.54	1.60	17.92	1.69	18.41	1.54	17.96
18.54	22.84	2.66	20.60	2.73	21.15	2.57	20.53
22.84	28.15	5.50	26.10	5.54	26.69	5.40	25.93
28.15	34.69	10.15	36.25	10.16	36.85	10.02	35.95
34.69	42.75	16.50	52.75	16.46	53.31	16.44	52.49
42.75	52.68	21.35	74.07	21.21	74.49	21.45	73.94
52.68	64.92	18.06	92.08	17.83	92.27	18.36	92.30
64.92	80.00	7.86	100.00	7.67	100.00	8.08	100.00

Table C3 The raw data of particle size of undoped poly(3-thiopheneacetic acid)

Particl	le size	Dope polythiophene with HClO4 at 200:1 mole ratio					
diamete	r (μm)			1 0/		T 0(
Size Low	Size high	In %	Under %	In %	Under %	In %	Under %
0.05	0.12	0.00	0.00	0.05	0.05	0.05	0.06
0.12	0.15	0.00	0.00	0.48	0.53	0.50	0.56
0.15	0.19	0.00	0.00	0.85	1.36	0.89	1.43
0.19	0.23	0.00	0.00	0.00	1.38	0.00	1.45
0.23	0.28	0.00	0.00	0.00	1.38	0.00	1.45
0.28	0.35	0.00	0.00	0.00	1.41	0.00	1.48
0.35	0.43	0.00	0.00	1.07	2.45	1.11	2.56
0.43	0.53	0.00	0.00	0.79	3.24	0.82	3.38
0.53	0.65	0.00	0.00	0.49	3.73	: 0.50	3.88
0.65	0.81	0.00	0.00	0.29	4.02	0.30	4.18
0.81	1.00	0.00	0.00	0.28	4.31	0.29	4.48
1.00	1.23	0.00	0.00	0.51	4.82	· 0.55	5.03
1.23	1.51	0.37	0.37	0.99	5.81	1.06	6.09
1.51	1.86	0.33	0.70	1.61	7.43	1.73	7.82
1.86	2.30	0.41	1.10	2.58	10.01	2.75	10.58
2.30	2.83	0.41	1.51	3.84	13.85	4.04	14.61
2.83	3.49	0.49	2.00	5.18	19.02	5.37	19.99
3.49	4.30	0.66	2.67	6.27	25.29	6.40	26.38
4.30	5.29	1.03	3.70	7.12	32.41	7.13	33.52
5.29	6.52	1.60	5.30	7.53	39.94	7.43	40.94
6.52	8.04	2.32	7.62	7.18	47.11	6.98	47.92
8.04	9.91	2.95	10.57	5.86	52.97	5.63	53.54
9.91	12.21	3.11	13.68	3.82	56.79	3.62	57.17
12.21	15.04	2.65	16.33	1.74	58.54	1.63	58.79
15.04	18.54	2.21	18.55	0.46	59.00	0.43	59.23
18.54	22.84	2.92	21.48	0.73	59.74	0.77	60.00
22.84	28.15	5.35	26.83	2.81	62.55	2.86	62.86
28.15	34.69	9.60	36.44	6.34	68.90	6.37	69.23
34.69	42.75	15.64	52.08	10.30	79.19	10.27	79.49
42.75	52.68	20.68	72.73	11.73	90.90	11.63	91.12
52.68	64.92	18.41	91.09	7.63	98.48	7.50	98.58
64.92	80.00	8.85	100.00	1.47	100.00	1.38	100.00

 Table C4
 The raw data of particle size of doped poly(3-thiopheneacetic acid)

Particle size diameter		Zeolite Y					
(µn	n)						
Size Low	Size high	In %	Under %	In %	Under %	In %	Under %
0.20	0.48	0.49	0.49	0.32	0.32	0.35	0.35
0.48	0.59	1.39	1.88	1.10	1.42	1.20	1.55
0.59	0.71	1.76	3.64	1.49	2.91	1.61	3.16
0.71	0.86	1.64	5.28	1.60	4.51	1.70	4.85
0.86	1.04	1.33	6.60	1.65	6.16	1.69	6.54
1:04	1.26	1.14	7.74	1.68	7.85	1.69	8.23
1.26	1.52	1.20	8.94	1.71	9.56	1.73	9.96
1.52	1.84	1.57	10.52	1.96	11.53	2.01	11.97
1.84	2.23	2.49	13.01	2.91	14.43	2.97	14.94
2.23	2.70	3.80	16.81	4.29	18.72	4.33	19.27
2.70	3.27	4.65	21.46	4.85	23.57	4.87	24.15
3,27	3.95	5.89	27.35	5.89	29.46	5.87	30.01
3.95	4.79	6.87	34.22	6.52	35.99	6.47	36.49
4.79	5.79	7.49	41.71	6.85	42.83	6.78	43.27
5.79	7.01	7.33	49.04	6.49	49.32	6.42	49.69
7.01	8.48	6.39	55.42	5.54	54.86	5.50	55.18
8.48	10.27	5.08	60.50	4.39	59.25	4.37	59.55
10.27	12.43	3.96	64.46	3.54	62.79	3.54	63.09
12.43	15.05	3.28	67.75	3.14	65.93	3.14	66.23
15.05	18.21	2.89	70.64	2.97	68.90	2.98	69.21
18.21	22.04	2.47	73.11	2.65	71.55	2.65	71.85
22.04	26.68	1.78	74.89	1.92	73.46	1.91	73.77
26.68	32.29	0.84	75.71	0.86	74.31	0.85	74.60
32.29	39.08	0.00	75.73	0.00	74.32	0.00	74.62
39.08	47.30	0.00	75.73	0.00	74.32	0.00	74.62
47.30	57.25	0.36	76.10	0.03	74.38	0.00	74.65
57.25	69.30	2.18	78.27	1.85	76.21	1.77	76.40
69.30	83.87	4.74	83.03	4.53	80.74	4.41	80.82
83.87	101.52	7.06	90.08	7.23	87.96	7.10	87.91
101.52	122.87	6.96	97.02	7.85	95.80	7.79	95.69
122.87	148.72	2.96	99.96	4.19	99.96	4.30	99.96
148.72	180.00	0.00	100.00	0.00	100.00	0.00	100.00

Table C5 The raw data of particle size of Zeolite Y

Appendix D Identification of Crytallinity of Undoped and Doped Pth and Structure of Zeolite by X-ray Diffraction

Crystallinity and structures of poly(3-thiopheneacetic acid) and zeolite were identified by a X-ray Diffractometer (XRD) (D/MAX 2200). Powders of polymer and zeolite were packed onto a glasss plate and data were collected after X-ray passed though the sample. Properties of polythiophene can be identified by the peaks of graph. The area of broad peak can be identified as the amorphous part. The structure of zeolite can be considered from the position of each peak.

Figure D1 XRD pattern of: a) undoped and; b) doped poly(3-thiphene acetic acid) with HClO₄.

Figure D2 XRD pattern of Zeolite y.

 Table D1
 Raw data of XRD analysis of undoped and doped poly(3-thiopheneacetic acid)

	2Theta	d-value	Intensity	I/10
Pth_u	23.30	3.8145	371	100
	25.20	3.5311	319	88
	26.65	3.3422	221	60
Pth_10:1	21.35	4.1583	241	88
	22.15	4.0099	274	100
	23.10	3.8471	263	96
	23.95	3.7125	231	86

References (Nurma <i>et al.</i> (2007))	Raw data					
2Theta	I/I ₀	Intensity	d-value (A)	2Theta		
6.20	80	2955	14.2437	6.20		
10.10	26	952	8.7077	10.15		
11.80	24	871	7.4308	11.90		
15.60	78	2887	5.6577	15.65		
18.60	36	1327	4.7412	18.70		
20.20	54	2018	4.3604	20.35		
22.70	20	737	3.8971	22.80		
23.50	100	3773	3.7589	23.65		
26.90	68	2540	3.2936	27.05		
29.50	28	1019	3.0105	29.65		
31.20	88	3279	2.8466	31.40		
32.20	30	1065	· 2.7568	32.45		
33.90	28	1046	2.6271	34.10		
37.60	20	695	2.3750	37.85		
	30 28 20	1065 1046 695	· 2.7568 2.6271 2.3750	32.45 34.10 37.85		

Table D2 Raw data of XRD analysis of Zeolite Y

Appendix E Density Measurement

The specific density (ρ_p) of the conductive polymer and zeolite can be measured by using a pycnometer. At first, we measured the weight of the blank pycnometer then added the water to the pycnometer and measured the total weight again. The specific density of water at testing temperature can be calculated by equation (E.1).

$$\rho_{\rm w} = \frac{(a-b)}{V} \tag{E.1}$$

where ρ_w is the specific density of water (g.cm⁻³), a is the weight of pycnometer with water (g), b is the weight of blank pycnometer (g), and V is the volume of the pycnometer.

Next step, we measured the weight of the blank pycnometer again and then we added polymer or zeolite powders and measured the total weight. Then we added water into the pycnometer and then measured the total weight of pycnometer. The specific density of polymer and zeolite at a testing temperature can be calculated from equations (E2) – (E.3).

$$V_{H_20} = \frac{(e-d)}{\rho_w} \tag{E.2}$$

where V_{H_2O} is the volume of water added into the pycnometer (cm³), e is the weight of the pycnometer with water and polymer or zeolite (g), d is the weight of polymer or zeolite powder and the pycnometer (g), and ρ_w is the specific density of water (g.cm⁻³) that calculated from equation E.1.

$$\rho_{\rm m} = \frac{(d-b)}{V - V_{H,O}} \tag{E.3}$$

where ρ_m is the specific density of material (g.cm⁻³), d is the weight of polymer or zeolite powder and the pycnometer (g), b is the weight of blank pycnometer (g), V is

the volume of the pycnometer, and V_{H_2O} is the volume of water added into the pycnometer (cm³).

Materials	Cation types	Si/Al ratios	$ ho_m (g/cm^3)$		AVG
H ₂ O	-	-	0.9964	0.9964	0.9964
Pth	-	-	1.6039	1.5908	1.5974
	Na ⁺	5.1	1.8380	1.7481	1.7931
	NH ₄ ⁺	5.1	1.9019	1.7705	1.8362
Zeolite Y	H^+	5.1	2.4852	2.1832	2.3342
	H ⁺	30	1.9070	2.0720	1.9895
	H ⁺	60	1.5819	1.6510	1.6164
	H ⁺	80	1.5989	1.6144	1.6066

 Table E1
 Summary data of the specific density of materials

.

Appendix F Determination of the Correction Factor (K)

The electrical conductivity of the conductive polymer was measured by using two-point probe meter. The surface of sample was in contact with two probes connected to a source meter (Keithley, Model 6517A). A constant voltage was applied and the resultant was measured.

The geometrical correction factor was taken into account of geometric effects, depending on the configuration and probe tip spacing.

$$K = \frac{w}{l} \tag{F.1}$$

K is the geometrical correction factor, w is the width of probe tip spacing (cm), l is the length between probes (cm).

In this measurement, the constant K value was determined by using standard materials where specific resistivity values were known; we used silicon wafer chips (SiO₂). In our case, the sheet resistivity was measured by using our custom made two-point probe and then the geometric correction factor was calculated by equation (F.2) as follows:

$$K = \frac{\rho}{R \times t} = \frac{I \times \rho}{V \times t}$$
(F.2)

K is the geometric correction factor, ρ is the resistivity of standard silicon wafer, which was calibrated by using a four point probe at King Mongkut's Institute Technology of Lad Krabang (Ω .cm), t is the film thickness (cm), R is the film resistance (Ω), I is the measured current (A), and V is the voltage drop (V).

Standard Si wafers were cleaned to remove organic impurities prior to be used according to the standard RCA method (Kern, 1993).

Materials

Acetones (Scharlau, 99.5%), Methanol (CARLO ERBA, 99.9%), Ammonium hydroxide (Merk, 99.9%), Hydrogen peroxide (CARLO ERBA, 30% in water), and dilute (2%) Hydrofuric acid

Experiment

The cleaning procedures contain 3 steps: the solvent clean, the RCA01 and the HF dip. The first step is the solvent clean step, employed to remove oils and organic residues that appeared on Si wafer surface. The Si wafer was placed into the acetone at 55 °C for 10 min, removed and placed in methanol for 2-5 min, subsequently rinsed with deionized water and blown dried with nitrogen gas. The second step is the RCA clean, to remove organic residues from silicon wafers. This process oxidized the silicon wafer and left a thin oxide on the surface of the wafer. RCA solution was prepared with 5 parts of water (H₂O), 1 part of 27% ammonium hydroxide (NH₄OH), and 1 part of 30% hydrogen peroxide (H₂O₂). 65 ml of NH₄OH (27%) was added into 325 ml of deionized water in a beaker and then heated to $70 \pm 5^{\circ}$ C. The mixture would bubble vigorously after 1-2 min, indicated that it was ready to use. Silicon wafer was soaked in the solution for 15 min, consequently overflowed with deionized water in order to rinse and remove the solution. The third step is the HF dip, which was carried out to remove native silicon dioxide from wafer. 480 ml of deionised water was added to the polypropylene bottle and then added to 20 ml HF. Wafer was soaked in this solution for 2 min, removed and checked for hydrophobicity by performing the wetting test. Deionized water was poured onto the surface wafer; the clean silicon surface would show that the beads of water would roll off. Clean Si wafer was further blown dried with nitrogen and stored in a clean and dry environment.

Probe	K (correction factor)						
	1	2	3	Average			
1	1.07E-04	1.07E-04	1.07E-04	1.07E-04			

Figure F1 The calibration data of Si-wafer: K tay which $\frac{specific resistivity(\rho)}{thickness(t)} = 107.373 \,\Omega$, 24-25°C, 55-59 %R.H.

Vol	t Applied	(V)		Curre	nt (A)	
1	2	3	1	2	3	Average
1.5	1.5	1.5	2.16E-06	2.18E-06	2.16E-06	2.16E-06
2.0	2.0	2.0	2.76E-06	2.73E-06	2.72E-06	2.74E-06
2.5	2.5	2.5	3.14E-06	3.13E-06	3.11E-06	3.13E-06
3.0	3.0	3.0	3.60E-06	3.57E-06	3.50E-06	3.56E-06
3.5	3.5	3.5	4.04E-06	· 3.97E-06	3.92E-06	3.98E-06
4.0	4.0	4.0	4.56E-06	: 4.47E-06	4.37E-06	4.46E-06
4.5	4.5	4.5	4.95E-06	: 4.94E-06	4.90E-06	4.93E-06
5.0	5.0	5.0	5.53E-06	5.48E-06	5.37E-06	5.46E-06
5.5	5.5	5.5	6.42E-06	6.28E-06	6.28E-06	6.33E-06

: * * :

•

Table F2 Determination the correction factor of probe 1 with standard Si wafer $(\frac{specific \ resistivity(\rho)}{thickness(t)} = 107.373 \ \Omega, 24-25^{\circ}C, 55-59\% \ R.H)$

Appendix G Conductivity Measurement

The specific conductivity was measured with a two point probe connected to a source meter (Keithley, Model 6517A), and in contact with sample surface and a constant voltage was applied. So a responsive current was measured under the atmospheric pressure, 54-60% relative humidity and 24-25 °C. When a responsive current varies linearly with voltage in this region, it is called the linear ohmic regime which can be identified by plotting the applied voltage versus the current. The applied voltage and the current change in the linear ohmic regime were converted to the electrical conductivity of the polymer by using equation (G1) as follows:

$$\sigma = \frac{1}{\rho} = \frac{1}{R_s \times t} = \frac{I}{K \times V \times t}$$
(G1)

where σ is the specific conductivity (S/cm), ρ is the specific resistivity (Ω .cm), R_s is the sheet resistivity (Ω), I is the measured current (A), K is the geometric correction factor, V is the applied voltage (voltage drop) (V), and t is the pellet thickness (cm).

In this measurement, the geometric correction factor (K) of probe 1 is 1.07×10^{-4} and the thickness of sample pellets was measured by using a thickness gauge.

In addition the conductivity of matrixes can be measured by using the resistivity testing fixture (Keithley, Model 8009) connected to a source meter (Keithley, Model 6517A) for a constant voltage source and reading resultant current under the atmospheric pressure, 54-60% relative humidity and 24-25°C. The conductivity of matrixes can calculated by using equation (G2 - G3) as follows:

$$K_{v} = \frac{\pi \times \left(D + \left[\beta \times g\right]\right)^{2}}{4}$$
(G2)

where K_v is effective area of the guarded electrode for the particular electrode arrangement employed (cm²), D is diameter of the guarded electrode (cm),

 β is effective area coefficient (cm²) (β is always zero), g is distance between the guarded electrode and the ring electrode (cm).

$$\sigma = \frac{1}{\rho} = \frac{t \times I}{22.9 \times V} \tag{G3}$$

where σ is the specific conductivity (S/cm), ρ is the specific resistivity (Ω .cm), I is the measured current (A), V is the applied voltage (voltage drop) (V), and t is the sheet thickness (cm).

Table G1 Determination the specific conductivity (S/cm) of undoped and dopedpoly(3-thiopheneacetic acid) with different mole ratio of HClO4 to monomer unit

1.1

Code	Specific co (S/	onductivity cm)	AVG	STD
Pth_u	1.26E-04	1.06E-04	1.16E-04	1.41E-05
Pth_1:1	6.22E-04	6.79E-04	6.51E-04	4.00E-05
Pth_3:1	1.39E-02	4.34E-02	2.86E-02	2.08E-02
Pth_5:1	2.42E-02	2.98E-02	2.70E-02	3.94E-02
Pth_7:1	5.36E-02	3.37E-02	4.36E-02	1.40E-02
Pth_10:1	8.47E+00	12.15E+00	10.31E+00	2.61E+00
Pth_50:1	10.23E+00	5.62E+00	7.93E+00	3.26E+00
Pth_100:1	7.23E+00	4.53E+00	5.88E+00	1.91E+00
Pth_200:1	8.23E+00	2.49E+00	5.36E+00	4.06E+00
Pth_300:1	1.04E+00	1.25E+00	1.15E+00	0.15E+00

Fig G1 the specific conductivity (S/cm) of undoped and doped poly(3-thiopheneacetic acid) with different mole ratio of HClO₄ to monomer unit

 Table G2
 Determination the specific conductivity (S/cm) of Zeolite

Code	Cation type	Si/Al ratios	Specific conductivity		AVG	STD
			(S/	'cm)		
	Na ⁺	5.1	5.14E-04	1.83E-04	3.48E-04	2.34E-04
	NH ₄ ⁺	5.1	1.81E-04	7.80E-05	1.30E-04	7.31E-05
v	H ⁺	5.1	6.70E-04	4.00E-04	3.55E-04	4.45E-04
1	H ⁺	30	2.72E-04	6.15E-04	4.43E-04	2.42E-04
	H ⁺	60	8.52E-02	1.59E-03	4.34E-02	5.91E-02
	H ⁺	80	2.38E-02	5.89E-04	1.22E-02	1.64E-02

Samala	Thickness	Applied v	oltage (V)	Measured C	Current (A)	Conductivity (S/cm)		
Sample	(cm)	1	2	1	2	1	2	
Pth_u	1) 0.0222	0.7	0.3	3.62E-09	3.56E-09	2.18E-03	6.29E-03	
	2) 0.0177	0.8	0.4	3.62E-09	3.57E-09	1.91E-03	4.71E-03	
		0.9	0.5	3.66E-09	3.58E-09	1.71E-03	3.78E-03	
		1.0	0.6	3.66E-09	3.61E-09	1.54E-03	3.18E-03	
		1.5	0.7	3.83E-09	3.61E-09	1.08E-03	2.73E-03	
• •		2.0	0.8	3.97E-09	3.61E-09	8.35E-04	2.39E-03	
		2.5	0.9	4.07E-09	3.66E-09	6.85E-04	2.15E-03	
• •		3.0	1.0	4.29E-09	3.70E-09	6.02E-04	1.96E-03	
		3.5	1.5	4.34E-09	3.80E-09	5.22E-04	1.34E-03	
4		4.0	2.0	4.60E-09	3.89E-09	4.84E-04	1.03E-03	
	-	4.5	2.5	4.72E-09	3.97E-09	4.42E-04	8.41E-04	
		5.0	3.0	4.87E-09	4.07E-09	4.10E-04	7.18E-04	
- 10		5.5	3.5	5.02E-09	4.16E-09	3.85E-04	6.28E-04	
		6.0	4.0	5.22E-09	4.22E-09	3.67E-04	5.58E-04	
		6.5	4.5	5.23E-09	4.32E-09	3.38E-04	5.08E-04	
¥		7.0	5.0	5.34E-09	4.41E-09	3.21E-04	4.66E-04	
1		7.5	5.5	5.55E-09	4.48E-09	3.11E-04	4.31E-04	
		8.0	6.0	5.69E-09	4.56E-09	2.99E-04	4.02E-04	

Table G3 The raw data of the determination of linear regime of undoped poly(3-thiopheneacetic acid) at 24-25°C, 54-60% R.H.

Fig G2 The linear regime of undoped poly(3-thiopheneacetic acid) at 24-25°C, 54-60% R.H.

6	Thickness	Applied ve	oltage (V)	Measured C	urrent (A)	Conductivi	ty (S/cm)
Sample	(ст)	I	2	1	2	1	2
Pth_1:1	1) 0.0300	0.60	3.00	3.89E-09	6.05E-09	2.02E-03	6.27E-04
	2) 0.0275	0.70	3.50	4.68E-09	6.33E-09	2.08E-03	5.63E-04
		0.80	4.00	3.49E-09	6.45E-09	1.36E-03	5.01E-04
	4-2	0.90	4.50	3.85E-09	8.40E-09	1.33E-03	5.81E-04
		1.00	5.00	5.43E-09	8.17E-09	1.69E-03	5.09E-04
		1.20	5.50	5.48E-09	9.58E-09	1.42E-03	5.42E-04
		1.40	6.00	5.72E-09	1.04E-08	1.27E-03	5.37E-04
		1.60	6.50	5.81E-09	1.08E-08	1.13E-03	5.15E-04
		1.80	7.00	5.90E-09	1.17E-08	1.02E-03	5.21E-04
		2.00		6.76E-09		1.05E-03	
		· 2.20	7	8.25E-09		1.17E-03	
		2.40		8.21E-09		1.06E-03	
		2.60		8.50E-09		1.02E-03	
		2.80		7.73E-09		8.59E-04	
		3.00		9.37E-09		9.72E-04	
		3.50		1.13E-08		1.00E-03	
		4.00		1.19E-08		9.29E-04	
		4.50		1.24E-08		8.55E-04	
	52.0	5.00		1.43E-08		8.93E-04	
		5.50		1.39E-08		7.87E-04	
	14.0	6.00		1.60E-08		8.28E-04	
		6.50		1.70E-08		8.15E-04	

Table G4 The raw data of the determination of linear regime of doped poly(3-thiopheneacetic acid) 1:1 at 26 °C \pm 1 °C, (54 to 60) % R.H.

Fig G3 The linear regime of doped poly(3-thiopheneacetic acid) 1:1 at 24-25°C, 54-60% R.H.

Table G5 The raw data of the determination of linear regime of doped poly(3-thiopheneacetic acid) 3:1 at 26 °C \pm 1 °C, (54 to 60) % R.H.

Samula	Thickness	Applied v	oltage (V)	Measured C	urrent (A)	Conductivity (S/cm)	
Sample	(ст)	1	2	1	2	1	2
Pth_3:1	1) 0.0605	3.00	3.00	3.94E-07	1.11E-06	2.03E-02	5.36 E-02
	2) 0.0646	3.50	3.50	4.44E-07	1.33E-06	1.96E-02	5.50 E-02
		4.00	4.00	5.03E-07	1.50E-06	1.94E-02	5.43 E-02
		4.50	4.50	5.60E-07	1.66E-06	1.92E-02	5.32 E-02
		5.00	5.00	6.14E-07	1.81E-06	1.90E-02	5.25 E-02
		5.50	5.50	6.66E-07	1.97E-06	1.87E-02	5.18 E-02
		6.00	6.00	7.37E-07	2.12E-06	1.90E-02	5.10 E-02
		6.50	6.50	7.62E-07	2.29E-06	1.81E-02	5.10 E-02
		7.00	7.00	8.03E-07	2.36E-06	1.77E-02	4.88 E-02
		7.50	7.50	8.44E-07	2.41E-06	1.74E-02	4.65 E-02
		8.00	8.00	8.95E-07	2.51E-06	1.73E-02	4.54 E-02
		8.50	8.50	9.05E-07	2.62E-06	1.64E-02	4.46 E-02
		9.00	9.00	9.35E-07	2.73E-06	1.60E-02	4.39 E-02
		9.50	9.50	9.60E-07	2.96E-06	1.56E-02	4.51 E-02

Fig G4 The linear regime of doped poly(3-thiopheneacetic acid) 3:1 at 24-25°C, 54-60% R.H.

Table G6 The raw data of the determination of linear regime of doped poly(3-thiopheneacetic acid) 5:1 at 26 °C \pm 1 °C, (54 to 60) % R.H.

Samala	Thickness	Applied v	oltage (V)	Measured C	Current (A)	Conductivity (S/cm)	
Sample	(cm)	1	2	1	2	1	2
Pth_5:1	1) 0.0771	2.50	1.50	8.07E-07	2.85E-07	3.91E-02	2.83 E-02
	2) 0.0627	3.00	2.00	9.24E-07	3.60E-07	3.73E-02	2.68 E-02
		3.50	2.50	1.04E-06	4.42E-07	3.61E-02	2.64 E-02
		4.00	3.00	1.18E-06	5.00E-07	3.58E-02	2.48 E-02
		4.50	3.50	1.27E-06	5.79E-07	3.43E-02	2.47 E-02
		5.00	4.00	1.40E-06	6.67E-07	3.39E-02	2.49 E-02
		5.50	4.50	1.53E-06	7.68E-07	3.37E-02	2.54 E-02
		6.00	5.00	1.58E-06	8.38E-07	3.20E-02	2.50 E-02
		6.50	5.50	1.67E-06	9.21E-07	3.11E-02	2.50 E-02
		7.00	6.00	1.75E-06	9.98E-07	3.04E-02	2.48 E-02
		7.50	6.50	1.84E-06	1.06E-06	2.97E-02	2.43 E-02
		8.00	7.00	1.90E-06	1.13E-06	2.89E-02	2.40 E-02
		8.50	7.50	2.05E-06	1.19E-06	2.93E-02	2.36 E-02
			8.00		1.24E-06		2.32 E-02

Fig G5 The linear regime of doped poly(3-thiopheneacetic acid) 5:1 at 24-25°C, 54-60% R.H.

Table G7 The raw data of the determination of linear regime of doped poly(3-thiopheneacetic acid) 7:1 at 26 °C \pm 1 °C, (54 to 60) % R.H.

Sample	Thickness	Applied v	oltage (V)	Measured C	Current (A)	Conductiv	ity (S/cm)
Sample	(cm)	1	2	1	2	1	2
Ptb_7:1	1) 0.0349	1.50	1.00	2.34E-07	2.28E-07	4.17E-02	3.84 E-02
	2) 0.0555	2.00	1.50	3.12E-07	3.64E-07	4.18E-02	4.08 E-02
		2.50	2.00	3.99E-07	5.02E-07	4.28E-02	4.23 E-02
		3.00	2.50	4.73E-07	6.04E-07	4.22E-02	4.07 E-02
		3.50	3.00	5.65E-07	7.43E-07	4.33E-02	4.17 E-02
		4.00	3.50	6.53E-07	8.62E-07	4.37E-02	4.15 E-02
		4.50	4.00	7.17E-07	9.49E-07	4.27E-02	4.00 E-02
		5.00	4.50	8.12E-07	1.08E-06	4.35E-02	4.06 E-02
		5.50	5.00	9.05E-07	1.21E-06	4.40E-02	4.08 E-02
		6.00	5.50	9.92E-07	1.35E-06	4.43E-02	4.15 E-02
		6.50	6.00	1.08E-06	1.48E-06	4.47E-02	4.16 E-02
		7.00	6.50	1.18E-06	1.59E-06	4.50E-02	4.12 E-02
		7.50	7.00	1.27E-06	1.69E-06	4.53E-02	4.08 E-02
		8.00		1.36E-06		4.55E-02	
		8.50		1.45E-06		4.56E-02	
		9.00		1.52E-06		4.51E-02	
		9.50		1.57E-06		4.44E-02	

Fig G6 The linear regime of doped poly(3-thiopheneacetic acid) 7:1 at 24-25°C, 54-60% R.H.

Table G8 The raw data of the determination of linear regime of doped poly(3-thiopheneacetic acid) 10:1 at 26 °C \pm 1 °C, (54 to 60) % R.H.

Samala	Thickness	Applied v	oltage (V)	Measured Cu	irrent (A)	Conductivity (S/cm)	
Sample	(ст)	1	2	1	2	1	2
Ptb_10:1	1) 0.0883	1.00	0.60	8.34E-05	1.05E-05	7.79E+00	1.63E+00
	2) 0.1000	1.50	0.70	1.63E-04	1.47E-05	10.17E+00	1.96E+00
		2.00	0.80	2.37E-04	1.92E-05	11.07E+00	2.24E+00
		2.50	0.90	3.09E-04	2.38E-05	11.57E+00	2.47E+00
		3.00	1.00	3.78E-04	2.79E-05	11.79E+00	2.61E+00
		3.50	1.50	4.35E-04	5.46E-05	11.63E+00	3.40E+00
		4.00	2.00	4.79E-04	7.99E-05	11.18E+00	3.74E+00
		4.50	2.50	5.31E-04	1.05E-04	11.03E+00	3.92E+00
		5.00	3.00	6.09E-04	1.26E-04	11.38E+00	3.92E+00
		5.50	3.50	6.57E-04	1.43E-04	11.17E+00	3.82E+00
		6.00		7.10E-04		11.06E+00	
		6.50		7.83E-04		11.27E+00	
		7.00		8.45E-04		11.28E+00	
		7.50		9.33E-04		11.62E+00	

Fig G7 The linear regime of doped poly(3-thiopheneacetic acid) 10:1 at 24-25°C, 54-60% R.H.

Table G9 The raw data of the determination of linear regime of doped poly(3-thiopheneacetic acid) 50:1 at 26 °C \pm 1 °C, (54 to 60) % R.H.

	Thickness	Applied y	oltage (V)	Measured C	urrent (A)	Conductivity (S/cm)	
Sample	- Interness	Applica		incasured C			
	(cm)	1	2	1	2	1	2
Pth_50:1	1) 0.0731	0.30	0.40	1.70E-06	2.77E-06	7.24E-01	7.78E-01
	2) 0 0832	0.40	0.50	4.24E-06	5.32E-06	1.36E+00	1.20E+00
		0.50	0.60	1.03E-05	9.20E-06	2.63E+00	1.72E+00
		0.60	0.70	1.64E-05	1.40E-05	3.49E+00	2.25E+00
		0.70	0.80	2.32E-05	1.87E-05	4.24E+00	2.63E+00
		0.80	0.90	3.08E-05	2.25E-05	4.92E+00	2.81E+00
		0.90	1.00	3.83E-05	2.50E-05	5.44E+00	2.81E+00
		1.00	1.50	4.03E-05	5.50E-05	5.16E+00	4.12E+00
		1.50	2.00	8.62E-05	8.34E-05	7.35E+00	4.68E+00
		2.00	2.50	1.35E-04	1.10E-04	8.61E+00	4.95E+00
		2.50	3.00	1.83E-04	1.28E-04	9.34E+00	4_81E+00
		3.00	3.50	2.14E-04	1.41E-04	9.13E+00	4.52E+00
		3.50		2.46E-04		8.98E+00	

Fig G8 The linear regime of doped poly(3-thiopheneacetic acid) 50:1 at 24-25°C, 54-60% R.H.

Table G10 The raw data of the determination of linear regime of doped poly(3-thiopheneacetic acid) 100:1 at $26 \,^{\circ}\text{C} \pm 1 \,^{\circ}\text{C}$, (54 to 60) % R.H.

Samala	Thickness	Applied v	oltage (V)	Measured C	Current (A)	Conductivity (S/cm)	
зашре	(cm)	1	2	1	2	1	2
Pth_100:1	1) 0.0388	0.20	0.20	2.57E-06	2.43E-06	3.10E+00	2.76E+00
	2) 0.0412	0.30	0.30	3.73E-06	3.40E-06	3.00E+00	2.57E+00
		0.40	0.40	5.25E-06	4.47E-06	3.16E+00	2.53E+00
		0.50	0.50	7.14E-06	5.80E-06	3.44E+00	2.63E+00
		0.60	0.60	9.45E-06	7.42E-06	3.80E+00	2.80E+00
		0.70	0.70	1.21E-05	9.28E-06	4.16E+00	3.01E+00
		0.80	0.80	1.49E-05	1.13E-05	4.48E+00	3.20E+00
		0.90	0.90	1.78E-05	1.34E-05	4.76E+00	3.36E+00
		1.00	1.00	2.03E-05	1.51E-05	4.90E+00	3.42E+00
		1.50	1.50	3.62E-05	2.61E-05	5.82E+00	3.94E+00
		2.00	2.00	5.20E-05	3.76E-05	6.27E+00	4.26E+00
		2.50	2.50	6.76E-05	4.85E-05	6.52E+00	4.40E+00
		3.00	3.00	8.23E-05	5.89E-05	6.61E+00	4.45E+00
		3.50	3.50	9.74E-05	6.86E-05	6.71E+00	4.44E+00
		4.00	4.00	1.14E-04	7.76E-05	6.87E+00	4.40E+00
		4.50		1.21E-04		6.46E+00	

Fig G9 The linear regime of doped poly(3-thiopheneacetic acid) 100:1 at 24-25°C, 54-60% R.H.

Table G11 The raw data of the determination of linear regime of doped poly(3-thiopheneacetic acid) 200:1 at 26 °C \pm 1 °C, (54 to 60) % R.H.

Sample - Ptb_200:1	Thickness	Applied v	oltage (V)	Measured C	urrent (A)	Conductiv	ity (S/cm)
	(cm)	1	2	1	2	1	2
Ptb_200:1	1) 0.0795	0.40	0.70	1.05E-06	9.76E-06	3.08E-01	2.05E+00
	2) 0.0752	0.50	0.80	2.73E-06	1.20E-05	6.41E-01	2.21E+00
		0.60	0.90	6.60E-06	1.41E-05	1.29E+00	2.29E+00
		0.70	1.00	1.23E-05	1.58E-05	2.07E+00	2.32E+00
		0.80	1.50	1.84E-05	2.91E-05	2.70E+00	2.85E+00
		0.90	2.00	2.48E-05	4.18E-05	3.24E+00	3.06E+00
		1.00	2.50	2.94E-05	5.53E-05	3.46E+00	3.24E+00
		1.50	3.00	7.04E-05	6.81E-05	5.51E+00	3.33E+00
		2.00	3.50	1.14E-04	8.02E-05	6.67E+00	3.36E+00
		2.50	4.00	1.45E-04	9.07E-05	6.83E+00	3.33E+00
		3.00		1.76E-04		6.88E+00	
		3.50		1.99E-04		6.67E+00	
		4.00		2.26E-04		6.65E+00	

Fig G10 The linear regime of doped poly(3-thiopheneacetic acid) 200:1 at 24-25°C, 54-60% R.H.

Table G12 The raw data of the determination of linear regime of doped poly(3-thiopheneacetic acid) 300:1 at 26 °C \pm 1 °C, (54 to 60) % R.H.

Samala	Thickness	Applied ve	oltage (V)	Measured C	Current (A)	Conductiv	ity (S/cm)
Sample	(cm)	1	2	1	2	1	2
Pth_300:1	1) 0.0900	0.50	0.20	4.04E-06	1.46E-07	8.40E-01	8.99E-02
	2) 0.0760	0.60	0.30	5.46E-06	3.20E-07	9.45E-01	1.31 E-01
		0.70	0.40	6.88E-06	5.36E-07	1.02E+00	1.65 E-01
		0.80	0.50	8.17E-06	7.96E-07	1.06E+00	1.96 E-01
		0.90	0.60	8.58E-06	1.08E-06	9.90E-01	2.22 E-01
		1.00	0.70	9.44E-06	1.35E-06	9.81E-01	2.37 E-01
		1.20	0.80	1.18E-05	1.57E-06	1.02E+00	2.42 E-01
		1.40	0.90	1.43E-05	1.74E-06	1.06E+00	2.38 E-01
		1.60	1.00	1.65E-05	1.93E-06	1.07E+00	2.38 E-01
		1.80	1.20	1.83E-05	2.43E-06	1.06E+00	2.49 E-01
		2.00		2.00E-05		1.04E+00	

Fig G11 The linear regime of doped poly(3-thiopheneacetic acid) 300:1 at 24-25°C, 54-60% R.H.

Sample Y	Cation	Si/Al	Thickness	Applied	voltage (v)	Measure C	Current (A)	Conductiv	vity (S/cm)
Sample	type	ratios	(cm)	1	2	I	2	1	2
Y	Na ⁺	5.1	1) 0.0364	4.50	4.00	6.66E-09	6.40E-09	3.80E-04	4.11E-04
			2) 0.0510	5.00	4.50	7.06E-09	5.50E-09	3.63E-04	3.14E-04
				5.50	5.00	8.71E-09	6.71E-09	4.06E-04	3.45E-04
			1	6.00	5.50	9.43E-09	8.08E-09	4.04E-04	3.77E-04
				6.50	6.00	1.02E-08	8.51E-09	4.03E-04	3.64E-04
				7.00	6.50	9.77E-09	6.83E-09	3.58E-04	2.70E-04
				7.50	7.00	9.35E-09	9.25E-09	3.20E-04	3.39E-04
				8.00	7.50	1.18E-08	1.05E-08	3.78E-04	3.59E-04
				8.50	8.00	1.24E-08	1.04E-08	3.75E-04	3.35E-04
				9.00	8.50	1.27E-08	1.30E-08	3.62E-04	3.91E-04
				9.50	9.00	1.23E-08	1.89E-08	3.32E-04	5.41E-04
				10.00	9.50	1.46E-08	1.19E-08	3.75E-04	3.21E-04
				15.00	10.00	2.38E-08	1.30E-08	4.07E-04	3.34E-04
					15.00		2.11E-08		3.61E-04
					20.00		2.68E-08		3.44E-04
					25.00		3.39E-08		3.48E-04
					30.00		4.48E-08		3.83E-04

Table G13 The raw data of the determination of linear regime of Zeolite Y (Na⁺, Si/Al = 5.1) at 26 °C ± 1 °C, (54 to 60) % R.H.

Fig G12 The linear regime of Zeolite Y Y (Na⁺, Si/Al = 5.1) at 26 °C \pm 1 °C, (54 to 60) % R.H.

Table G14 The raw data of the determination of linear regime of Zeolite $Y(NH_4^+, Si/Al = 5.1)$ at 26 °C ± 1 °C, (54 to 60) % R.H.

	Cation	Si/Al	Thickness	Applied v	oltage (v)	Measure C	Current (A)	Conductivity (S/cm)		
Sample	type	ratios	(cm)	1	2	1	2	1	2	
Y	NH ₄ +	5.1	1) 0.0309	9.00	20.00	5.42E-09	8.34E-09	1.82E-04	1.26E-04	
			2) 0.0479	9.50	25.00	5.48E-09	1.00E-08	1.75E-04	1.21E-04	
				10.00	30.00	4.47E-09	1.02E-08	1.35E-04	1.02E-04	
			1	15.00	35.00	· 9.69E-09	1.12E-08	1.95E-04	9.69E-05	
				20.00	40.00	1.22E-08	1.14E-08	1.84E-04	8.64E-05	
				25.00	50.00	1.23E-08	1.54E-08	1.49E-04	9.34E-05	
				30.00	60.00	· 1.81E-08	2.22E-08	1.82E-04	1.12E-04	
	-			35.00	70.00	· 2.17E-08	2.48E-08	1.88E-04	1.07E-04	
				40.00	80.00	2.54E-08	3.01E-08	1.92E-04	1.14E-04	
				50.00	90.00	3.10E-08	3.78E-08	1.88E-04	1.27E-04	

Fig G13 The linear regime of Zeolite Y (NH_4^+ , Si/Al = 5.1) at 26 °C ± 1 °C, (54 to 60) % R.H.

Sample	Cation	Si/Al	Thickness	Applied	voltage (v)	Measure C	Current (A)	Conducti	vity (S/cm)
Sample	type	ratios	(cm)	1	2	1	2	1	2
Ŷ	H+	5.1	1) 0.0558	2.00	4.50	1.14E-08	3.79E-09	9.52E-04	1.41E-04
			2) 0.0699	2.50	5.00	1.16E-08	3.83E-09	7.79E-04	1.28E-04
				3.00	5.50	1.24E-08	4.30E-09	6.94E-04	1.31E-04
				3.50	6.00	1.44E-08	4.35E-09	6.88E-04 ·	1.21E-04
				4.00	6.50	1.66E-08	3.87E-09	6.97E-04	· 9.98E-05
				4.50	7.00	1.76E-08	4.27E-09	6.55E-04	1.02E-04
				5.00	7.50	1.98E-08	4.29E-09	6.62E-04	9.59E-05
				5.50	8.00	2.66E-08	4.60E-09	8.10E-04	9.63E-05
					8.50	9	4.50E-09		· 8.87E-05
					9.00		3.18E-09		5.91E-05
					9.50		5.22E-09	6	9.20E-05
					10.00		5.06E-09		8.48E-05
					15.00		5.40E-09		6.03E-05
					20.00		7.65E-09		6.40E-05
					25.00		8.67E-09		5.81E-05
					30.00	1.5	1.11E-08		6.19E-05
					35.00		1.22E-08		5.86E-05
					40.00		1.37E-08		5.75E-05

Table G15 The raw data of the determination of linear regime of Zeolite Y (H^+ , Si/Al = 5.1) at 26 °C ± 1 °C, (54 to 60) % R.H.

Fig G14 The linear regime of Zeolite Y (H^+ , Si/Al = 5.1) at 26 °C ± 1 °C, (54 to 60) % R.H.

	Cation	Si/A1	Thickness	Applied	voltage (v)	Measure (Current (A)	Conductiv	vity (S/cm)
Sample	type	ratios	(ст)	1	2	1	2	1	2
Y	H+	30	1) 0.0344	0.40	0.70	3.71E-09	2.17E-09	2.52E-03	8.45E-04
			2) 0.0304	0.50	0.80	3.06E-09	2.04E-09	1.66E-03	6.94E-04
				0.60	0.90	3.70E-09	2.75E-09	1.68E-03	8.31E-04
-				0.70	1.00	3.79E-09	2.85E-09	1.47E-03	7.76E-04
			1	0.80	1.50	4.23E-09	3.61E-09	1.44E-03	6.54E-04
1			1	0.90	2.00	2.54E-09	5.66E-09	7.67E-04	7.70E-04
			1	1.00	2.50	4.34E-09	5.67E-09	1.18E-03	6.17E-04
				1.50	3.00	3.64E-09	8.11E-09	6.60E-04	7.35E-04
3				2.00	3.50	4.34E-09	8.46E-09	5.90E-04	6.57E-04
				2.50	4.00	6.24E-09	1.05E-08	6.79E-04	7.17E-04
				3.00	4.50	4.18E-09	1.12E-08	3.79E-04	6.76E-04
				3.50	0.70	7.20E-09	2.17E-09	5.59E-04	8.45E-04
				4.00		6.83E-09		4.64E-04	
				4.50		7.53E-09		4.55E-04	
				5.00		8.34E-09		4.53E-04	
			T	5.50		7.71E-09	1	3.81E-04	1

Table G16 The raw data of the determination of linear regime of Zeolite Y (H^+ , Si/Al = 30) at 26 °C ± 1 °C, (54 to 60) % R.H.

Fig G15 The linear regime of Zeolite Y (H^+ , Si/Al = 30) at 26 °C ± 1 °C, (54 to 60) % R.H.

	Cation	Si/Al	Thickness	Applied v	oltage (v)	Measure (Current (A)	Conductivity (S/cm)	
Sample	type	ratios	(cm)	1	2	1	2	1	2
Y	Н+	60	1) 0.0329	1.00	0.80	1.46E-08	9.76E-09	4.14E-03	3.47E-03
			2) 0.0353	1.50	0.90	2.92E-07	1.03E-08	5.54E-02	3.25E-03
				2.00	1.00	3.96E-07	9.53E-09	5.62E-02	2.71E-03
				2.50	1.50	5.21E-07	1.65E-08	5.92E-02	3.12E-03
				3.00	2.00	6.40E-07	1.64E-08	6.06E-02	2.33E-03
				3.50	2.50	7.93E-07	1.47E-08	6.43E-02	1.66E-03
				4.00	3.00	9.04E-07	1.84E-08	6.42E-02	1.75E-03
				4.50	3.50	1.14E-06	2.24E-08	7.21E-02	1.82E-03
					4.00		2.58E-08		1.83E-03
					4.50		3.57E-08		7.17E-04

•

Table G17 The raw data of the determination of linear regime of Zeolite Y (H^+ , Si/Al = 60) at 26 °C ± 1 °C, (54 to 60) % R.H.

Fig G16 The linear regime of Zeolite Y (H^+ , Si/Al = 60) at 26 °C ± 1 °C, (54 to 60) % R.H.

	Cation	Si/AI	Thickness	Applied v	oltage (v)	Measure C	Current (A)	Conductivity (S/cm)	
Sample	type	ratios	(cm)	1	2	1	2	1	2
Sample	Н*	80	1) 0.0314	6.00	4.00	2.57E-07	5.53E-09	I.28E-02	4.12E-04
			2) 0.0476	6.50	4.50	2.90E-07	7.94E-09	1.33E-02	5.26E-04
				7.00	5.00	3.26E-07	9.25E-09	1.39E-02	5.51E-04
				7.50	5.50	3.66E-07	1.04E-08	1.45E-02	5.62E-04
				8.00	6.00	4.02E-07	1.13E-08	1.50E-02	5.60E-04
				8.50	6.50	4.47E-07	1.26E-08	1.57E-02	5.78E-04
				9.00	7.00	4.89E-07	1.24E-08	1.62E-02	5.27E-04
				9.50	7.50	5.42E-07	1.62E-08	1.70E-02	6.44E-04
				10.00	8.00	5.99E-07	1.74E-08	1.78E-02	6.50E-04
6					8.50		1.79E-08		6.26E-04

Table G18 The raw data of the determination of linear regime of Zeolite Y (H^+ , Si/Al = 80) at 26 °C ± 1 °C, (54 to 60) % R.H.

Fig G17 The linear regime of Zeolite Y (H^+ , Si/Al = 80) at 26 °C ± 1 °C, (54 to 60) % R.H.

Appendix H Electrical Conductivity Sensitivity Measurement

The electrical conductivity sensitivity measurements of poly(3thiopheneacetic acid) and poly(3-thiopheneacetic acid)/zeolite pellets were carried out by using the two point probe with ammonia gas under the pressure of 1.1 atm, 57 %RH to 67 %RH, and 26 °C \pm 1°C. The electrical conductivity response of sample was calculated from the difference between the equilibrium conductivity of sample upon exposed to NH₃ and the steady state conductivity value of sample in N₂.

$$\Delta \sigma = \sigma_{NH_3} - \sigma_{N_2 initial}$$

(H.I)

The electrical conductivity sensitivity was defined as the electrical conductivity response divided by the conductivity itself at the N_2 .

electrical conductivity sensitivity = $\Delta \sigma / \sigma_{N2 \text{ initial}}$ (H.2)

Figure H2 Specific conductivity of Pth_10:1(1) after evacuating NH_3 and exposed to N_2 .

Figure H4 Specific conductivity of Pth_10:1/Y_10%(1) after evacuating NH₃ and exposed to N_2 .

Figure H5 Specific conductivity of Pth_10:1/Y_20%(1) when exposed to NH₃.

Figure H6 Specific conductivity of Pth_10:1/Y_20%(1) after evacuating NH₃ and exposed to N_2 .

Figure H7 Specific conductivity of Pth_10:1/Y_30%(1) when exposed to NH₃.

Figure H8 Specific conductivity of Pth_10:1/Y_30%(1) after evacuating NH_3 and exposed to N_2 .

Figure H9 Specific conductivity of $Pth_{10:1/Y_{40\%(1)}}$ when exposed to NH_3 .

Figure H10 Specific conductivity of Pth_10:1/Y_40%(1) after evacuating NH_3 and exposed to N_2 .

Figure H11 Specific conductivity of $Pth_{10:1/Y_{50\%(1)}}$ when exposed to NH_3 .

Figure H12 Specific conductivity of Pth_ $10:1/Y_50\%(1)$ after evacuating NH₃ and exposed to N₂.

Figure H13 Specific conductivity of Pth_10:1/HY_10%_5.1(1) when exposed to NH₃.

Figure H14Specific conductivity of Pth_10:1/HY_10%_5.1(1) after evacuatingNH3and exposed to N2.

Figure H15 Specific conductivity of Pth_10:1/HY_10%_30(1) when exposed to NH_3 .

1

Figure H16 Specific conductivity of Pth_10:1/HY_10%_30(1) after evacuating NH_3 and exposed to N_2 .

Figure H17 Specific conductivity of Pth_10:1/HY_10%_60(1) when exposed to NH₃.

Figure H18 Specific conductivity of Pth_10:1/HY_10%_60(1) after evacuating NH_3 and exposed to N_2 .

Figure H19 Specific conductivity of Pth_10:1/HY_10%_80(1) when exposed to NH_3 .

Figure H20 Specific conductivity of Pth_10:1/HY_10%_80(1) after evacuating NH_3 and exposed to N_2 .

Appendix I Identification Morphology of Materials

Undoped and doped poly(3-thiopheneacetic acid), zeolite, and composites were observed for their morphology by scanning electron microscopy (SEM)(JEOL, JSM-5410LV). Sample was coated with gold for improving conductivity. Undoped and doped poly(3-thiopheneacetic acid) powders appear irregular shapes and distribution of particle size, as shown in Figure 11 and 12. For the morphology of zeolite appears regular shape due to its properties, as shown in Figure 13.

(a)

(b)

Figure 11 SEM photographs of undoped poly(3-thiopheneacetic acid) at magnification (a)1000 and (b)2000.

Figure 12 SEM photographs of doped poly(3-thiopheneacetic acid) 10:1 at magnification (a)1000 and (b)2000.

Figure 13 SEM photographs: Zeolite Y at magnification (a) 7500 and (b) 10000.

(a)

(b)

Figure 14 SEM photographs: Pth_10:1/Y_10% at magnification (a) 1000 and (b)2000.

Figure I5 SEM photographs: Pth_10:1/Y_20% at magnification (a) 1000 and (b)2000.

Appendix J Surface area and Pore size of Zeolite

Surface area and pore size of zeolite Y were measured by using a surface area analyzer (Physisorption) (Quantachrome, Autosorb-1MP). Zeolite powder was weighed and out gassed at 300 °C over night before the adsorption and the desorption with He and N₂ gases. During the operation, zeolite powder was cooling by liquid N₂.

Cation	Si/Al		Surface are	a (m²/g)	Por	Pore volume (cm ³ /g)			Pore size (Å)			
type	ratios	l	2	AVG	1	2	AVG	1	2	AVG		
Na+	5.1	611.0	640.0	625.5 ± 20.5	3.73E-01	3.80E-01	0.3764	3.68	3.675	3.6775		
NH₄+	5.1	594.3	583.2	588.8 ± 7.8	3.67E-01	3.60E-01	0.3635	3.675	3.675	3.675		
Н+	5.1	601.2	633.3	617.3 ± 22.7	3.93E-01	4.12E-01	0.40285	3.675	3.675	3.675		
Н+	30	634.9	742.6	688.8 ± 76.1	5.59E-01	5.79E-01	0.5689	3.675	3.675	3.675		
Н+	60	713.9	748.1	731.0 ± 24.2	6.28E-01	5.88E-01	0.6076	3.675	3.675	3.675		
Н+	80	768.4	763.8	766.1 ± 3.2	4.98E-01	6.12E-01	0.5548	3.675	3.675	3.675		

Table J	1	Surface a	irea	and	nore	size	of	zeolite	Y
I ADIC U.		Durrace u	ucu	uiu	pore	SILC	UI	LCOILC	

.

Appendix K The Interaction between Doped Pth, Zeolite Y and NH₃ by FTIR

The interaction of the active sites of Pth_10:1 and zeolite NaY with NH₃ were investigated by FTIR spectroscopy at 26 ± 1 °C and under pressure 1.1 atm. FTIR spectra were taken by KBr pellet technique. The sample pellet was placed on sample holder and put it into the gas cell. The spectrums of samples were recorded, before NH₃ exposure, when exposed to NH₃, and after the NH₃ exposure, in order to study the interaction between these samples and NH₃, as shown in Figure K1, K2.

Figure K1 The FT-IR spectra of Pth_10:1 : (a) before; (b) exposed; and (c) after exposed to NH₃.

Figure K2 The FT-IR spectra of zeolite NaY : (a) before; (b) exposed; and (c) after exposed to NH₃.

When the NH₃ exposed, FTIR spectra were taken every 5 minutes for a duration of 45 min, each FTIR spectrum has the same patterns but different the intensity evolving in time. Peaks at 948.8 and 1619.0 cm⁻¹ can be assigned to the vibrations of NH₃ molecules, and a peak at 1396.5 cm⁻¹ belonging to the vibration of NH₄⁺ molecules (Yin *et al.*, 1997). After replacing NH₃ with N₂, the bands at 948.8, 1396.5, and 1619.0 cm⁻¹ disappear from the FTIR spectra. Therefore the interaction of NH₃ and doped Pth is reversible, as shown in Figure K1.

From the FTIR spectra of NaY before, during, and after the NH₃ exposure. The bands at 963.2 cm⁻¹ appear when the NH₃ exposed, but it disappears when NH₃ was replaced by N₂. This peaks shifts from 968.09 cm⁻¹ that represent the Lewis sites of NH₃ molecules (Yin *et al.*, 1997). The IR spectrum shows a new peak at 3332cm⁻¹ which can be assigned to NH_4^+ interacting with oxygen on zeolite Y (Zecchina *et al.*, 1996). Figure K2 show that there is no significant difference in the band patterns before and after the exposure to NH_3 so the interaction between NH_3 and NaY is reversible based on the FTIR spectrum.

÷1,

ł

. .

÷

CURRICULUM VITAE

Name: Ms. Sansanee Konkayan

Date of Birth: November 10th, 1986

Nationality: Thai

University Education:

2004-2007 Bachelor Degree of Science (Industrial Chemistry), Faculty of Science, Chiang Mai University. Chiang Mai, Thailand

Proceeding:

 Konkayan, S.; and Sirivat, A. (2010, April 22) Development of Poly(3thiopheneacetic: acid)/Zeolite Y as a Gas Sensor Material for Ammonia. <u>Proceedings of The 1st National Research Symposium on Petroleum,</u> <u>Petrochemicals, and Advanced Materials and The 16th PPC Symposium on</u> <u>Petroleum, Petrochemicals, and Polymers, Bangkok, Thailand.</u>

Presentation:

 Konkayan, S.; and Sirivat, A. (2010, April 22) Development of Poly(3thiopheneacetic acid)/Zeolite Y as a Gas Sensor Material for Ammonia. Paper presented at <u>The 1st National Research Symposium on Petroleum, Petrochemicals,</u> and Advanced Materials and <u>The 16th PPC Symposium on Petroleum,</u> <u>Petrochemicals, and Polymers, Bangkok, Thailand.</u>

