

20

# 4 Results And Discussion

## 4.1 Example 1

Example 1 is the base-case of HEN with two hot and three cold streams and four heat exchangers. The annual hot and cold utility consumption of the existing network is 11,275 kW and 9,267 kW, respectively as shown composite curves of Figure 4.2, corresponding to heat recovery approach temperature (HRAT) = 27 °C and exchanger minimum approach temperature (EMAT) = 7.7 °C. Information of base-case is shown in Figure 4.1 and Table 4.1 and 4.2.




Figure 4.1 Grid diagram of example 1 in base case (EMAT = 7.7).

| UNIT | Heat Exchanger<br>Area(m <sup>2</sup> ) | Heat Load<br>(kW) |
|------|-----------------------------------------|-------------------|
| EI   | 133                                     | 2160              |
| E2   | 587                                     | 2560              |
| E3   | 723                                     | 7153              |
| E4   | 751                                     | 4340              |

 Table 4.1 Information of base case of example 1

(Information from above table was got from eq.20)

| Stream    | TIN(°C) | TOUT(°C) | FCp(kW/°C) | h(kW/m <sup>2</sup> °C |
|-----------|---------|----------|------------|------------------------|
| H1        | 165     | 95       | 148        | 0.45                   |
| H2        | 240     | 65       | 86.4       | 0.55                   |
| <b>C1</b> | 125     | 220      | 139        | 0.35                   |
| C2        | 61      | 192      | 54.6       | 0.40                   |
| <b>C3</b> | 70      | 185      | 62         | 0.64                   |

 Table 4.2 Data for two hot/three cold stream problem of example 1



Figure 4.2 Composite curves of the base-case HEN.

In this example, the result has been showed in retrofit method. Furthermore retrofit design has relocation of concept 1 and concept 2 to compare cost for optimum point or the most profit. Figure 4.3 indicated maximum profit point and final retrofit network will be created at this point.

## **Condition for solution**

- 1. No splitting of hot or cold stream by equation as follow:
- $\sum_{j} Z_{ijk} \leq 1$

(eq.21)

 $\sum_{i} Z_{ijk} \leq 1$ 

(eq.22)

- \*\*\* *Z<sub>ijk</sub>* is binary variable
- 2. EMAT is 7.7 K
  - 3. Cost (\$) =  $6{,}600{+}670(Area)^{0.83}$  for all new exchanger, Area in  $m^2$  (eq.23)
  - 4. Cost (\$) =  $670(\Delta Area)^{0.83}$  for addition of area in existing heat exchanger (eq.24)
  - 5. No removal heat exchanger area cost
  - 6. Life time = 3 year and % annual interest = 0
  - 7. Hot utility cost = 120 /kW/year
  - 8. Cold utility cost = 20 /kW/year

### 4.1.1 <u>Retrofit with relocation concept1 of Example 1</u>

Plot graph between profit(\$) and hot or cold utility as shown in Figure 4.3. The profit of the retrofit case is calculated by eq.25:

Profit = Utility saving cost - New exchanger cost - Added area cost (eq.25)

The base-case HEN is retrofitted by using retrofit model of GAMS with MILP (Mixed Integer Linear Programming) and the relocation program with concept 1 and 2 using Visual C++. The retrofitted HEN at different HRAT is generated by the retrofit model. Applying the program of the relocation concept 1, the profit of retrofitted HEN at different HRAT (or hot utility) is plotted as shown in Figure 4.3. And the optimal retrofitted HEN with relocation concept 1 is found as shown in figure 4.4, giving the maximum profit of \$1,000,000 in 2.5 years.

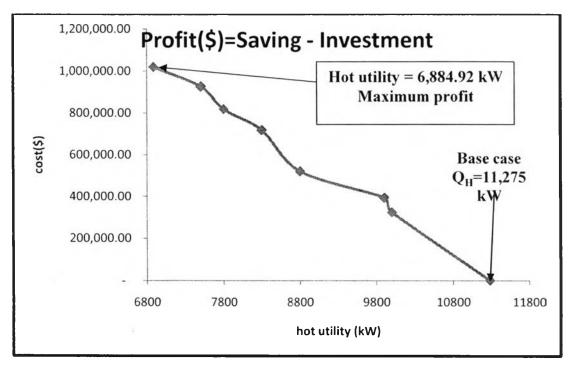
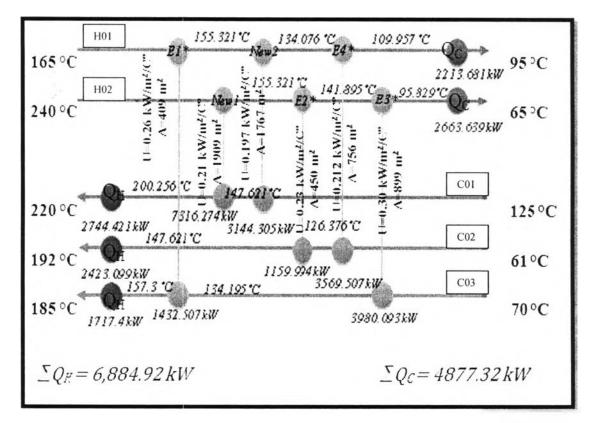




Figure 4.3 Total profit as a function of hot utility in concept 1 of example 1.



**Figure 4.4** Grid diagram of example 1 in retrofit design in concept 1  $(EMAT = 7.7 \ \text{C}).$ 

The optimal retrofit case consumes hot and cold utilities of 6,885 and 4,877 kw, respectively, with HRAT = 7.7 °C, as shown in the composite curves of Figure 4.5

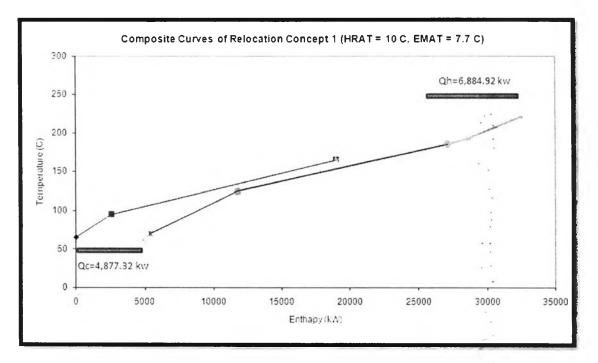



Figure 4.5 Composite curves of the optimal retrofit case with relocation concept 1.

The relocated and new exchangers of the retrofit case with relocation concept 1 is shown in Table 4.3.

| UNIT       | Heat Exchanger         | Heat Load | Area Cost              |
|------------|------------------------|-----------|------------------------|
|            | Area (m <sup>2</sup> ) | (kW)      | \$                     |
| E1*=E1+276 | 408                    | 1,432.507 | 71,126.156             |
| E2*=E2-138 | 449                    | 1,159.994 | -                      |
| E3*E3+175  | 901                    | 3,980.093 | 48,730                 |
| E4*=E4+14  | 766                    | 3,569.507 | 5,989.09               |
| Newl       | 1,767                  | 7,316.274 | 338,709.38             |
| New2       | 1,909                  | 3,144.305 | 360,714.51             |
|            | $\Sigma = 6,200$       |           | $\Sigma = 825,269.136$ |

 Table 4.3 Result of retrofit design in concept 1 of example 1

\*\*\* This table doesn't include cost for moving, demolishing.

## 4.1.2 <u>Retrofit with relocation concept 2 of Example 1</u>

For the retrofit case with relocation concept 2, the retrofitted HEN at different HRAT is generated by the retrofit model. Applying the program of the relocation concept 2, the profit of retrofitted HEN at different HRAT (or hot utility) is plotted as shown in Figure 4.6. And the optimal retrofitted HEN with relocation concept 2 is found as shown in Figure 4.7, giving the maximum profit of \$900,000 in 2.5 years.

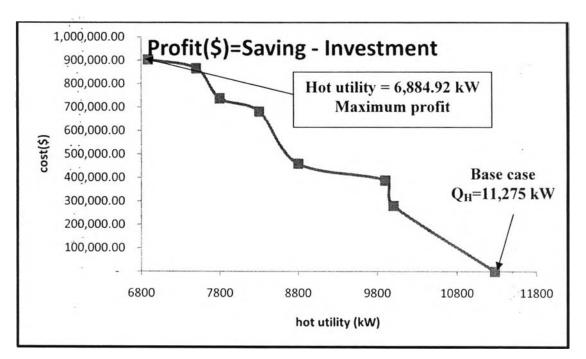
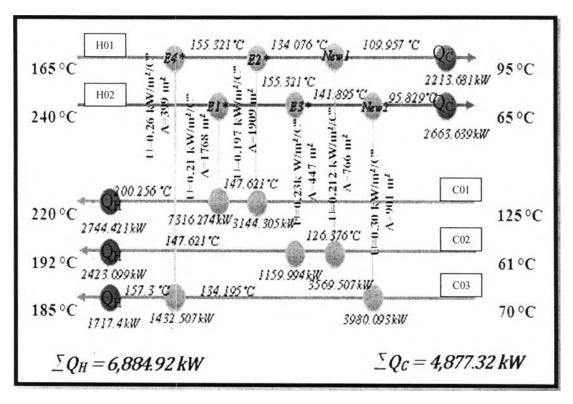




Figure 4.6 Total profit as a function of hot utility in concept 2 of example 1.



**Figure 4.7** Grid diagram of example 1 in retrofit design in concept 2  $(EMAT = 7.7 \ \text{C}).$ 

The optimal retrofit case consumes hot and cold utilities of 6,885 and 4,877 kw, respectively, with HRAT =  $7.7 \,^{\circ}$ C, as shown in the composite curves of Figure 4.8.

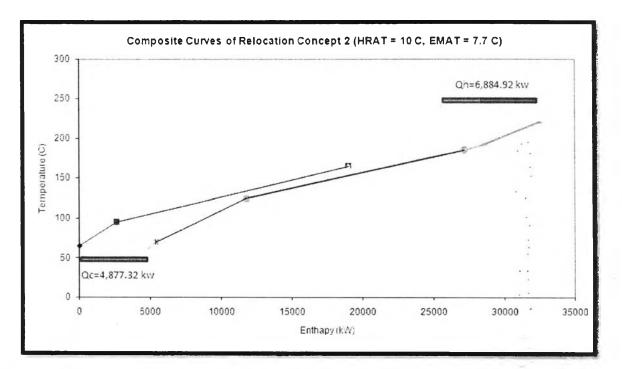



Figure 4.8 Composite curves of the optimal retrofit case with relocation concept 2.

The relocated and new exchangers of the retrofit case with relocation concept 2 are shown in Table 4.4.

| UNIT        | UNIT Heat Exchanger<br>Area (m <sup>2</sup> ) |           | Area Cost<br>\$       |  |
|-------------|-----------------------------------------------|-----------|-----------------------|--|
| E1*=E1+1635 | 1,767                                         | 1,432.507 | 311,382.74            |  |
| E2*=E2+1321 | 1,909                                         | 1,159.994 | 260,870               |  |
| E3*E3-277   | 449                                           | 3,980.093 | -                     |  |
| E4*=E4-343  | 408                                           | 3,569.507 | -                     |  |
| New1        | 766                                           | 7,316.274 | 172,552.84            |  |
| New2        | 901                                           | 3,144.305 | 196,487.50            |  |
|             | $\Sigma = 6,200$                              |           | $\Sigma = 941,293.08$ |  |

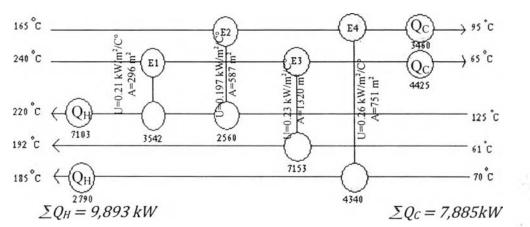
 Table 4.4
 Result of retrofit design in concept 2 of example 1

\*\*\* This table doesn't include cost for moving, demolishing.

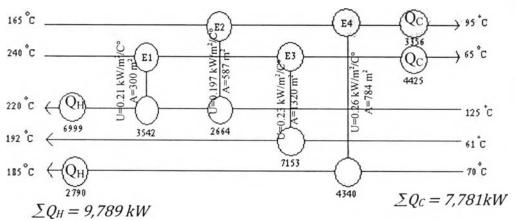
### 4.1.3 <u>Retrofit by PATHS COMBINATION of Example 1</u>

Actually, heat exchanger network in base case of example 1 came from the research of Abdelbagi Osman, M.I. Abdul Mutalib, M. Shuhaimi and K.A. Amminudin [11]. They studied the retrofit design by paths combination method. And they had some conditions as shown below:

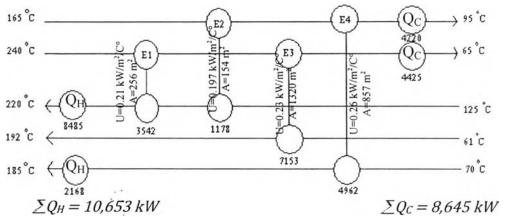
- 1. Investment is considered only for the required additional area.
- 2. No piping or other costs are considered.
- 3. Average size of heat exchanger shell is calculated from the existing HEN area and number of shells where one shell pass is assumed.
- 4. Existing average area per shell in HEN is the same as for the added area.
- 5. Material of construction is carbon steel for all exchanger.
- 6. Fixed energy price along the payback period.


They used paths combination to retrofit base case and this research brought the best four retrofit network structures (as shown in Figure 4.9 - 4.12) of them presented in Table 4.5. The retrofit of them has no relocation, splitting and new heat exchanger. They just have additional and removal area. We compared their result to retrofit design with relocation concept 1 and 2 of this research.

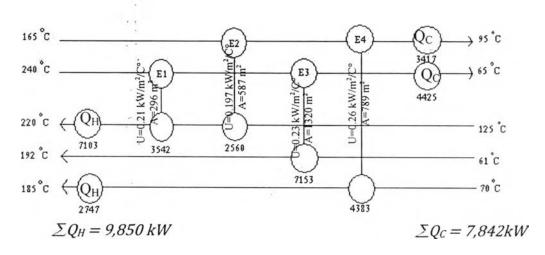
| Options                     |           |       | Additio<br>require |     |       |       | Total                     | Total Additional Utility Consuming |                |                                 |          | Utility                         | Profit          |           |
|-----------------------------|-----------|-------|--------------------|-----|-------|-------|---------------------------|------------------------------------|----------------|---------------------------------|----------|---------------------------------|-----------------|-----------|
|                             | E1        | E2    | E3                 | E4  | New1  | New2  | Area<br>(m <sup>2</sup> ) | Area Cost<br>(\$)                  | Q <sub>H</sub> | Q <sub>H</sub><br>saving<br>(%) | Qc       | Q <sub>C</sub><br>saving<br>(%) | cost<br>(\$/yr) | (\$)      |
| 1<br>(Figure<br>4.9)        | 163       | 0     | 597                | 0   | 0     | 0     | 2,947                     | 180,877                            | 9,893          | 12.26                           | 7,885    | 14.91                           | 1,344,860       | 302,823   |
| 2(Figure<br>4.10)           | 167       | 50    | 597                | 33  | 0     | 0     | 3,034                     | 211,143                            | 9,789          | 13.18                           | 7,781    | 16.04                           | 1,330,300       | 308,957   |
| 3(Figure<br>4.11)           | 123       | -433  | 597                | 106 | 0     | 0     | 2,580                     | 203,277                            | 10,653         | 5.52                            | 8,645    | 6.71                            | 1,451,260       | 14,423    |
| 4(Figure<br>4.9)            | 163       | 0     | 597                | 38  | 0     | 0     | 2,985                     | 194,440                            | 9,850          | 12.64                           | 7,842    | 15.38                           | 1,338,840       | 304,310   |
| concept1<br>(Figure<br>4.4) | 276       | -138  | 175                | 14  | 1,767 | 1,909 | 6,200                     | 825,172.72                         | 6,884.92       | 38.94                           | 4,877.32 | 47.37                           | 826,190.4       | 1,018,636 |
| concept2<br>(Figure<br>4.7) | 1,76<br>8 | 1,909 | 447                | 399 | 766   | 901   | 6,200                     | 941,194.22                         | 6,884.92       | 38.94                           | 4,877.32 | 47.37                           | 826,190.4       | 902,615   |


 Table 4.5
 Comparison of all methods

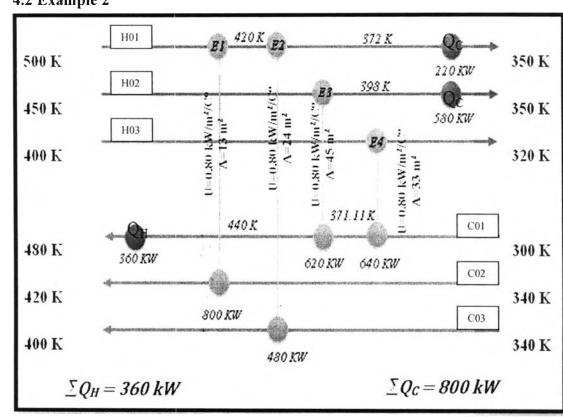
\*\*hot utility = 120 \$/KW/yr; cold utility = 20 \$/KW/yr; Area cost was computed from eq.19 and eq.20


From table 4.5, relocation of concept 1 and 2 can save utility consuming more than the others but new heat exchanger is added in concept 1 and 2. Relocation of concept1 and 2 can save 38.94 % of hot utility and 47.37 % of cold utility. Although they can save more utility consuming than the others, concept1 and concept 2 have the most additional area (almost twice). By the way, concept 2 is the better way than concept 1 because only one heat exchanger is moving as utility saving is the same.




**Figure 4.9** Retrofit 1 in grid diagram of example 1 in retrofit design by paths combination (EMAT=7.005).




**Figure 4.10** Retrofit 2 in grid diagram of example 1 in retrofit design by paths combination (EMAT=7.005).



**Figure 4.11** Retrofit 3 in grid diagram of example 1 in retrofit design by paths combination (EMAT=7.005).



**Figure 4.12** Retrofit 4 in grid diagram of example 1 in retrofit design by paths combination (EMAT=7.005).



4.2 Example 2

Figure 4.13 Grid diagram of base case in example 2(EMAT = 10K).

A network consisting of three hot and three cold streams is investigated in this example draw from Ciric and Floudas(1990). Table 4.6 and 4.7 describe thermodynamic data of the example 2. Utility cost of the existing network is 44,800 \$/year. Ciric and Floudas (1990) and Ebrahim and Sirous (2009) [12] reduced it to 8,800 \$/year. The network in figure 4.16 and 4.19 are shown in concept 1 and concept 2, respectively and reduced to 8,800 \$/year as well. The comparison of result was shown in Table 4.10

| Stream | $T_{in}(K)$ | $T_{out}(K)$ | FCp(kW/K) |
|--------|-------------|--------------|-----------|
| H1     | 500         | 350          | 10        |
| H2     | 450         | 350          | 12        |
| Н3     | 400         | 320          | 8         |
| C1     | 300         | 480          | 9         |
| C2     | 340         | 420          | 10        |
| С3     | 340         | 400          | 8         |

 Table 4.6
 Thermodynamic data of example 2

| UNIT  | Heat Exchanger Area | Heat Load     |
|-------|---------------------|---------------|
| CAVIT | (m <sup>2</sup> )   | ( <b>kW</b> ) |
| E1    | 13                  | 800           |
| E2    | 24                  | 480           |
| E3    | 45                  | 620           |
| E4    | 33                  | 640           |

#### Table 4.7 Information of base case of example 2

(Information from above table was got from eq.20); (EMAT = 10 K)

### **Condition of solution**

- 1. Nonsplitting
- 2. Cost of stream (\$/kW/year) = 80
- 3. Cost of cooling water (%/kW/year) = 20
- 4.  $U = 0.80 \text{ kW/m}^2$  for all exchanger; LMTD is used for area calculation.
- 5. Cost of area for an existing exchanger(\$) =  $300\Delta A$ , A in m<sup>2</sup>
- 6. Cost of area for a new exchanger (\$) =  $1,200A^{0.6}$ , A in m<sup>2</sup>
- 7. Fixed cost of a new exchanger (\$) = 4,000
- 8. No cost for removal heat exchanger area
- 9. Plant life time = 5 year and % interest = 0

The composite curve of base case consumes hot and cold utilities of 800 and 360 kw, respectively, with HRAT = 20 K and EMAT= 10 K, as shown in the composite curves of Figure 4.14

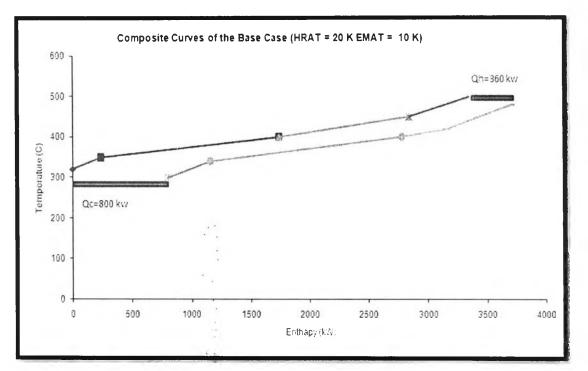



Figure 4.14 Composite curves of the base-case HEN in Example 2.

#### 4.2.1 <u>Retrofit with relocation concept1 of Example 2</u>

Plot graph between profit(\$) and cold utility as shown in Figure 4.15 from eq.25 and maximum profit is chose to formulate retrofit case of relocation concept 1 in Figure 4.16.

The base-case HEN is retrofitted and relocated with concept 1 and 2. The retrofitted HEN at different HRAT is generated by the retrofit model. Applying the program of the relocation concept 1, the profit of retrofitted HEN at different HRAT (or cold utility) is plotted as shown in Figure 4.15. And the optimal retrofitted HEN with relocation concept 1 is found as shown in figure 4.16, giving the maximum profit of \$1,580,000 in 5 years.

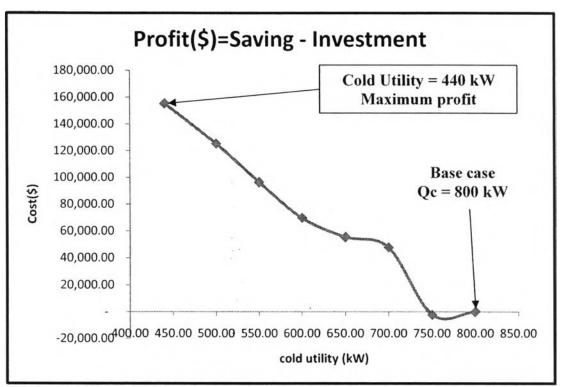
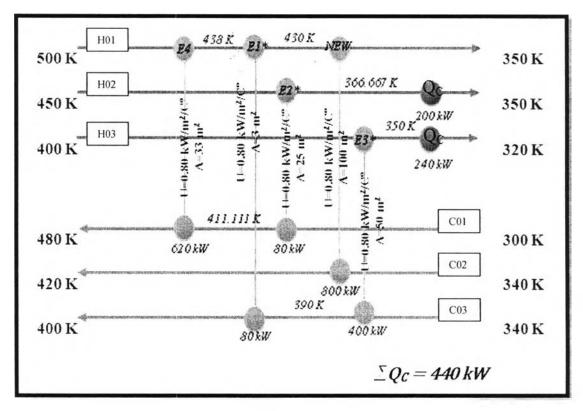




Figure 4.15 Total profit as a function of cold utility in concept 1 of example 2.



**Figure 4.16** Grid diagram of example 2 in retrofit design in concept 1 (EMAT = 12.732K).

The optimal retrofit case of relocation concept 1 consumes only cold utilities of 440 with HRAT = 12 K, as shown in the composite curves of Figure 4.17

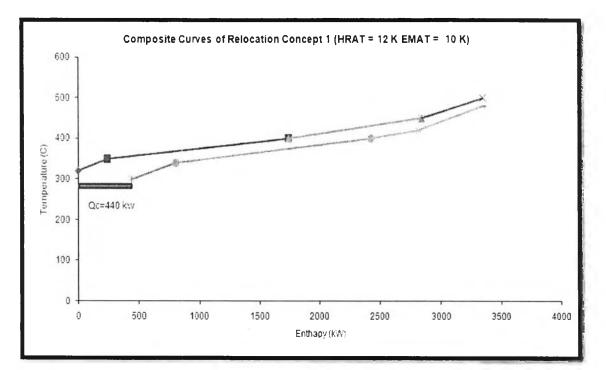



Figure 4.17 Composite curves of the optimal retrofit case with relocation concept 1.

Table 4.8 shows the result including heat exchanger area, heat load, additional area and cost of investment of retrofit model of example 2of concept1.

| UNIT      | Heat Exchang-<br>er Area (m <sup>2</sup> ) | Heat Load<br>(kW) | Additional/Removal<br>Area<br>(m <sup>2</sup> ) | Cost of Addi-<br>tional and Re-<br>moval Area<br>(\$) |
|-----------|--------------------------------------------|-------------------|-------------------------------------------------|-------------------------------------------------------|
| E1*=E1-10 | 3                                          | 80                | -10                                             | -                                                     |
| E2*=E2+1  | 25                                         | 1,000             | +1                                              | 300                                                   |
| E3*=E3+5  | 50                                         | 400               | +5                                              | 1,500                                                 |
| E4        | 33                                         | 620               |                                                 | -                                                     |
| New       | 100                                        | 800               |                                                 | 23,018.72                                             |
|           | $\Sigma = 211$                             |                   |                                                 | $\sum =$                                              |
|           |                                            |                   |                                                 | 24818.72                                              |

**Table 4.8** Result of retrofit design in concept 1 of example 2 (EMAT = 12.732)

\*\*\* This table doesn't include cost for moving, demolishing. Cold utility =440 kW and cold utility saving = 44.88%Hot utility = 0 kW and hot utility saving = 100%

### 4.2.2 <u>Retrofit with relocation concept 2 of Example 2</u>

For the retrofit case with relocation concept 2, the retrofitted HEN at different HRAT are generated by the retrofit model. Applying the program of the relocation concept 2, the profit of retrofitted HEN at different HRAT (or hot utility) is plotted as shown in Figure 4.6. And the optimal retrofitted HEN with relocation concept 2 is found as shown in Figure 4.7, giving the maximum profit of \$900,000 in 2.5 years.

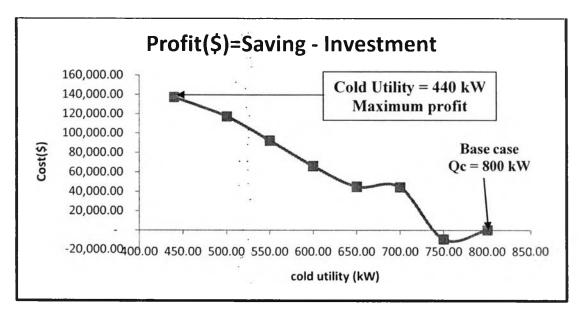
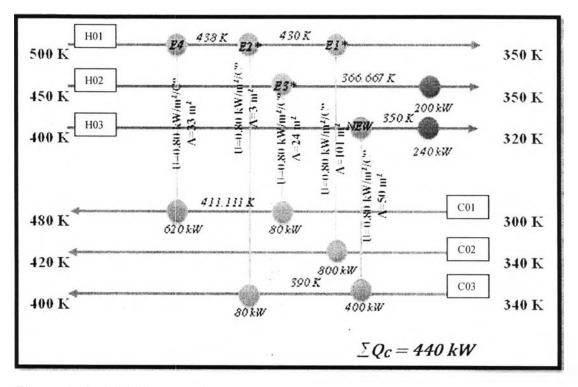




Figure 4.18 Total profit as a function of cold utility in concept 2 of example 2.



**Figure 4.19** Grid diagram of example 2 in retrofit design in concept 2 (EMAT = 12.732K).

The optimal retrofit case consumes only cold utilities of 440 kw with HRAT = 12 K, as shown in the composite curves of Figure 4.20.

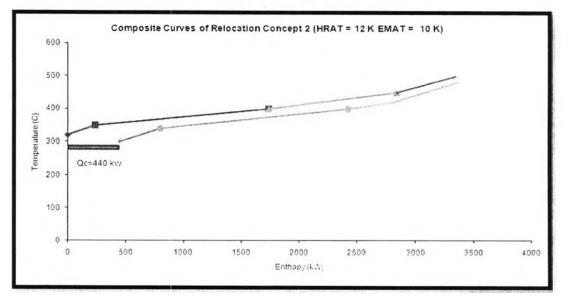



Figure 4.20 Composite curves of the optimal retrofit case with relocation concept 2.

| UNIT      | Heat Exchang-<br>er Area (m²) | Heat Load<br>(kW) | Additional/Removal<br>Area<br>(m²) | Cost of Addi-<br>tional and Re-<br>moval Area<br>(\$) |
|-----------|-------------------------------|-------------------|------------------------------------|-------------------------------------------------------|
| E1*=E1+88 | 101                           | 800               | +88                                | 26,400                                                |
| E2*=E2-21 | 3                             | 80                | -21                                | -                                                     |
| E3*=E3-21 | 24                            | 1,000             | -21                                |                                                       |
| E4 .      | 33                            | 620               | -                                  |                                                       |
| New       | 50                            | 400               | and the state of the               | 16,547.67                                             |
|           | ∑=211                         |                   |                                    | $\Sigma = 42,947.67$                                  |

Table 4.9 shows the result including heat exchanger area, heat load, additional area and cost of investment of retrofit model of example 2of concept2.

\*\*\* This table doesn't include cost for moving, demolishing.

Two existing heat exchangers (E2 and E3) of base case are moved to new matching in retrofit design.

Cold utility = 440 kW and cold utility saving = 45% Hot utility = 0 kW and hot utility saving = 100%

|                          |     |     | ditional :<br>iirement |    |     | Total        | Total             | Additional     |                     | Utility Co | nsuming             | 5              | D. C. |
|--------------------------|-----|-----|------------------------|----|-----|--------------|-------------------|----------------|---------------------|------------|---------------------|----------------|-------|
| Options                  | E1  | E2  | E3                     | E4 | NEW | Area<br>(m²) | Area Cost<br>(\$) | Q <sub>H</sub> | Qн<br>saving<br>(%) | Qc         | Qc<br>saving<br>(%) | Profit<br>(\$) |       |
| Case study<br>(Fig 4.15) | -10 | -   | +18                    | +8 | +7  | 138          | 11,235            | 0              | 100                 | 440        | 45                  | 167,274        |       |
| concept1<br>(Fig 4.12)   | -10 | +]  | +5                     | -  | 100 | 211          | 24,818.72         | 0              | 100                 | 440        | 45                  | 155,228        |       |
| concept2<br>(Fig 4 14)   | +88 | -21 | -21                    | -  | 100 | 211          | 42947.67          | 0              | 100                 | 440        | 45                  | 137,135        |       |

 Table 4.10
 Comparison of all methods of example 2

From table 4.10, retrofit of concept 1 and concept 2 can reduce utility cost to 8,800 \$/year like method of Ebrahim and Sirous (2009) [12] although their investment is more. In this work, concept 1 is better than concept 2 because of less investment and more profit.

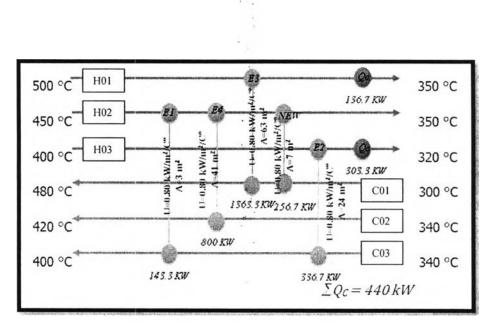
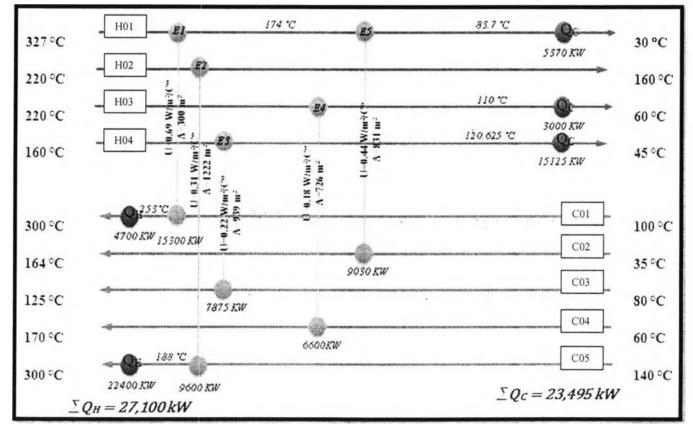




Figure 4.21 Grid diagram of example 2 of method of Ebrahim and Siro

## 4.3 Example 3

The path approach will be illustrated by the aromatics case, discussed by Tjoe (1986). The problem is summarized in Figure 4.22. The used data includes hot utility 27,100 kW; cold utility 23,495 kW. Thermodynamic data of example 3 is showed in table 4.11 and 4.12



**Figure 4.22** Grid diagram of example 3 in base-case (*EMAT* =  $10 \text{ }^{\circ}\text{C}$ )

| Streams | T <sub>in</sub> (°C) | T <sub>out</sub> (°C) | F(kW/°C) | h(kW/m2°C) | Cost(\$/kW/year) |
|---------|----------------------|-----------------------|----------|------------|------------------|
| H1      | 327                  | 30                    | 100      | 0.80       |                  |
| H2      | 220                  | 160                   | 160      | 0.50       |                  |
| H3      | 220                  | 60                    | 60       | 2          |                  |
| H4      | 160                  | 45                    | 200      | 0.40       |                  |
| C1      | 100                  | 300                   | 100      | 5          |                  |
| C2      | 35                   | 164                   | 70       | 1          |                  |
| C3      | 80                   | 125                   | 175      | 0.50       | 100.00           |
| C4      | 60                   | 170                   | 60       | 0.20       |                  |
| C5      | 140                  | 300                   | 200      | 0.80       |                  |
| Stream  |                      |                       |          |            | 80               |
| Water   |                      |                       |          |            | 20               |

 Table 4.11
 Stream and cost data for the example 3 from Tjoe (1986)

Cost (\$) =  $30,000+750A^{0.81}$  for all new exchangers, A in m<sup>2</sup>; cost(\$) =  $750\Delta A^{0.81}$  for addition of area in existing exchangers, A in m<sup>2</sup>; LMTD is used for area calculation. Nonsplitting will be focused. Plant life time = 3 years. % interedt=0.

| UNIT | Heat Exchanger Area | Heat Load |
|------|---------------------|-----------|
|      | (m²)                | (KW)      |
| E1   | 300                 | 15,300    |
| E2   | 1,222               | 9,600     |
| E3   | 939                 | 7,875     |
| E4   | 726                 | 6.600     |
| E5   | 831                 | 9,030     |

 Table 4.12
 Information of base case of example 3

(Information from above table was got from eq. 19 and 20); (EMAT = 10 C)

The annual hot and cold utility consumption of the existing network is 27,100 kW and 23,495 kW, respectively as shown composite curves of Figure 4.23, corresponding to heat recovery approach temperature (HRAT) = 17 °C and exchanger minimum approach temperature (EMAT) = 10 °C.

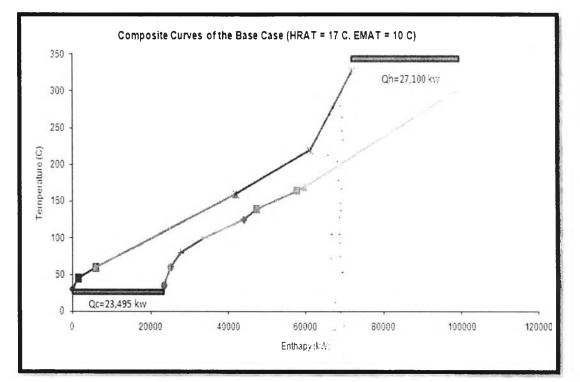



Figure 4.23 Composite curves of the base-case HEN in Example 3.

#### 4.3.1 <u>Retrofit with relocation concept1 of Example 3</u>

Plot graph between profit(\$) and cold utility as shown in Figure 4.24 comes from eq.25 and maximum profit is chose to formulate retrofit case of relocation concept 1 in Figure 4.25. The base-case HEN is retrofitted and relocated with concept 1 and 2. The retrofitted HEN at different HRAT is generated by the retrofit model. Applying the program of the relocation concept 1, the profit of retrofitted HEN at different HRAT (or cold utility) is plotted as shown in Figure 4.24. And the optimal retrofitted HEN with relocation concept 1 is found as shown in figure 4.25, giving the maximum profit of \$1,000,000 in 3 years.

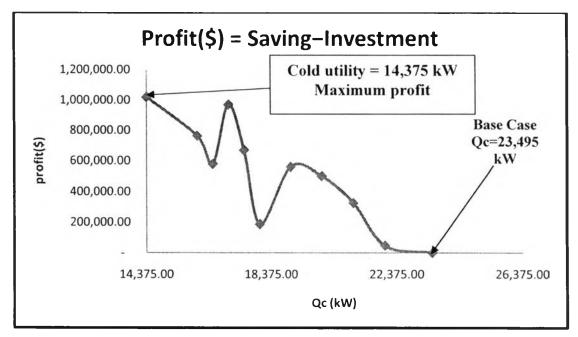
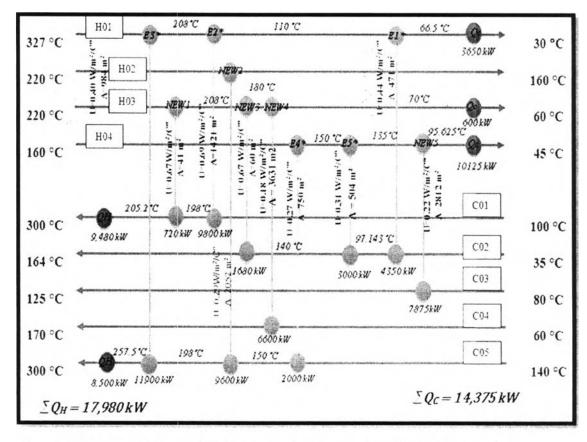
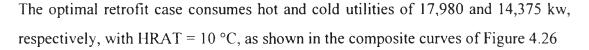





Figure 4.24 Total profit as a function of cold utility in concept 1 of example 3.



**Figure 4.25** Modified network in retrofit design of example 3 in concept 1. \*\*\*(*nonsplitting and EMAT* =  $10^{\circ}$ C).



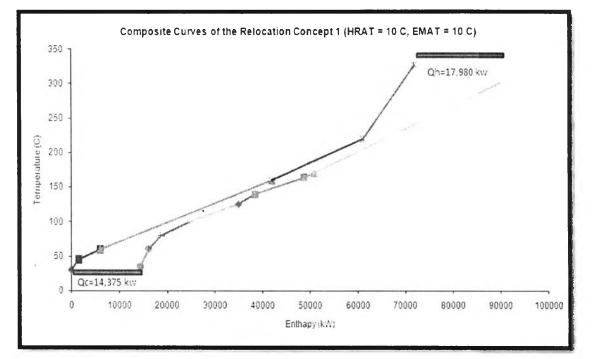



Figure 4.26 Composite curves of the optimal retrofit case with relocation concept 1.

Table 4.13 shows the result including heat exchanger area, heat load, additional area and cost of investment of retrofit model of example 3of concept1.

| UNIT       | Heat Ex-<br>changer Area<br>(m <sup>2</sup> ) | Heat Load<br>(kW) | Additional<br>Area<br>(m <sup>2</sup> ) | Cost of Addi-<br>tional and Area<br>(\$) |
|------------|-----------------------------------------------|-------------------|-----------------------------------------|------------------------------------------|
| E1*=E1+171 | 471                                           | 4,350             | 171                                     | 48,282.32                                |
| E2*=E2+199 | 1,421                                         | 9,800             | 199                                     | 54,592.41                                |
| E3*=E3+45  | 984                                           | 11,900            | 45                                      | 16,374.32                                |
| E4*=E4+24  | 750                                           | 2,000             | 24                                      | 9,840.84                                 |
| E5*=E5-334 | 504                                           | 3,000             |                                         |                                          |
| New1       | 41                                            | 720               | -                                       | 45,185.05                                |
| New2       | 2,052                                         | 9,600             | -                                       | 391,347.39                               |
| New3       | 60                                            | 1,680             | -                                       | 50,671.11                                |
| New4       | 3,631                                         | 6,600             | -                                       | 118,835.31                               |
| New5       | 2,812                                         | 7,875             | -                                       | 496,405.51                               |
|            | ∑=12 <b>,</b> 726                             |                   |                                         | Σ=1,231,534.26                           |

 Table 4.13 Result in retrofit design in concept 1 of example 3

## 4.3.2 Retrofit with relocation concept 2 of Example 3

For the retrofit case with relocation concept 2, the retrofitted HEN at different HRAT is generated by the retrofit model. Applying the program of the relocation concept 2, the profit of retrofitted HEN at different HRAT (or cold utility) is plotted as shown in Figure 4.27. And the optimal retrofitted HEN with relocation concept 2 is found as shown in Figure 4.28, giving the maximum profit of \$900,000 in 3 years.

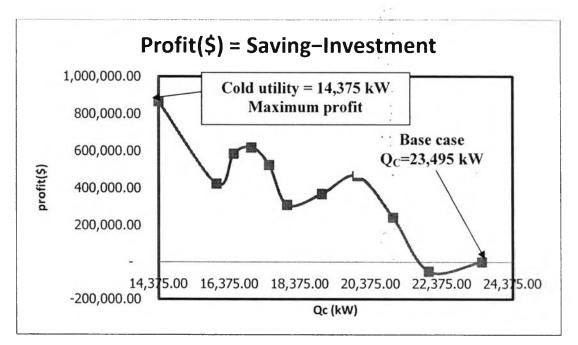



Figure 4.27 Total profit as a function of cold utility in concept 2 of example 3.

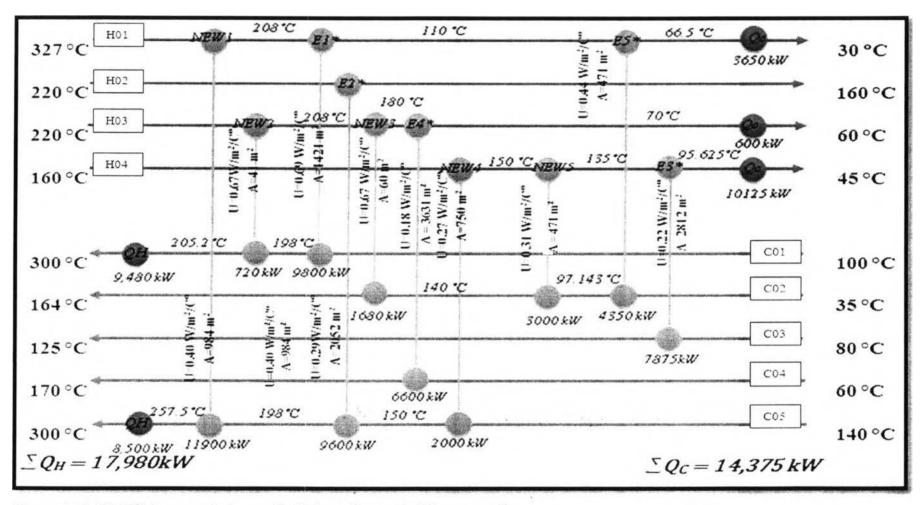
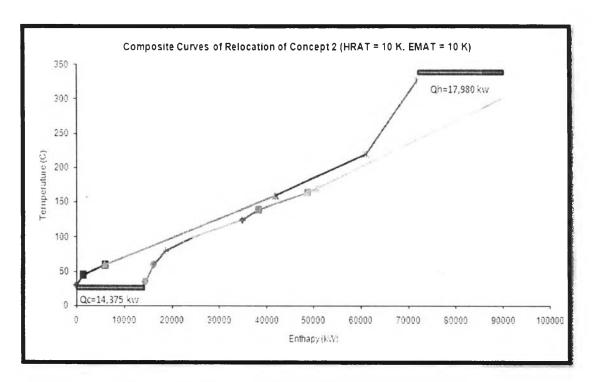



Figure 4.28 Modified network in retrofit design of example 3 in concept 2.

\*\*\*(nonsplitting and  $EMAT = 10 \circ$ C)

The optimal retrofit case consumes hot and cold utilities of 17,980 and 14,375 kw, respectively, with HRAT = 10 C°, as shown in the composite curves of Figure 4.29



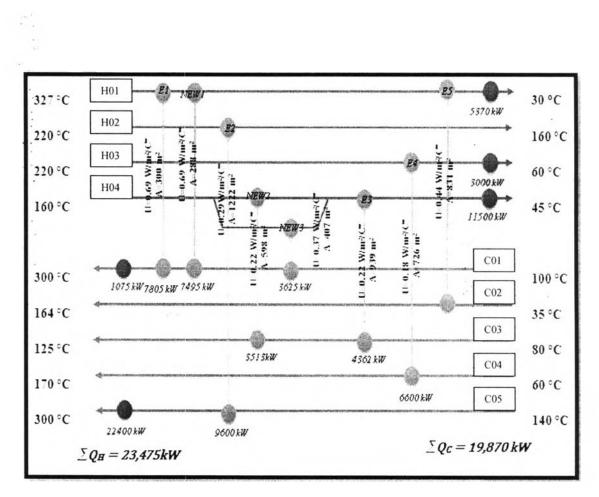


Figure 4.29 Composite curves of the optimal retrofit case with relocation concept 2.

Table 4.14 shows the result including heat exchanger area, heat load, additional area and cost of investment of retrofit model of example 3of concept 2.

| UNIT        | Heat Ex-<br>changer Area<br>(m <sup>2</sup> ) | Heat Load<br>(kW) | Additional<br>Area<br>(m <sup>2</sup> ) | Cost of Addi-<br>tional Arca<br>(S) |
|-------------|-----------------------------------------------|-------------------|-----------------------------------------|-------------------------------------|
| E1*=E1+1121 | 1,421                                         | 9,800             | 1,121                                   | 221,432.73                          |
| E2*=E2+829  | 2,051                                         | 9,600             | 829                                     | 173,416.51                          |
| E3*=E3+1873 | 2,812                                         | 7,875             | 1,873                                   | 335,596.07                          |
| E4*=E4+2905 | 3,631                                         | 6,600             | 2,905                                   | 478,861.18                          |
| E5*=E5-366  | 471                                           | 4,350             | - **                                    |                                     |
| New 1       | 984                                           | 11,900            | - 0                                     | 229,244.94                          |
| New2        | 41                                            | 720               | - 3                                     | 45,185.05                           |
| New3        | 60                                            | 1,680             |                                         | 50,671.11                           |
| New4        | 750                                           | 2,000             | 1.4 - 1.4                               | 189,904.57                          |
| New5        | 504                                           | 3,000             |                                         | 145,885.74                          |
|             | Σ=12,726                                      |                   | 1                                       | ∑=1,870,197.9                       |

 Table 4.14 Result in retrofit design in concept 2 of example 3

From base-case, retrofit model of JOS L.B. VAN REISEN et al is shown in figure 4.30 and can reduce hot and cold utility to 23,475(13.38%) and 19.870 kW(15.43%), respectively. This model doesn't change any existing heat exchanger but three new heat exchangers are added. As well as relocation of concept 1 and 2 (is shown in figure 4.25 and 4.28, respectively) can reduce more hot and cold utility (data is shown in table 4.15) and give more profit although they have more investment.





|                          |       |     |       |       |      | itional ar<br>irement {r |       |      |       |        | Total                     | Additional       |        | Utility C           | onsuming |                     | Utility        | Profit       |
|--------------------------|-------|-----|-------|-------|------|--------------------------|-------|------|-------|--------|---------------------------|------------------|--------|---------------------|----------|---------------------|----------------|--------------|
| Options                  | El    | E2  | E3    | E4    | ES   | Newl                     | Nem2  | New3 | Nett4 | Netts  | Area<br>(m <sup>2</sup> ) | Area Cost<br>(S) | Qu     | QH<br>saving<br>(%) | Q:       | Q:<br>53ving<br>(%) | cost<br>(5 yr) | (5)          |
| Case study<br>(Fig.4.30) | -     | -   | -     | -     | -    | 288                      | 595   | 407  | -     | -      | 5,311                     | 394,214.24       | 23,475 | 13.35               | 19,870   | 15.43               | 2,275,400      | 693,285.76   |
| conceptl<br>(Fig 4.25)   | 171   | 199 | 45    | 24    | -334 | 41                       | 2,052 | 60   |       | 363112 |                           | 12,726++8.99     | 17.980 | 33.65               | 14,375   | 38.52               | 1.725900       | 1.019.551.01 |
| concept2<br>(Fig 4.28)   | 1,121 | 829 | 1.873 | 2.905 | -366 | 984                      | 41    | 60   | 750   | 504    |                           | 12,326.398.52    | 17,980 | 33.65               | 14,375   | 38.82               | 1.725.900      | \$65,601.48  |

 Table 4.15
 Comparison of all methods of example 3



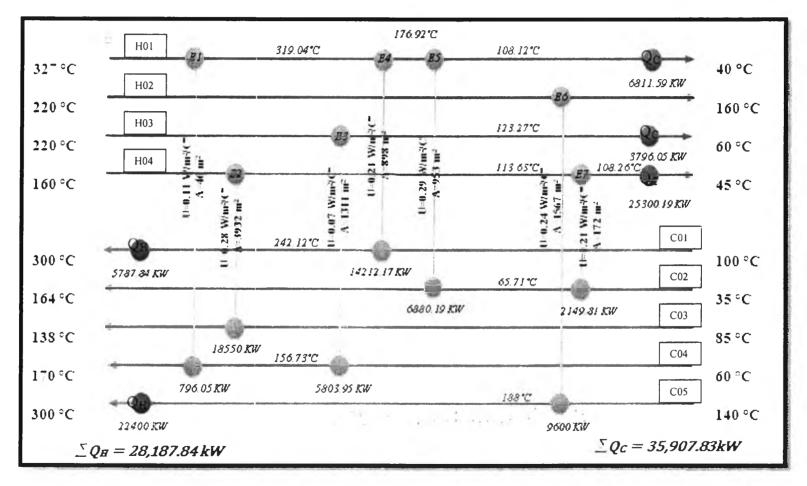



Figure 4.31 Grid diagram of example 4 in base-case ( $EMAT = 12.92 \, ^{\circ}C$ ).

The example 4 (Figure 4.31) is a medium size problem with nine process streams and two utilities. The data is shown in Table 4.16 and 4.17. This network consists of four hot streams and five cold streams and seven heat exchangers. The annual hot and cold utility consumption of the existing network is 28.187.84 kW and 35,907.83 kW, respectively as shown composite curves of Figure 4.32, corresponding to heat recovery approach temperature (HRAT) = 16 °C and exchanger minimum approach temperature (EMAT) = 10 °C.

| Stream     | FCP(kW/°C) | T <sub>in</sub> (°C) | $T_{out}(^{\circ}C)$ | $h(kW/m^{2o}C)$ |
|------------|------------|----------------------|----------------------|-----------------|
| HI         | 100        | 327                  | 40                   | 0.50            |
| H2         | 160        | 220                  | 160                  | 0.40            |
| Н3         | 60         | 220                  | 60                   | 0.14            |
| <b>H</b> 4 | 400        | 160                  | 45                   | 0.30            |
| Ċi         | 100        | 100                  | 300                  | 0.35            |
| C2         | 70         | 35                   | 164                  | 0.70            |
| C3         | 350        | ī <b>8</b> 5         | 138                  | 0.50            |
| C4         | 60         | 60                   | 170                  | 0.14            |
| C5         | 200        | 140                  | 300                  | 0.60            |

 Table 4.16
 Process stream and cost data of example 4

*EMAT* = 12.92 ℃

Cost model of new heat exchangers ( $\frac{y}{y}ear$ ):  $a + (b \times Area^{c})$ ; a = 2000; b = 70, c = 1.0 (Area unit of  $m^{2}$ ).

Cost model of additional heat exchanger (\$/year): $b \times Area^c$ ; b = 70, c = 1.0 (Area unit of  $m^2$ ). Cost of utilities: HU(stream) = 60 \$/kW/year; CU(cooling water) = 6.0 \$/kW/year. Economic data: rate of interest = 0%; Project life time = 5 years.

## Table 4.17 Information of base case of example 4

| UNIT | Heat Exchanger Area<br>(m <sup>2</sup> ) | Heat Load<br>(kW) |
|------|------------------------------------------|-------------------|
| E1   | 46                                       | 796.05            |
| E2   | 3,932                                    | 18,550            |
| E3   | 1,311                                    | 5,803.95          |
| E4   | 898                                      | 14.212.17         |
| E5   | 953                                      | 6.880.19          |
| E6   | 1,567                                    | 9.600             |
| E7   | 172                                      | 2,149.81          |

(Information from above table was got from eq.20); (EMAT = 12.92K)

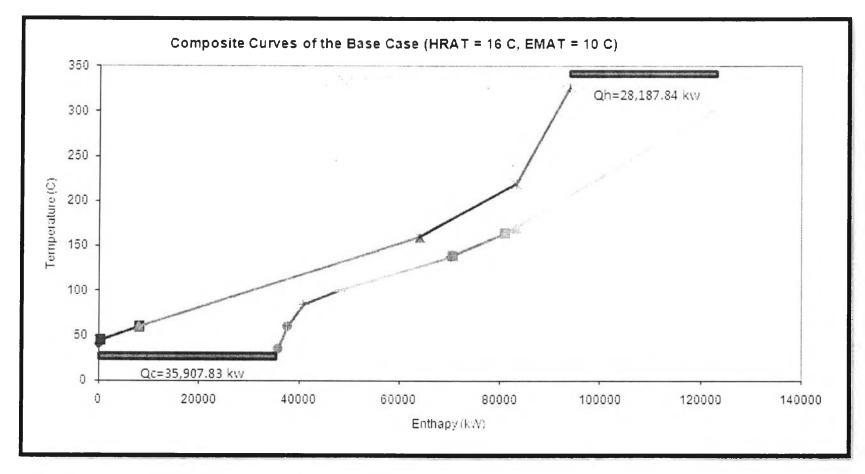



Figure 4.32 Composite curves of the base-case HEN in Example 4.

## 4.4.1 <u>Retrofit with relocation concept 1 of Example 4</u>

Plot graph between profit (\$) and hot or cold utility as shown in Figure 4.33. The profit of the retrofit case is calculated by eq.25

The base-case HEN is retrofitted by using retrofit model of GAMS with MILP (Mixed Integer Linear Programming) and the relocation program with concept 1 and 2 using Visual C++. The retrofitted HEN at different HRAT is generated by the retrofit model. Applying the program of the relocation concept 1, the profit of retrofitted HEN at different HRAT (or cold utility) is plotted as shown in Figure 4.33. And the optimal retrofitted HEN with relocation concept 1 is found as shown in figure 4.34, giving the maximum profit of \$1,900,000 in 5 years.

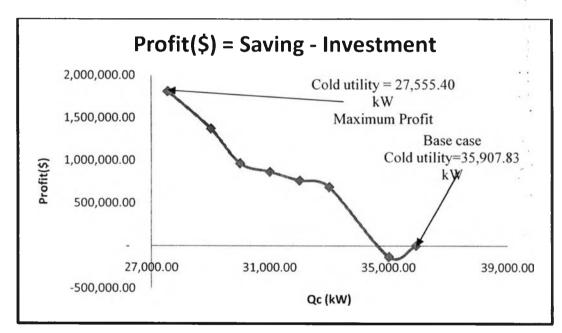



Figure 4.33 Total profit as a function of cold utility in concept 1 of example 4.

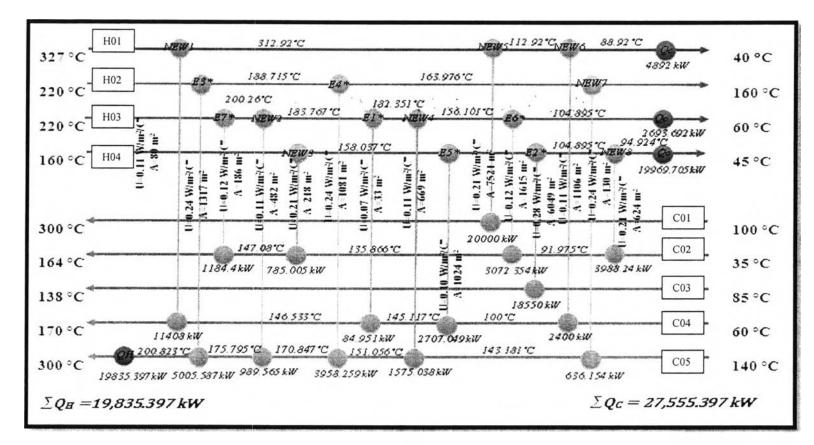
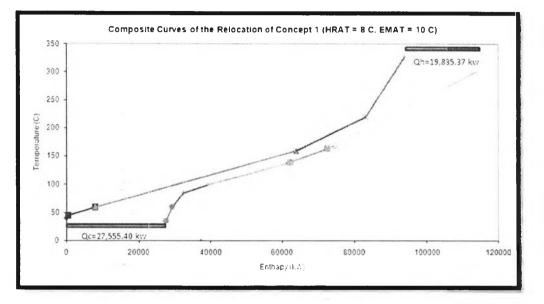




Figure 4.34 Modified network in retrofit design of example 4 in concept 1.

\*\*\*(nonsplitting and EMAT = 12.92K)

The optimal retrofit case consumes hot and cold utilities of 19,835.37 and 27,555.40 kw, respectively. with HRAT = 8 °C, as shown in the composite curves of Figure 4.35.



**Figure 4.35** Composite curves of the optimal retrofit case with relocation concept 1 of example 4.

Table 4.18 shows the result including heat exchanger area, heatload, additional area and cost of investment of retrofit model of example 4 of concept 1.

 Table 4.18 Result in retrofit design in concept 1 of example 4

| UNIT        | Heat Exchanger<br>Area (m²) | Heat Load<br>(kW) | Additional<br>Area<br>(m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cost of<br>Additional and<br>Removal Area<br>(\$) |
|-------------|-----------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| El*=El-13   | 33                          | 84.951            | 1997 - an airth 1999 - Anni Antonio ann an Anni 1997 - an 1 | -                                                 |
| E2*=E2+211* | 6049                        | 18.550            | 2117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 148,190                                           |
| E3*=E3+6    | 1317                        | 5,005.587         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 420                                               |
| E4*=E4+183  | 1081                        | 3,958.259         | 183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12,810                                            |
| E5*=E5=71   | 1024                        | 2,707.049         | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4,970                                             |
| E6~=E6-48   | 1615                        | 3.072.354         | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,360                                             |
| ET*=E7+14   | 186                         | 1,184.41          | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 980                                               |
| NEWI        | 80                          | 1.409             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7,600                                             |
| NEW2        | 482                         | 989.565           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35,740                                            |
| NEW3        | 218                         | 785.005           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17.260                                            |
| NEW4        | 669                         | 1,575.038         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48,830                                            |
| NEW5        | -521                        | 20.000            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 528.470                                           |
| NEW6        | 1106                        | 2,400             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79,420                                            |
| NEW"        | 130                         | 636.154           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.100                                            |
| NEW8        | 624                         | 3,988.24          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45.680                                            |
|             | ∑=22.135                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ∑=944.830                                         |

## 4.4.2 <u>Retrofit with relocation concept 2 of Example 4</u>

For the retrofit case with relocation concept 2, the retrofitted HEN at different HRAT is generated by the retrofit model. Applying the program of the relocation concept 2, the profit of retrofitted HEN at different HRAT (or cold utility) is plotted as shown in Figure 4.36. And the optimal retrofitted HEN with relocation concept 2 is found as shown in Figure 4.37, giving the maximum profit of \$1,800,000 in 5 years.

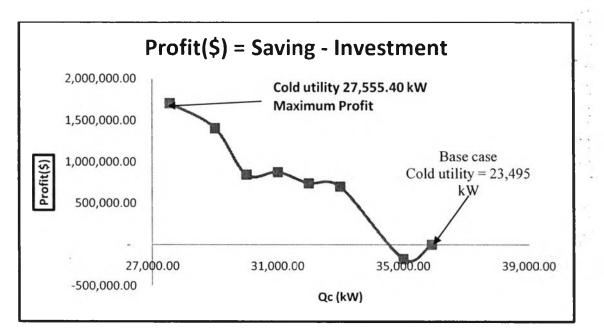



Figure 4.36 Total profit as a function of cold utility in concept 2 of example 4.

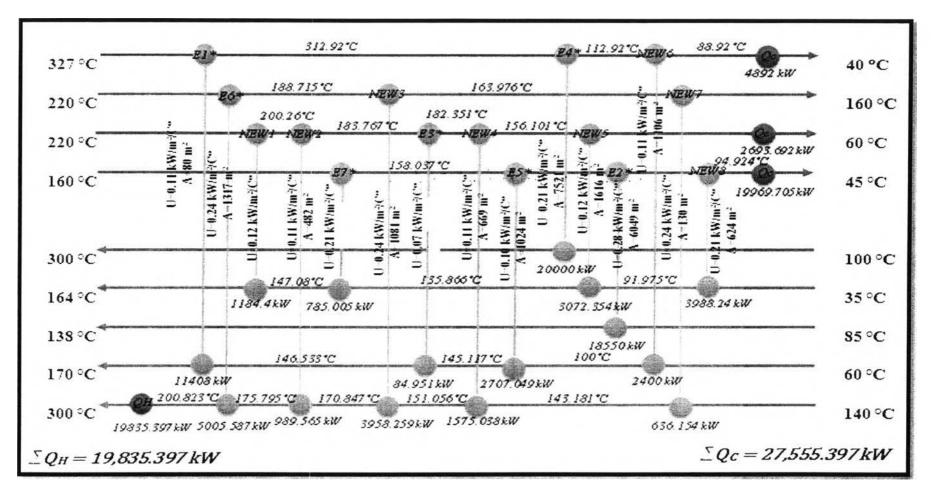
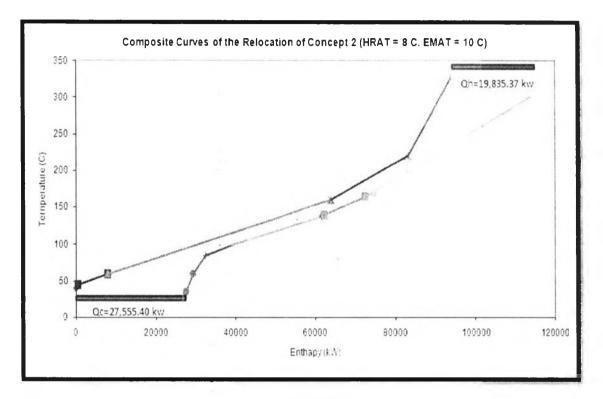




Figure 4.37 Modified network in retrofit design of example 4 in concept 2(nonsplitting and EMAT = 12.92).

The optimal retrofit case consumes hot and cold utilities of 19,835.37 and 27,555.40 kw, respectively, with HRAT = 8 °C, as shown in the composite curves of Figure 4.38.



**Figure 4.38** Composite curves of the optimal retrofit case with relocation concept 2 of example 4.

| UNII          | Heat Exchanger<br>Area (m <sup>2</sup> ) | Heat Load<br>(kW) | Additional Area<br>(m²) | Cost of Additional<br>and Removal<br>Area<br>(S) |
|---------------|------------------------------------------|-------------------|-------------------------|--------------------------------------------------|
| E1*=E1+34     | 80                                       | 1408              | 34                      | 2,380                                            |
| E2*=E2+211*   | 6049                                     | 18,550            | 211-                    | 148,190                                          |
| E3*=E3-1278   | 33                                       | 84.951            |                         |                                                  |
| E4*=E4+6623   | <b>"521</b>                              | 20.000            | 6623                    | 463,610                                          |
| E5*=E5+71     | 1024                                     | 2,707,049         | 71                      | 4,970                                            |
| E6*=E6-250    | 1317                                     | 5.005.587         |                         | - Mining-Section                                 |
| E *=E + + + T | 219                                      | 785.005           | 47                      | 3.290                                            |
| NEW1          | 186                                      | 1184.4            |                         | 15.020                                           |
| NEW2          | 482                                      | 989,565           |                         | 35,740                                           |
| NEW3          | 1081                                     | 3.958.259         |                         | 77.670                                           |
| NEW4          | 669                                      | 1.575.038         |                         | 48,830                                           |
| NEW5          | 1616                                     | 3.072.354         |                         | 115.120                                          |
| NEW6          | 1106                                     | 2,400             |                         | 79,420                                           |
| NEW-          | 130                                      | 636.154           |                         | 11,100                                           |
| NEW8          | 624                                      | 3.988.24          |                         | 45,680                                           |

 Table 4.19 Result in retrofit design in concept 2 of example 4

area and cost of investment of retrofit model of example 4of concept 2.

Table 4.19 shows the result including heat exchanger area, heat load, additional

• •

From the result as shown in Table 4.20 and 4.21, It shows that relocation concept 1 and 2 can reduce the same utility cost (29.63% in hot utility and 23.23% in cold utility) and the same new heat exchanger number but relocation concept 1 has more profit than relocation concept 2. So relocation concept 1 is better in case of no consideration in repiping cost.

| Options                | Additional area<br>requirement [m <sup>2</sup> ] |           |       |           |    |           |    |      |      |      |      |      |      |      |      |
|------------------------|--------------------------------------------------|-----------|-------|-----------|----|-----------|----|------|------|------|------|------|------|------|------|
|                        | <b>E</b> 1                                       | <b>E2</b> | E3    | <b>E4</b> | E5 | <b>E6</b> | E7 | New1 | New2 | New3 | New4 | New5 | New6 | New7 | New8 |
| Concept1<br>(Fig 4.34) | -13                                              | 2117      | 6     | 183       | 71 | 48        | 14 | 80   | 482  | 218  | 669  | 7521 | 1106 | 130  | 624  |
| Concept2<br>(Fig 4.37) | 34                                               | 2117      | -1278 | 6623      | 71 | -250      | 47 | 186  | 482  | 1081 | 669  | 1616 | 1106 | 130  | 624  |

 Table 4.20
 Comparison of all methods of example 4

| <b>Table 4.21</b> | Comparison of all methods of example 4 |  |
|-------------------|----------------------------------------|--|
|                   |                                        |  |

|                        | Additional        |                        | Utility C                    | Litility cost          | Profit                       |                         |              |
|------------------------|-------------------|------------------------|------------------------------|------------------------|------------------------------|-------------------------|--------------|
| Options                | Area Cost<br>(\$) | Q <sub>H</sub><br>(kW) | Q <sub>H</sub> saving<br>(%) | Q <sub>C</sub><br>(kW) | Q <sub>C</sub> saving<br>(%) | Utility cost<br>(\$/yr) | (\$)         |
| Concept1<br>(Fig 4.34) | 944,857.883       | 19,835.397             | 29.63                        | 27,555.397             | 23.26                        | 1,355,456.202           | 1,811,448.01 |
| Concept2<br>(Fig 4.37) | 1,051,020         | 19,835.397             | 29.63                        | 27,555.397             | 23.26                        | 1,355,456.202           | 1,705,335.89 |

## 4.5 EXAMPLE 5

The base-case in example 5 as shown in figure 4.39 is light crude preheating train including 18 hot streams and 3 cold streams. This network has 18 heat exchangers. Cold utility is 207.9 kW and hot utility is 75,939 kW. The thermodynamic data can be considered in table 4.22.

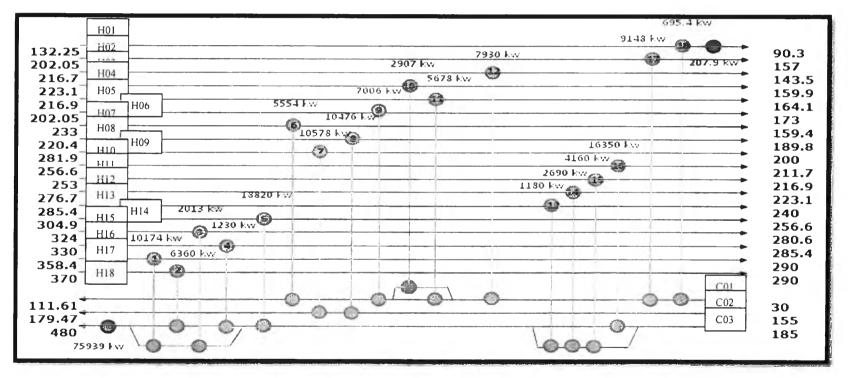



Figure 4.39 Grid diagram of Light Crude in base-case (*EMAT* = 3.3  $^{\circ}$ C).

| NO. HEAT<br>EXCHANGER | HEAT LOAD<br>(KW) | HEAT EXCHANGER<br>AREA<br>(M <sup>2</sup> ) | OVERALL HEAT<br>TRANSFER<br>(KW/M <sup>2</sup> /°C) |
|-----------------------|-------------------|---------------------------------------------|-----------------------------------------------------|
| 1                     | 10174             | 1424                                        | 0.391                                               |
| 2                     | 6360              | 1028                                        | 0.285                                               |
| - 3                   | 2013              | 125                                         | 1.03                                                |
| 4                     | 1230              | 98.2                                        | 0.555                                               |
| 5                     | 18820             | 1374                                        | 0.575                                               |
| 6                     | 5554              | 244                                         | 0.262                                               |
| 7                     | 10578             | 940                                         | 0.184                                               |
| 8                     | 10476             | 441                                         | 0.548                                               |
| 9                     | 7006.1            | 311                                         | 0.238                                               |
| 10                    | 2907              | 70                                          | 0.365                                               |
| н :                   | 5678              | 146                                         | 0.343                                               |
| 12                    | 7930              | 321                                         | 0.208                                               |
| 13                    | 1180              | 147                                         | 0.32                                                |
| 14                    | 2690              | 162                                         | 0.662                                               |
| 15                    | 4160              | 183                                         | 0.626                                               |
| 16                    | 16350             | 1509                                        | 0.468                                               |
| 17                    | 288               | 288                                         | 0.23                                                |
| 18                    | 440               | 441                                         | 0.0187                                              |

 Table 4.22 Information of base case of example 5

Cost model of new heat exchangers (\$/year):  $a + (b \times Area^{c})$ ; a = 30000; b = 750, c = 0.81(Area unit of  $m^{2}$ ).

Cost model of additional heat exchanger (\$/year):  $b \times Area^c$ ; b = 750, c = 0.81 (Area unit of  $m^2$ ).

Cost of utilities:  $HU(stream) = 60 \$ /kW/year;  $CU(cooling water) = 6.0 \$ /kW/year. Economic data: rate of interest = 0%. The annual hot and cold utility consumption of the existing network is 75,939 kW and 207.9 kW, respectively as shown composite curves of Figure 4.40, corresponding to heat recovery approach temperature (HRAT) = 38 °C and exchanger minimum approach temperature (EMAT) = 3.3 °C.

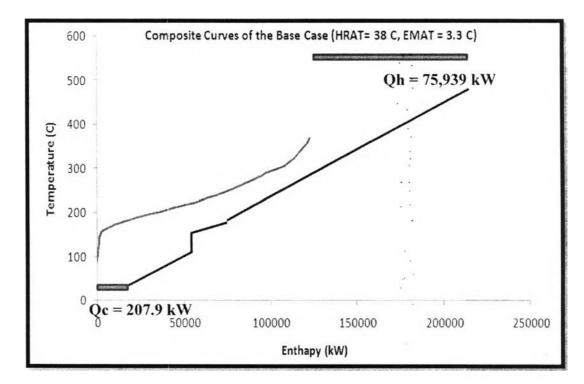



Figure 4.40 Composite curves of the base-case HEN in example 5 (light crude oil).

#### 4.5.1 <u>Retrofit with relocation concept 1 of Example 5</u>

Plot graph between profit(\$) and hot or cold utility as shown in Figure 4.41. The profit of the retrofit case is calculated by eq.25

The base-case HEN is retrofitted by using retrofit model of GAMS with MILP (Mixed Integer Linear Programming) and the relocation program with concept 1 and 2 using Visual C++. The retrofitted HEN at different HRAT is generated by the retrofit model. Applying the program of the relocation concept 1, the profit of retrofitted HEN at different HRAT (or cold utility) is plotted as shown in Figure 4.41. And the optimal retrofitted HEN with relocation concept 1 is found as shown in figure 4.42, giving the maximum profit of \$ 92,000 in 10 years.

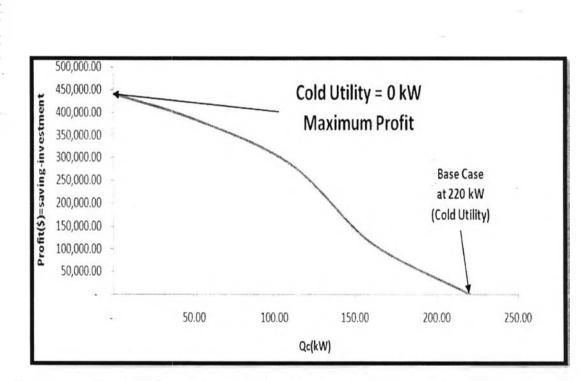



Figure 4.41 Total profit as a function of cold utility in concept 1 of example 5.

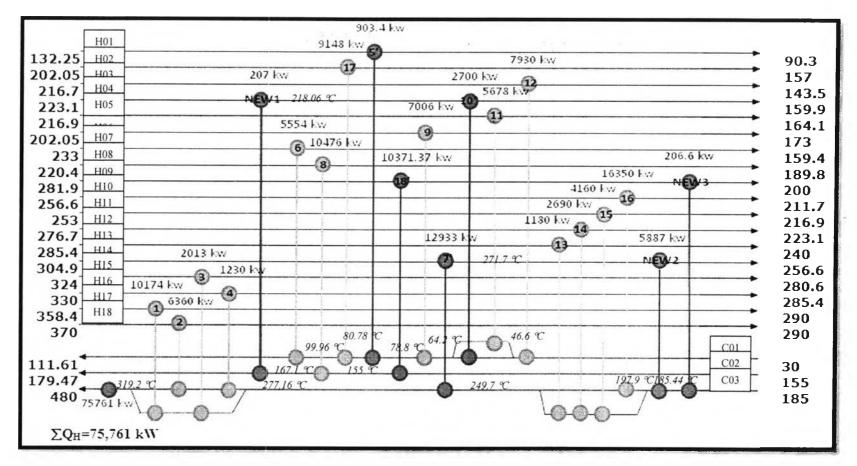
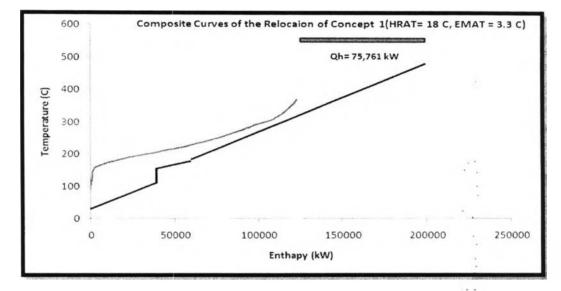




Figure 4.42 Modified network in retrofit design of example 5 in concept 1.

\*\*\*(nonsplitting and EMAT = 3.3)

The optimal retrofit case consumes only hot utilities of 75,761 kw with HRAT = 18 °C, as shown in the composite curves of Figure 4.43



**Figure 4.43** Composite curves of the optimal retrofit case with relocation concept 1 of example 5.

Table 4.23 shows the result including heat exchanger area, heat load, additional area and cost of investment of retrofit model of example 5 of concept 1.

|     | NO.HEAT    | HEAT LOAD        | HEAT                  | ADDITIONAL AREA                         |
|-----|------------|------------------|-----------------------|-----------------------------------------|
| 1   | EXCHANGER  | $(\mathbf{M}^2)$ | EXCHANGER             | $(\mathbf{M}^{\dagger})$                |
|     | NETWORK    |                  | AREA(M <sup>2</sup> ) |                                         |
|     | 1          | 10174            | 1424                  | •                                       |
|     | 2          | 6360             | 1015                  |                                         |
|     | 3          | 2013             | 125                   | a.                                      |
| 1   | -1         | 1230             | 98.2                  |                                         |
| 1   | 5"=5.196   | 12933            | 1152                  | -196                                    |
| +1  | 6          | 5554             | 244                   |                                         |
| ÷ • | 7:=7.27    | 10371            | 909                   | -27                                     |
| 1   | S          | 10476            | :11                   |                                         |
| 2   | 9          | 7006             | 311                   |                                         |
|     | 10*=10-14  | 2700             | 56                    | -14                                     |
| 1   | 11         | 5678             | 146                   |                                         |
| 1.9 | 12         | 7930             | 321                   | -                                       |
|     | 13         | 1180             | 147                   | -                                       |
|     | 14         | 2690             | 162                   |                                         |
|     | 15         | 4160             | 183                   | -                                       |
|     | 16         | 16350            | 1509                  | 141                                     |
| 141 | 17         | 9148             | 288                   | 4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 |
|     | 15'=18-300 | 903.305          | -1]                   | - 300                                   |
| 8   | NEW1       | 206.712          | 11                    |                                         |
|     | NEW2       | 5887             | 141                   | (L)                                     |
|     | NEW3       | 206.592          | 133                   |                                         |

 Table 4.23 Result in retrofit design in concept 1 of example 5

# 4.5.2 <u>Retrofit with relocation concept 2 of Example 5</u>

For the retrofit case with relocation concept 2, the retrofitted HEN at different HRAT is generated by the retrofit model. Applying the program of the relocation concept 2, the profit of retrofitted HEN at different HRAT (or cold utility) is plotted as shown in Figure 4.44. And the optimal retrofitted HEN with relocation concept 2 is found as shown in Figure 4.45, giving the maximum profit of \$ 240,000 in 10 years.

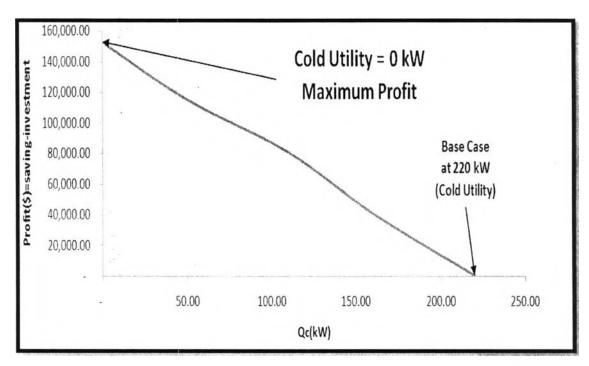



Figure 4.44 Total profit as a function of cold utility in concept 2 of example 5.

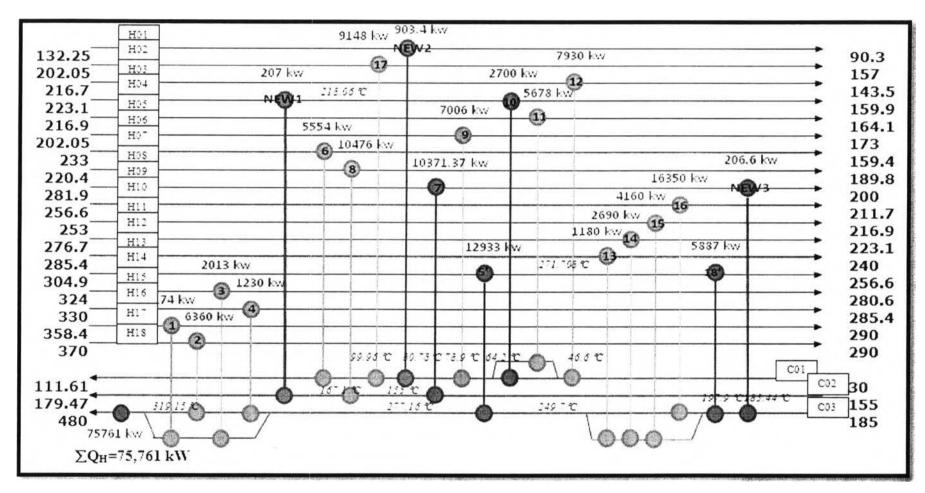
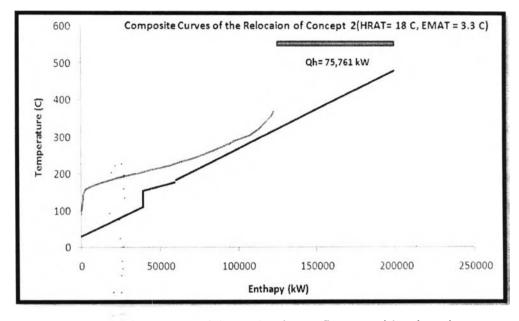




Figure 4.45 Modified network in retrofit design of example 5 in concept 2(nonsplitting and EMAT = 3.3).

and a start of the second start

The optimal retrofit case consumes only hot utilities of 75,761 kw with HRAT = 18 °C, as shown in the composite curves of Figure 4.46.



**Figure 4.46** Composite curves of the optimal retrofit case with relocation concept 2 of example 5.

Table 4.24 shows the result including heat exchanger area, heat load, additional area and cost of investment of retrofit model of example 5 of concept 2.

| NO, HEAT       | Н | EALFOAD | HEAT        | ADDITIONAL ARE: | ł |
|----------------|---|---------|-------------|-----------------|---|
| EXCHANGER NET- |   | $(M^2)$ | EXCHANGER   | $(M^2)$         |   |
| WORK           |   |         | $AREA(M^2)$ |                 |   |
| 1              |   | 10174   | 1424        | -               | - |
| 2              |   | 6360    | 1028        | 4               |   |
| 3              |   | 2013    | 125         |                 |   |
| 1              |   | 1130    | 98.2        |                 |   |
| 5"=5-469       |   | 12933   | 909         | -469            |   |
| 6              |   | 5554    | 244         | -               |   |
| 7*=7-195       |   | 10371   | 741         | -195            |   |
| S              |   | 10476   | 441         | 2.1             |   |
| ò              |   | -006    | 311         | -               |   |
| 10'=10-14      |   | 2700    | 56          | -14             |   |
| 11             |   | 5678    | 146         |                 |   |
| 12             |   | 7930    | 321         | -               |   |
| 13             |   | 1180    | 147         | -               |   |
| 14             |   | 2690    | 162         |                 |   |
| 15             |   | 4160    | 183         | -               |   |
| 16             |   | 16350   | 1509        |                 |   |
| 37             |   | 9145    | 288         |                 |   |
| 19*=18.301     |   | 903     | ] 4 ]       | -301            |   |
| NEW1           |   | 206.712 | 44          | -               |   |
| NEW2           |   | 5887    | 1182        | 2               |   |
| NEW3           |   | 206.592 | 133         | -               |   |

 Table 4.24 Result in retrofit design in concept 2 of example 5

From the result as shown in Table 4.25, It shows that relocation concept 1 and 2 can reduce the same utility cost (0.234 % in hot utility saving and 100 % in cold utility saving) and The both retrofit network as shown in Figure 4.42 and 4.45 have the same new heat exchanger number but relocation concept 1 has much more profit than relocation concept 2. So relocation concept 1 is better choice in case of no consideration in repiping cost.

|                         | Total        | Additional        |                        | Utility Consuming            |                        | T dilider and                | Profit                 |            |
|-------------------------|--------------|-------------------|------------------------|------------------------------|------------------------|------------------------------|------------------------|------------|
| Options                 | Area<br>(m²) | Area Cost<br>(\$) | Q <sub>H</sub><br>(kW) | Q <sub>H</sub> saving<br>(%) | Q <sub>C</sub><br>(kW) | Q <sub>C</sub> saving<br>(%) | Utility cost<br>(S/yr) | (\$)       |
| Base-case<br>(Fig.4.39) | 9,251.2      | -                 | 75,939                 | -                            | 207.9                  | -                            | 4,557,587.4            | -          |
| Conceptl<br>(Fig.4.42)  | 9,633.2      | 333,351.11        | 75,761                 | 0.234                        | 0                      | 100                          | 4,545,681.42           | 440,537.59 |
| Concept2<br>(Fig.4.45)  | 9,633.2      | 621,692.31        | 75,761                 | 0.234                        | 0                      | 100                          | 4,545,681.42           | 152,196    |

 Table 4.25
 Comparison of all methods of example 5

#### 4.6 EXAMPLE 6

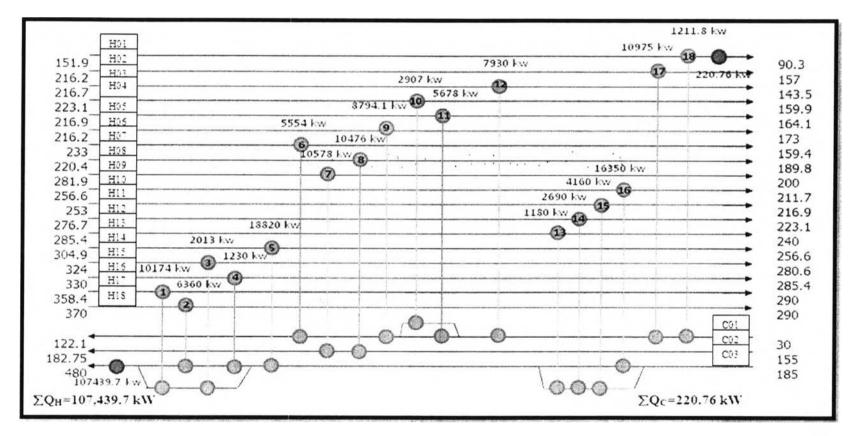
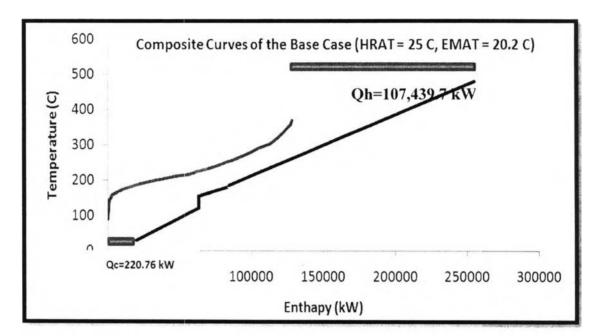



Figure 4.47 Grid diagram of Heavy Crude in base-case (*EMAT* = 20.2  $^{\circ}$ C).


The base-case in example 6 as shown in figure 4.47 is heavy crude preheating train including 18 hot streams and 3 cold streams. This network has 18 heat exchangers. Cold utility is 220.76 kW and hot utility is 107,439.7 kW. The thermodynamic data can be considered in table 4.22.

| NO HEAT               | MELLOID           | HEAT EXCHANGER | OVERALL HEAT          |
|-----------------------|-------------------|----------------|-----------------------|
| NO, HEAT<br>EXCHANGER | HEAT LOAD<br>(KW) | AREA           | TRANSFER              |
| EACHANGER             | (KW)              | $(M^1)$        | $(KW M^2 ^{\sharp}C)$ |
| 1                     | 10174             | 1424           | 0.173                 |
| 4                     | 6360              | 1028           | 0.136                 |
| 3                     | 2013              | 125            | 0.297                 |
| 4                     | 1230              | 98.2           | 0.297                 |
| 5                     | 18820             | 1374           | 0.373                 |
| б                     | 5554              | 244            | 0.3                   |
| 7                     | 10578             | 940            | 0.191                 |
| S                     | 104~6             | 441            | 0.555                 |
| 9                     | 8794.1            | 311            | 0.303                 |
| 10                    | 2907              | TO             | 0.385                 |
| 11                    | 5678              | 146            | 0.362                 |
| 12                    | 7930              | 321            | 0.218                 |
| 13                    | 1180              | 147            | 0.229                 |
| 14                    | 2690              | 162            | 0.519                 |
| 15                    | 4160              | 133            | 0.589                 |
| 16                    | 16350             | 1509           | 0.387                 |
| 17                    | 10975             | 288            | 0.34                  |
| 18                    | 1:11.8            | 440            | 0.03                  |

Cost model of new heat exchangers (\$/year):  $a + (b \times Area^{c})$ ; a = 30000; b = 750, c = 0.81 (Area unit of  $m^{2}$ ). Cost model of additional heat exchanger (\$'year).  $b \times Area^{c}$ ; b = 750, c = 0.81 (Area unit of  $m^{2}$ ).

Cost of utilities:  $HU(stream) = 60 \$  /kW year;  $CU(cooling water) = 6.0 \$  /kW year; Economic data: rate of interest = 0%.

The annual hot and cold utility consumption of the existing network is 107,439.7 kW and 220.76 kW, respectively as shown composite curves of Figure 4.40, corresponding to heat recovery approach temperature (HRAT) = 38 °C and exchanger minimum approach temperature (EMAT) = 3.3 °C.



**Figure 4.48** Composite curves of the base-case HEN in example 6 (heavy crude oil).

## 4.6.1 <u>Retrofit with relocation concept 1 of Example 6</u>

Plot graph between profit(\$) and hot or cold utility as shown in Figure 4.49. The profit of the retrofit case is calculated by eq.25

The base-case HEN is retrofitted by using retrofit model of GAMS with MILP (Mixed Integer Linear Programming) and the relocation program with concept 1 and 2 using Visual C++. The retrofitted HEN at different HRAT is generated by the retrofit model. Applying the program of the relocation concept 1, the profit of retrofitted HEN at different HRAT (or cold utility) is plotted as shown in Figure 4.49. And the optimal retrofitted HEN with relocation concept 1 is found as shown in figure 4.50, giving the maximum profit of \$ 92,000 in 10 years.

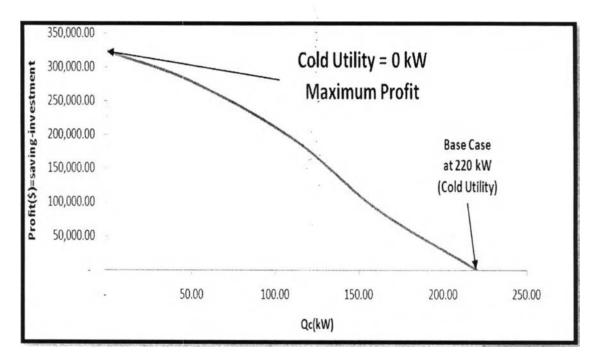



Figure 4.49 Total profit as a function of cold utility in concept 1 of example 6.

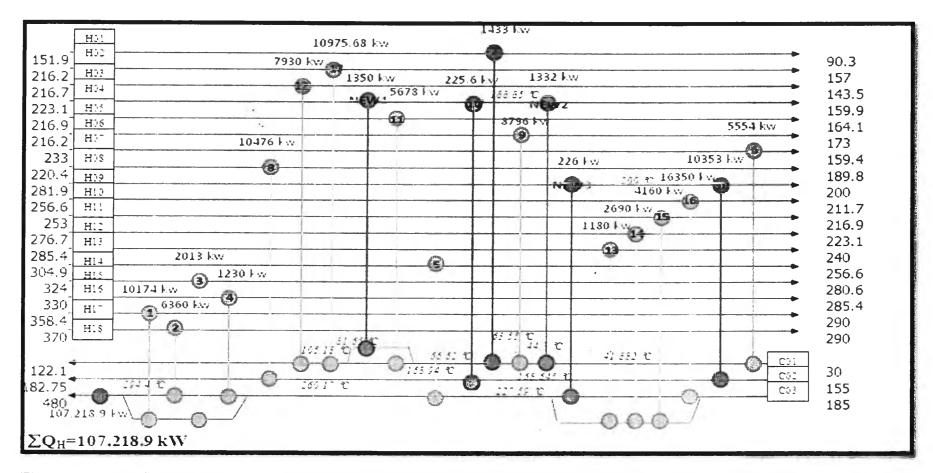
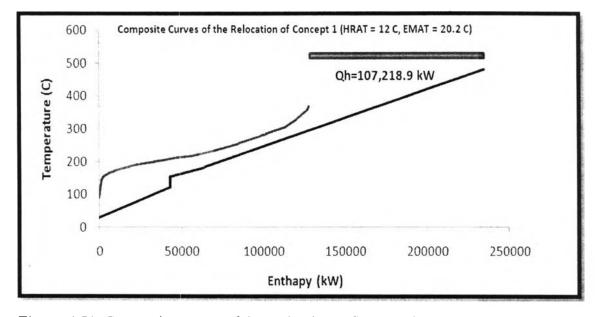




Figure 4.50 Modified network in retrofit design of example 6 in concept 1(nonsplitting and EMAT = 20.2).

The optimal retrofit case consumes only hot utilities of 107,218.9 kw with HRAT = 12 °C, as shown in the composite curves of Figure 4.51.



**Figure 4.51** Composite curves of the optimal retrofit case with relocation concept 1 of example 6.

Table 4.27 shows the result including heat exchanger area, heat load, additional area and cost of investment of retrofit model of example 6 of concept 1.

| NO.HEAT    | HEAT LOAD        | HEAT      | ADDITIONAL AREA     |
|------------|------------------|-----------|---------------------|
| EXCHANGER  | $(\mathbf{M}^2)$ | EXCHANGER | $(M^2)$             |
| NEIWORK    |                  | AREA(MF)  |                     |
| 1          | 10174            | 1424      | ~                   |
| 2          | 6360             | 1028      | -                   |
| 3          | 2013             | 125       | ~                   |
| 4          | 1230             | 98.2      | -                   |
| ٩.<br>-    | 18820            | 137       | -                   |
| 6          | 5554             | 244       | -                   |
| 7°=7÷8     | 1433             | 953       | -8                  |
| S          | 10476            | 441       |                     |
| 9          | 7006             | 311       | -                   |
| 10"=10+30  | 225.6            | 101       | -30                 |
| 11         | 5678             | 146       | -                   |
| 12         | -930             | 321       | -                   |
| 13         | 1180             | 147       | -                   |
| 14         | 2690             | 162       |                     |
| 15         | 4160             | 183       | ~                   |
| 16         | 16350            | 1509      |                     |
| 17         | 9148             | 288       | • • • • • • • • • • |
| 18-=18-249 | 10353            | 698       | -249                |
| NEWI       | 1350             | 25        | -                   |
| NEW2       | 1332             | 26        | -                   |
| NEW3       | 226              | 31        | -                   |

 Table 4.27 Result in retrofit design in concept 1 of example 6

## 4.6.2 <u>Retrofit with relocation concept 2 of Example 6</u>

For the retrofit case with relocation concept 2, the retrofitted HEN at different HRAT is generated by the retrofit model. Applying the program of the relocation concept 2, the profit of retrofitted HEN at different HRAT (or cold utility) is plotted as shown in Figure 4.44. And the optimal retrofitted HEN with relocation concept 2 is found as shown in Figure 4.45, giving the maximum profit of \$ 240,000 in 10 years.

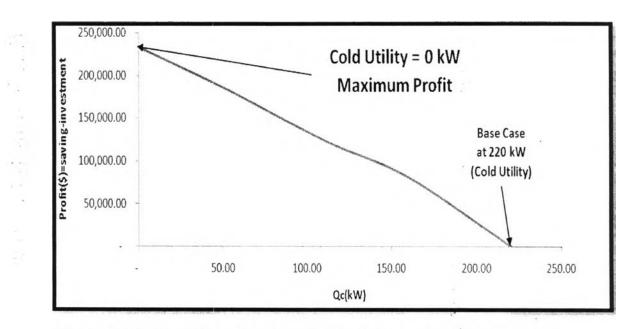



Figure 4.52 Total profit as a function of cold utility in concept 2 of example 6.

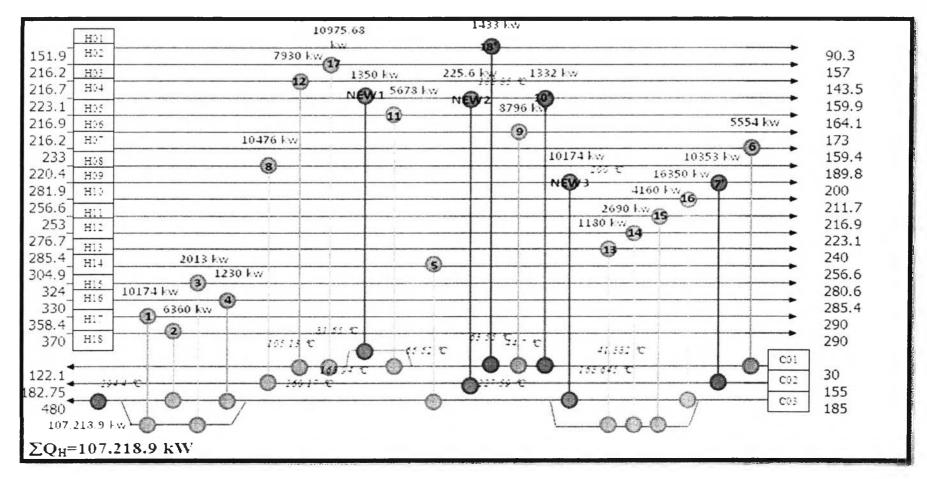
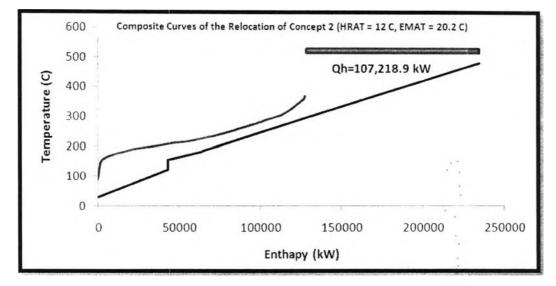




Figure 4.53 Modified network in retrofit design of example 6 in concept 2(nonsplitting and EMAT = 20.2).

The optimal retrofit case consumes only hot utilities of 75,761 kw with HRAT = 18 °C, as shown in the composite curves of Figure 4.54.



**Figure 4.54** Composite curves of the optimal retrofit case with relocation concept 2 of example 6.

Table 4.28 shows the result including heat exchanger area, heat load, additional area and cost of investment of retrofit model of example 6 of concept 2.

| NO.HEAT    | HEAT LOAD        | HEAT        | ADDITIONAL AREA    |
|------------|------------------|-------------|--------------------|
| EXCHANGER  | $(\mathbf{M}^2)$ | EXCHANGER   | $(\mathbf{M}^{2})$ |
| NEIWORK    |                  | $AREA(M^2)$ |                    |
| 1          | 10174            | 1424        | ·                  |
| 2          | 6360             | 1028        | -                  |
| 3          | 2013             | 125         | - 0 -              |
| 4          | 1230             | 98.2        |                    |
| 5          | 18820            | 137         | - <i>Q</i>         |
| 6          | 5554             | 244         | -                  |
| 7=7-257    | 10353            | 689         | .257               |
| 8          | 10476            | 441         | -                  |
| - 9        | 7006             | 311         |                    |
| 10'=10-44  | 1332             | 26          | -11                |
| • 11       | 5678             | 146         | -                  |
| 12         | 7930             | 321         |                    |
| 13         | 1180             | 147         | -                  |
| 14         | 2690             | 162         | - 1                |
| 15         | 4160             | 183         | -                  |
| 16         | 16350            | 1509        |                    |
| 17         | 9148             | 288         | 1.14               |
| 18'=19-515 | 1433             | 953         | -515               |
| NEW1       | 1350             | 25          |                    |
| NEW2       | 226              | 101         |                    |
| NEW3       | 10174            | 31          |                    |

 Table 4.28 Result in retrofit design in concept 2 of example 6

From the result as shown in Table 4.29, It shows that relocation concept 1 and 2 can reduce the same utility cost (0.205 % in hot utility saving and 100 % in cold utility saving) and The both retrofit network as shown in Figure 4.50 and 4.53 have the same new heat exchanger number but relocation concept 1 has more profit than relocation concept 2. So relocation concept 1 is better choice in case of no consideration in repiping cost.

|                         | Total        | Additional        | Utility Consuming      |                              |                        | Utility cost                   | Profit    |            |
|-------------------------|--------------|-------------------|------------------------|------------------------------|------------------------|--------------------------------|-----------|------------|
|                         | Area<br>(m²) | Area Cost<br>(\$) | Q <sub>H</sub><br>(kW) | Q <sub>H</sub> saving<br>(%) | Q <sub>C</sub><br>(kW) | Q <sub>C</sub> saving<br>(° °) | (Syr)     | (\$)       |
| Base-case<br>(Fig.4.47) | 9,191        | -                 | 107,439.7              | -                            | 220.76                 | -                              | 6,447,707 | -          |
| Conceptl<br>(Fig.4.50)  | 9,565        | 204,106.4         | 107,219                | 0.205                        | 0                      | 100                            | 6,433,080 | 323,487.23 |
| Concept2<br>(Fig.4.53)  | 9,929        | 344,262.6         | 107,219                | 0.205                        | 0                      | 100                            | 6,433,080 | 233,003.77 |

 Table 4.29
 Comparison of all methods of example 6