ผลการคำนวณ

ในบทนี้จะกล่าวถึงผลการคำนวณค่าสัมประสิทธิ์และค่าตัวประกอบแต่ละตัว พร้อมกับทำ การเปรียบเทียบค่าที่คำนวณโดยใช้ข้อมูลอากาศปี 1991 กับค่าตามคู่มือการอนุรักษ์พลังงาน และค่า ที่คำนวณโดยใช้ข้อมูลอากาศตามแบบจำลองทางคณิตศาสตร์

4.1 ค่าตัวประกอบรังสือาทิตย์

การคำนวณค่าตัวประกอบรังสือาทิตย์สำหรับทิศและมุมเอียงหนึ่ง ๆ จะคำนวณโดยเฉลี่ย จากค่าตัวประกอบรังสีอาทิตย์ที่เวลาใด ๆ ตลอดปี ตั้งแต่ 7.00 น. ถึง 18.00 น. เนื่องจากช่วงเวลาดัง กล่าวเป็นช่วงเวลากลางวันที่มีรังสีตรงดวงอาทิตย์และเป็นเวลาที่อาคารสำนักงานถูกใช้งาน

ผลการคำนวณหาค่าตัวประกอบรังสือาทิตย์ในทิศและมุมเอียงต่าง ๆ เฉลี่ยตลอดเดือนและ ปีแสดงไว้ในตารางที่ ข.1 ภาคผนวก ข. ส่วนตารางที่ ข.2 ภาคผนวก ข. นั้นเป็นตารางตัวอย่างแสดง ให้เห็นถึงการเฉลี่ยค่าตัวประกอบรังสือาทิตย์ตลอดทั้งปี ตั้งแต่ 7.00 น. ถึง 18.00 น. ซึ่งในตาราง เป็นผลการคำนวณค่าตัวประกอบรังสือาทิตย์สำหรับหลังคาในระนาบระดับ (มุมเอียง = 0°) ตั้งแต่ 7.00 น. ถึง 18.00 น. ตลอดปี โดยในระนาบของมุมเอียงอื่น ๆ ก็สามารถหาค่าตัวประกอบรังสื อาทิตย์ได้ในลักษณะเดียวกัน

โดยเพื่อทำให้อยู่ในรูปแบบเดียวกับตารางตามคู่มือการอนุรักษ์พลังงาน ระนาบที่เอียงมาก กว่า 70° จะถือว่าเป็นกำแพง และระนาบที่เอียงน้อยกว่า 70° จะถือว่าเป็นหลังคา และค่าตัว ประกอบรังสีอาทิตย์จะสามารถหาได้จากสมการดังนี้

ค่าตัวประกอบรังสีอาทิตย์สำหรับกำแพง

$$SF = 160 \times CF \tag{4.1}$$

เมื่อ CF คือ ค่าตัวประกอบปรับแก้สำหรับกำแพงในทิศและระนาบเอียงหนึ่ง ๆ

ซึ่งคารางที่ 4.1.1 แสดงค่าตัวประกอบปรับแก้สำหรับกำแพงคามคู่มือการอนุรักษ์พลังงาน และ ดารางที่ 4.2.1 แสดงค่าตัวประกอบปรับแก้สำหรับกำแพงที่คำนวณโดยใช้ข้อมูลอากาศปี 1991

ค่าตัวประกอบรังสีอาทิตย์สำหรับหลังคา

$$SF = 370 \times CF \tag{4.2}$$

เมื่อ *CF* คือ ค่าตัวประกอบปรับแก้สำหรับหลังคาในทิศและระนาบเอียงหนึ่ง ๆ ซึ่งตารางที่ 4.1.2 แสดงค่าตัวประกอบปรับแก้สำหรับหลังคาตามคู่มือการอนุรักษ์พลังงาน และ ตารางที่ 4.2.2 แสดงค่าตัวประกอบปรับแก้สำหรับหลังคาที่คำนวณโดยใช้ข้อมูลอากาศปี 1991

ส่วนตารางที่ ข.3 ภาคผนวก ข. แสดงค่าตัวประกอบปรับแก้สำหรับกำแพงและหลังคาที่ คำนวณโดยใช้ข้อมูลรังสีอาทิตย์ตาม mathematic model

) ทิศ	เหนือ	ตะวันออก	ตะวันออก	ตะวัน ออก	ใต้	ตะวันตก	ตะวันตก	ดะวันตก
มุมเอียง		เฉียงเหนือ		เฉียงใต้		เฉียงใต้		เฉียงเหนือ
70 ⁰	1.06	1.24	1.52	1.63	1.63	1.60	1.48	1.22
75 ⁰	0.96	1.14	1.42	1.52	1.50	1.48	1.38	1.12
80 ⁰	0.87	1.05	1.32	1.40	1.37	1.37	1.28	1.02
85 ⁰	0.78	0.96	1.22	1.29	1.24	1.25	1.17	0.93
90 ⁰	0.70	0.87	1.12	1.17	1.11	1.13	1.03	0.84

<u>ตารางที่ 4.1.1</u> ค่าตัวประกอบปรับแก้สำหรับกำแพงตามคู่มือการอนุรักษ์พลังงาน

<u>ตารางที่ 4.1.2</u> ค่าตัวประกอบปรับแก้สำหรับหลังคาตามคู่มือการอนุรักษ์พลังงาน

) ทิศ	เหนือ	ดะวันออก	ตะวันออก	ตะวันออก	ใต้	ตะวันตก	ตะวันตก	ตะวันตก
มุมเอียง		เฉียงเหนือ		เฉียงใต้		เฉียงใต้		เฉียงเหนือ
0 ⁰	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
5 ⁰	0.98	0.99	0.99	1.01	1.01	1.01	1.00	0.99
10 ⁰	0.96	0.97	0.99	1.01	1.02	1.01	0.99	0.97
15 ⁰	0.93	0.95	0.98	1.01	1.02	1.00	0.98	0.95
20 [°]	0.90	0.93	0.97	1.00	1.02	1.00	0.96	0.92
25 ⁰	0.87	0.90	0.95	0.99	1.01	0.98	0.94	0.89
30 [°]	0.83	0.86	0.93	0.98	0.99	0.97	0.92	0.86
35 ⁰	0.78	0.83	0.90	0.96	0.97	0.95	0.89	0.82
40 [°]	0.74	0.79	0.87	0.93	0.95	0.92	0.86	0.78
45 ⁰	0.69	0.75	0.84	0.90	0.92	0.89	0.83	0.74
50 [°]	0.64	0.71	0.81	0.87	0.88	0.86	0.79	0.70
55 ⁰	0.59	0.66	0.77	0.83	0.84	0.82	0.76	0.66
60 ⁰	0.54	0.62	0.73	0.79	0.80	0.78	0.72	0.61
65 ⁰	0.50	0.58	0.69	0.75	0.75	0.73	0.68	0.57

ุ ทิศ	เหนือ	คะวันออก	ดะวันออก	ตะวันออก	ใต้	ตะวันตก	ตะวันตก	ตะวันตก
มุมเอียง		เฉียงเหนือ		เฉียงใต้		เฉียงใต้		เฉียงเหนือ
70 ⁰	1.08	1.22	1.51	1.67	1.74	1.82	1.70	1.35
75 ⁰	0.98	1.11	1.41	1.55	1.62	1.70	1.60	1.25
80 ⁰	0.87	1.01	1.30	1.43	1.48	1.58	1.50	1.14
85 ⁰	0.77	0.90	1.18	1.30	1.34	1.46	1.39	1.04
90 [°]	0.67	0.80	1.07	1.16	1.19	1.32	1.27	0.93

<u>ศารางที่ 4.2.1</u> ค่าตัวประกอบปรับแก้สำหรับกำแพงที่คำนวณโคยใช้ข้อมูลอากาศปี 1991

<u>ตารางที่ 4.2.2</u> ค่าตัวประกอบปรับแก้สำหรับหลังคาที่คำนวณโคยใช้ข้อมูลอากาศปี 1991

ทิศ	เหนือ	ดะวันออก	ตะวันออก	ตะวันออก	ใต้	ดะวันตก	ดะวันตก	ตะวันตก
มุมเอียง	0	เฉียงเหนือ		เฉียงใต้		เฉียงใต้		เฉียงเหนือ
00	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
5 ⁰	0.95	0.96	0.97	0.98	0.99	0.98	0.97	0.96
10 [°]	0.93	0.94	0.96	0.98	1.00	0.99	0.98	0.95
15 ⁰	0.91	0.92	0.95	0.98	1.00	1.00	0.97	0.93
20 [°]	0.88	0.89	0.93	0.98	1.00	1.00	0.97	0.92
25 ⁰	0.85	0.87	0.92	0.97	1.00	1.00	0.96	0.89
30 [°]	0.81	0.84	0.90	0.96	1.00	1.00	0.95	0.87
35 [°]	0.77	0.81	0.88	0.95	0.99	0.99	0.93	0.84
40 [°]	0.73	0.77	0.86	0.93	0.97	0.97	0.91	0.81
45 [°]	0.69	0.74	0.83	0.90	0.95	0.95	0.89	0.78
50 [°]	0.64	0.70	0.80	0.88	0.92	0.93	0.87	0.74
55 ⁰	0.60	0.66	0.77	0.84	0.89	0.90	0.84	0.71
60 ⁰	0.56	0.61	0.73	0.81	0.85	0.87	0.81	0.67
65 ⁰	0.51	0.57	0.70	0.77	0.80	0.83	0.77	0.62

<u>การเปรียบเทียบผลการคำนวณ</u>

การเปรียบเทียบผลการคำนวณค่าตัวประกอบรังสีอาทิตย์ สามารถทำโดยการเปรียบเทียบ ค่าตัวประกอบตามคู่มือการอนุรักษ์พลังงาน, ค่าตัวประกอบที่คำนวณโดยใช้ข้อมูลอากาศปี 1991 และค่าตัวประกอบที่คำนวณโดยใช้ข้อมูลอากาศตามแบบจำลองทางคณิตศาสตร์ (mathematic model) ของ ASHRAE Handbook-Fundamentals

รูปที่ 4.1.1 ถึง 4.1.19 แสดงการเปรียบเทียบค่าด้วประกอบรังสือาทิตย์ของกระจกในทิศ ต่าง ๆ และรูปที่ 4.2.1 ถึง 4.2.8 แสดงการเปรียบเทียบค่าด้วประกอบรังสือาทิตย์ของกระจกที่ ระนาบเอียงต่าง ๆ พบว่าค่าที่คำนวณจาก mathematic model มีค่าสูงกว่าค่าที่คำนวณจากข้อมูล อากาศจริงและค่าตามคู่มือการอนุรักษ์พลังงาน โดยที่กราฟทั้งสามเส้นมีลักษณะโค้ง (trend) ของกราฟไปในทำนองเดียวกัน ซึ่งเมื่อมุมเอียงของระนาบกระจกเพิ่มขึ้น รังสีอาทิตย์ที่ตกกระทบ ระนาบกระจกจะลดลง

จากรูปที่ 4.1.19 แสดงการเปรียบเทียบค่าตัวประกอบรังสีอาทิตย์ของกระจกในทิศต่าง ๆ ที่ ระนาบตั้งฉาก (มุมเอียง = 90°) พบว่าค่าที่คำนวณจากข้อมูลอากาศจริงทางค้านตะวันตกมีค่าสูงกว่า ทางค้านตะวันออก ซึ่งทำให้เส้นกราฟไม่มีลักษณะสมมาตรเหมือนกับเส้นกราฟของค่าที่คำนวณ จาก mathematic model และค่าตามคู่มือการอนุรักษ์พลังงาน เนื่องมาจากกำแพงทางค้านตะวันออก ถูกแสงแดดในช่วงเวลาเช้า ส่วนกำแพงทางค้านตะวันตกถูกแสงแคดในช่วงเวลาบ่าย และตาม ลักษณะของข้อมูลอากาศจริงแล้ว แสงแคคหรือรังสีควงอาทิตย์ในเวลาบ่ายจะมีปริมาณมากกว่าใน เวลาเช้า

เมื่อพิจารณาถึงความแตกต่างระหว่างผลการคำนวณที่เกิดขึ้น พบว่าค่าตัวประกอบรังสี อาทิตย์เป็นผลมาจากรังสีอาทิตย์ที่ตกกระทบระนาบกระจก ซึ่งประกอบด้วย 2 ส่วนคือฟลักซ์รังสี ตรงดวงอาทิตย์บนระนาบกระจก (I_D) และฟลักซ์รังสีกระจายดวงอาทิตย์ (I_d) ตามสมการที่ 2.21

$$I_t = I_D + I_d \tag{4.3}$$

เมื่อพิจารณาการคำนวณค่าตัวประกอบรังสีอาทิตย์ โดยไม่คำนึงถึงค่าสัมประสิทธิ์การดูด ซับของกระจก จะได้ว่า

118559505

$$SF = I_D + I_d \tag{4.4}$$

$$SF = I_{DN} \cos\theta + I_d (\cos\Sigma + Y(1 - \cos\Sigma)) + I_{DN} (C + \sin\beta) \times 0.1 \times (1 - \cos\Sigma)$$

$$(4.5)$$

$$\hat{1}\Theta U \qquad Y = 0.55 + 0.437 \cos\theta + 0.313 \cos^2\theta \tag{4.6}$$

$$\text{Hat} \qquad \cos\theta = \cos\beta \cdot \cos\gamma \cdot \sin\Sigma + \sin\beta \cdot \cos\Sigma \qquad (4.7)$$

ถ้าพิจารณาที่เวลาเดียวกันและให้กระจกอยู่ในทิศทางและมุมเอียงเดียวกัน สามารถเขียน สมการได้ใหม่เป็น

$$SF = I_{DN}(a+c) + I_d b \tag{4.8}$$

ดังนั้นจากการพิจารณาข้างต้นจึงสรุปได้ว่า ความแตกต่างระหว่างผลการคำนวณที่เกิดขึ้น เป็นผลมาจากข้อมูลอากาศที่ใช้ในการคำนวณคือ รังสีตรงควงอาทิตย์ (I_{DN}) และรังสึกระจายควง อาทิตย์ (I_d) อย่างไรก็ตามผลการคำนวณที่คำนวณจาก mathematic model มีค่าสูงกว่าค่าที่คำนวณ จากข้อมูลอากาศจริงและค่าตามคู่มือการอนุรักษ์พลังงานอยู่มาก เนื่องจากข้อมูลอากาศตาม mathematic model นั้นเป็นการพิจารณาที่สภาพอากาศโปร่งไสทุกวันตลอดปี

ตารางที่ 4.3.1 แสดงค่าความคลาดเคลื่อนของค่าตัวประกอบรังสือาทิตย์สำหรับกำแพง พบ ว่าค่าตัวประกอบรังสีอาทิตย์สำหรับกระจกในระนาบตั้งฉาก (มุมเอียง = 90°) มีค่าความคลาด เคลื่อนมากที่สุด 23.30 % และมีค่าความคลาดเคลื่อนเฉลี่ย 9.46 % ตารางที่ 4.3.2 แสดงค่าความ คลาดเคลื่อนของค่าตัวประกอบรังสีอาทิตย์สำหรับหลังคา พบว่ากระจกในระนาบระดับ (มุมเอียง = 0°) มีค่าความคลาดเคลื่อน 3 %

ุ ทิศ	เหนือ	ตะวันออก	ตะวันออ ก	ตะวันออก	ใต้	ตะวันตก	ดะวันตก	ตะวันตก
มุมเอียง		เฉียงเหนือ		เฉียงใต้		เฉียงใต้		เฉียงเหนือ
70 [°]	1.89	1.61	0.66	2.45	6.75	13.75	14.86	10.66
75 [°]	2.08	2.63	0.70	1.97	8.00	14.86	15.94	11.61
80 ⁰	0.00	3.81	1.52	2.14	8.03	15.33	17.19	11.76
85 ⁰	1.28	6.25	3.28	0.78	8.06	16.80	18.80	11.83
90 [°]	4.29	8.05	4.46	0.85	7.21	16.81	23.30	10.71

<u>ตารางที่ 4.3.1</u> แสดงค่าความคลาดเคลื่อนของค่าตัวประกอบรังสีอาทิตย์สำหรับกำแพง (%)

<u>ตารางที่ 4.3.2</u> แสดงค่าความคลาดเคลื่อนของค่าตัวประกอบรังสีอาทิตย์สำหรับหลังคา (%)

ทิศ	เหนือ	ตะวันออก	ตะวันออก	ตะวันออก	ใต้	ตะวันตก	ตะวันตก	ตะวันตก
มุมเอียง		เฉียงเหนือ		เฉียงใต้		เฉียงใต้		เฉียงเหนือ
00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
5 [°]	3.06	3.03	2.02	2.97	1.98	2.97	3.00	3.03
10 ⁰	3.12	3.09	3.03	2.97	1.96	1.98	1.01	2.06
15 ⁰	2.15	3.16	3.06	2.97	1.96	0.00	1.02	2.11
20 [°]	2.22	4.30	4.12	2.00	1.96	0.00	1.04	0.00
25 ⁰	2.30	3.33	3.16	2.02	0.99	2.04	2.13	0.00
30 [°]	2.41	2.33	3.23	2.04	1.01	3.09	3.26	1.16
35 [°]	1.28	2.41	2.22	1.04	2.06	4.21	4.49	2.44
40 [°]	1.35	2.53	1.15	0.00	2.11	5.43	5.81	3.85
45 ⁰	0.00	1.33	1.19	0.00	3.26	6.74	7.23	5.41
50 ⁰	0.00	1.41	1.23	1.15	4.55	8.14	10.13	5.71
55 ⁰	1.69	0.00	0.00	1.20	5.95	9.76	10.53	7.58
60 ⁰	3.70	1.61	0.00	2.53	6.25	11.54	12.50	9.84
65 ⁰	2.00	1.72	1.45	2.67	6.67	13.70	13.24	8.77

4.2 ค่าผลต่างอุณหภูมิเทียบเท่า

การคำนวณค่าผลต่างอุณหภูมิเทียบเท่าสำหรับกำแพงทิศหนึ่ง ๆ จะคำนวณโดยเฉลี่ยผล การคำนวณในแต่ละชั่วโมง (1.00 น. ถึง 24.00 น.) ของทุกวันตลอดทั้งปี เป็นค่าเฉลี่ยในแต่ละ ชั่วโมง (1.00 น. ถึง 24.00 น.) ของทุกเดือนตลอดปี เมื่อได้ค่าเฉลี่ยในแต่ละชั่วโมงของทุกเดือน แล้วจะทำการหาค่าผลต่างอุณหภูมิเทียบเท่าเป็น 4 แบบ เพื่อที่จะนำไปเปรียบเทียบว่าตารางตามคู่ มือการอนุรักษ์พลังงานมีการคำนวณค่าผลต่างอุณหภูมิเทียบเท่าเหมือนกับการเฉลี่ยค่าในแบบใด

 แบบค่ามากที่สุด (MAX) คือค่าเฉลี่ยที่ได้จากการนำค่าผลต่างอุณหภูมิเทียบเท่าใน ชั่วโมงที่มากที่สุดของแต่ละเดือนมาเฉลี่ยทั้ง 12 เดือน

 แบบค่าเฉลี่ยค่ามากที่สุด 8 ชั่วโมง (MAX 8 brs.) คือค่าเฉลี่ยที่ได้จากการนำค่าผลต่าง อุณหภูมิเทียบเท่าในช่วงของชั่วโมงที่มีค่ามากที่สุด 8 ชั่วโมงจากทั้งหมด 24 ชั่วโมงของแต่ละเดือน มาเฉลี่ยทั้ง 12 เดือน

3. แบบค่าเฉลี่ยตั้งแต่ 7.00 น.ถึง 18.00 น. (AVER(7:00-18:00)) คือค่าเฉลี่ยที่ได้จากการนำ ค่าผลต่างอุณหภูมิเทียบเท่าในช่วงตั้งแต่ 7.00 น. ถึง 18.00 น. ของแต่ละเคือนมาเฉลี่ยทั้ง 12 เคือน

แบบค่าเฉลี่ยตลอดวัน (AVER(1:00-24:00)) คือค่าเฉลี่ยที่ได้จากการนำค่าผลต่าง
 อุณหภูมิเทียบเท่าในช่วงตั้งแต่ 1.00 น. ถึง 24.00 น. ของแต่ละเดือนมาเฉลี่ยทั้ง 12 เดือน

ผลการคำนวณหาค่าผลต่างอุณหภูมิเทียบเท่าสำหรับกำแพงแต่ละโครงสร้างที่วางตัวในทิศ ทางต่าง ๆ แสดงไว้ในตารางที่ ค.1.1 ถึง ค.1.20 ภาคผนวก ค. ส่วนตารางที่ ค.2.1 ถึง ค.2.5 ภาค ผนวก ค. แสดงผลการคำนวณค่าผลต่างอุณหภูมิเทียบเท่าสำหรับหลังคาคอนกรีตหนา 100 ม.ม. และเป็นตัวอย่างที่แสดงถึงการเฉลี่ยค่าแบบต่าง ๆ ของกำแพงในแต่ละทิศก่อนจะนำค่าที่คำนวณได้ มาทำการเฉลี่ยเป็นค่าเดียว เพื่อให้ผลลัพธ์อยู่ในรูปแบบเดียวกับตารางตามคู่มือการอนุรักษ์พลังงาน ในอาคาร นอกจากนี้ยังสามารถจะสรุปค่าผลต่างอุณหภูมิเทียบเท่าสำหรับกำแพงที่เฉลี่ยในแต่ละ แบบได้เป็นตารางที่ ค.3.1 ถึง ค.3.4 ภาคผนวก ค. และตารางที่ ค.4.1 ถึง ค.4.4 แสดงค่าผลต่าง อุณหภูมิเทียบเท่าสำหรับหลังคาที่เฉลี่ยในแต่ละแบบ ค่าผลต่างอุณหภูมิเทียบเท่าสำหรับกำแพงตามคู่มือการอนุรักษ์พลังงานแสดงในตารางที่ 4.4 และค่าผลต่างอุณหภูมิเทียบเท่าสำหรับกำแพงที่คำนวณจากข้อมูลอากาศปี 1991 แสดงในตาราง ที่ 4.5.1 ถึง 4.5.4

มวลของ	มวลของ ค่าความแตกต่างอุณหภูมิเทียบเท่าของกำแพง						
กำแพง	ระดับค่าสัมประสิทธิ์การดูดกลื่นรังสือาทิตย์ (α)						
(kg/m^2)	0.1	0.3	0.5	0.7	0.9		
	(0-0.2)	(0.2-0.4)	(0.4-0.6)	(0.6-0.8)	(0.8-1.0)		
0-125	14	15	16	17	18		
126-195	11	12	13	14	15		
เกินกว่า 195	9	10	11	12	13		

<u>ตารางที่ 4.4</u> แสดงค่าผลต่างอุณหภูมิเทียบเท่าสำหรับกำแพงตามคู่มือการอนุรักษ์พลังงาน

<u>ตารางที่ 4.5.1</u> แสดงค่าผลต่างอุณหภูมิเทียบเท่าสำหรับกำแพงแบบค่ามากที่สุด

มวลของ	ค่าความแตกต่างอุณหภูมิเทียบเท่าของกำแพง						
ถ้าแพง	ระดับค่าสัมประสิทธิ์การดูคกลื่นรังสีอาทิตย์ (α)						
(kg/m^2)	0.1	0.3	0.5	0.7	0.9		
	(0-0.2)	(0.2-0.4)	(0.4-0.6)	(0.6-0.8)	(0.8-1.0)		
0-125	9	13	17	22	26		
126-195	8	12	16	20	23		
เกินกว่า 195	8	11	14	18	21		

<u>ตารางที่ 4.5.2</u> แสดงค่าผลต่างอุณหภูมิเทียบเท่าสำหรับกำแพงแบบค่าเฉลี่ยค่ามากที่สุด 8 ชั่วโมง

มวลของ	ค่าความแตกต่างอุณหภูมิเทียบเท่าของกำแพง						
กำแพง	ระดับค่าสัมประสิทธิ์การดูคกลื่นรังสีอาทิตย์ (α)						
(kg/m^2)	0.1	0.3	0.5	0.7	0.9		
	(0-0.2)	(0.2-0.4)	(0.4-0.6)	(0.6-0.8)	(0.8-1.0)		
0-125	8	11	14	17	20		
126-195	7	10	13	16	19		
เกินกว่า 195	7	9	12	15	17		

มวลของ กำแพง	ค่าความแตกต่างอุณหภูมิเทียบเท่าของกำแพง ระคับค่าสัมประสิทธิ์การคูคกลืนรังสีอาทิตย์ (α)							
(kg/m^2)	0.1	0.3	0.5	0.7	0.9			
	(0-0.2)	(0.2-0.4)	(0.4-0.6)	(0.6-0.8)	(0.8-1.0)			
0-125	6	8	10	13	15			
126-195	5	7	9	11	13			
เกินกว่า 195	4	6	8	10	11			

<u>ตารางที่ 4.5.3</u> แสดงค่าผลต่างอุณหภูมิเทียบเท่าสำหรับกำแพง แบบค่าเฉลี่ยตั้งแต่ 7.00 น. ถึง 18.00 น.

<u>ตารางที่ 4.5.4</u> แสดงค่าผลต่างอุณหภูมิเทียบเท่าสำหรับกำแพง

มวลของ	ค่าความแตกต่างอุณหภูมิเทียบเท่าของกำแพง							
ี กำแพง		ระดับค่าสัมประสิทธิ์การดูดกลื่นรังสีอาทิตย์ (α)						
(kg/m^2)	0.1	0.3	0.5	0.7	0.9			
	(0-0.2)	(0.2-0.4)	(0.4-0.6)	(0.6-0.8)	(0.8-1.0)			
0-125	4	6	7	8	9			
126-195	4	6	7	8	9			
เกินกว่า 195	4	6	7	8	9			

แบบค่าเฉลี่ยตลอดวัน (1.00 น. ถึง 24.00 น.)

ค่าผลต่างอุณหภูมิเทียบเท่าสำหรับหลังคาตามคู่มือการอนุรักษ์พลังงานแสดงในตารางที่ 4.6 และค่าผลต่างอุณหภูมิเทียบเท่าสำหรับหลังคาที่คำนวณจากข้อมูลอากาศปี 1991 แสดงในตาราง ที่ 4.7.1 ถึง 4.7.4

มวลของ	าา							
หลังคา	ระดับค่าสัมประสิทธิ์การดูดกลื่นรังสีอาทิตย์ (α)							
(kg/m^2)	m ²) 0.1 0.3		0.5	0.6และมากกว่า				
	(0-0.2)	(0.2-0.4)	(0.4-0.6)	(0.6-1.0)				
0-50	20	24	28	32				
50-200	16	20	24	28				
เกินกว่า 200	12	16	20	24				

<u>ตารางที่ 4.6</u> แสดงค่าผลต่างอุณหภูมิเทียบเท่าสำหรับหลังคาตามคู่มือการอนุรักษ์พลังงาน

<u>ตารางที่ 4.7.1</u> แสดงค่าผลต่างอุณหภูมิเทียบเท่าสำหรับหลังคาแบบค่ามากที่สุด

มวลของ	ค่าความแตกต่างอุณหภูมิเทียบเท่าของหลังคา							
หลังคา	ระดับค่าสัมประสิทธิ์การดูดกลืนรังสีอาทิตย์ (α)							
(kg/m^2)	0.1 0.3 0.5 0.6และมากกว่							
	(0-0.2)	(0.2-0.4)	(0.4-0.6)	(0.6-1.0)				
0-50	7	16	25	34				
50-200	7	15	23	32				
เกินกว่า 200	6 13 20 27							

<u>ตารางที่ 4.7.2</u> แสดงค่าผลต่างอุณหภูมิเทียบเท่าสำหรับหลังคาแบบค่าเฉลี่ยค่ามากที่สุด 8 ชั่วโมง

มวลของ	ค่าความแตกต่างอุณหภูมิเทียบเท่าของหลังคา						
หลังคา	ระดับค่าสัมประสิทธิ์การคูดกลื่นรังสีอาทิตย์ (α)						
(kg/m^2)	0.1	0.1 0.3 0.5 0.6และมากก					
	(0-0.2)	(0.2-0.4)	(0.4-0.6)	(0.6-1.0)			
0-50	6	13	19	26			
50-200	6	12	18	25			
เกินกว่า 200	5	10	16	22			

<u>ตารางที่ 4.7.3</u> แสดงค่าผลต่างอุณหภูมิเทียบเท่าสำหรับหลังคา แบบค่าเฉลี่ยตั้งแต่ 7.00 น. ถึง 18.00 น.

มวลของ	ค่าความแตกต่างอุณหภูมิเทียบเท่าของหลังคา						
หลังคา	ระดับค่าสัมประสิทธิ์การดูคกลื่นรังสีอาทิตย์ (α)						
(kg/m^2)	0.1 0.3 0.5 0.6lia						
	(0-0.2)	(0.2-0.4)	(0.4-0.6)	(0.6-1.0)			
0-50	4	9	14	19			
50-200	3	8	13	18			
เกินกว่า 200	2	6 10 14					

<u>ตารางที่ 4.7.4</u> แสดงค่าผลต่างอุณหภูมิเทียบเท่าสำหรับหลังคา

มวลของ	ค่าความแตกต่างอุณหภูมิเทียบเท่าของหลังคา						
หลังคา	ระดับค่าสัมประสิทธิ์การดูคกลืนรังสีอาทิตย์ (α)						
(kg/m^2)	0.1 0.3 0.5 0.6และมาก						
	(0-0.2)	(0.2-0.4)	(0.4-0.6)	(0.6-1.0)			
0-50	1	3	6	8			
50-200	1	3	6	8			
เกินกว่า 200	1	3	6	8			

แบบค่าเฉลี่ยดลอดวัน (1.00 น. ถึง 24.00 น.)

<u>การเปรียบเทียบผลการคำนวณ</u>

การเปรียบเทียบผลการคำนวณค่าผลต่างอุณหภูมิเทียบเท่า สามารถทำโดยการเปรียบเทียบ ค่าผลต่างอุณหภูมิเทียบเท่าตามคู่มือการอนุรักษ์พลังงาน, ค่าผลต่างอุณหภูมิเทียบเท่าที่คำนวณโดย ใช้ข้อมูลอากาศปี 1991 และค่าผลต่างอุณหภูมิเทียบเท่าที่คำนวณโดยใช้ค่ารังสีอาทิตย์จากแบบ จำลองทางคณิตศาสตร์ (mathematic model) ของ ASHRAE Handbook-Fundamentals.

การเปรียบเทียบค่าผลต่างอุณหภูมิเทียบเท่าสำหรับกำแพงที่มีมวลต่าง ๆ กัน แสดงดังรูปที่ 4.3 ถึง 4.5 พบว่าค่าผลต่างอุณหภูมิเทียบเท่าที่คำนวณจาก mathematic model ในแต่ละแบบของค่า เฉลี่ยมีค่าสูงกว่าค่าที่คำนวณจากข้อมูลอากาศจริง และมีลักษณะของเส้นกราฟไปในทำนองเดียว กัน สำหรับค่าผลต่างอุณหภูมิเทียบเท่าตามคู่มือการอนุรักษ์พลังงานนั้นจะมีลักษณะของเส้นกราฟ ที่ราบกว่า โดยความชันของเส้นกราฟมีลักษณะเดียวกับค่าผลต่างอุณหภูมิเทียบเท่าแบบค่าเฉลี่ย ตลอดวัน แต่จะมีค่ามากกว่าหรือเท่ากับค่าผลต่างอุณหภูมิเทียบเท่าแบบค่าเฉลี่ย ที่8.00 น. ในแต่ละค่าสัมประสิทธิการดูดกลืนรังสีอาทิตย์ ซึ่งอาจเป็นไปได้ว่าค่าผลต่างอุณหภูมิ เทียบเท่าตามคู่มือการอนุรักษ์พลังงานมีการเฉลี่ยค่าแบบตลอดวัน (1.00 น. ถึง 24.00 น.) แต่ใช้ ข้อมูลอากาศในปีที่มีบรรยากาศที่เย็นกว่าหรือมีพลังงานจากรังสีดวงอาทิตย์น้อยกว่า

รูปที่ 4.6 ถึง 4.8 แสดงการเปรียบเทียบค่าผลต่างอุณหภูมิเทียบเท่าสำหรับหลังคาที่มีมวล ต่าง ๆ กัน พบว่าลักษณะของเส้นกราฟเหมือนกับในกรณีของค่าผลต่างอุณหภูมิเทียบเท่าสำหรับ กำแพง

จากรูปที่ 4.3 ถึง 4.8 พบว่าเส้นกราฟของค่าผลต่างอุณหภูมิเทียบเท่าที่คำนวณจากข้อมูล อากาศจริงและค่าที่คำนวณจาก mathematic model มีลักษณะที่สูงชัน หรือมีค่าผลต่างอุณหภูมิเทียบ เท่ามากที่ค่าสัมประสิทธิ์การดูดกลืนรังสีอาทิตย์สูง ๆ นั้น เมื่อพิจารณาจากการคำนวณสำหรับค่า สัมประสิทธิ์การดูดกลืนรังสีอาทิตย์แต่ละค่า จะพบว่าการคำนวณในขั้นตอนต่าง ๆ นั้นเหมือนกัน แต่ที่แตกต่างกันคือค่าอุณหภูมิโซล-แอร์ (sol-air temperature) ที่เพิ่มขึ้นเนื่องมาจากค่ารังสีดวง อาทิตย์รวมที่มีค่ามาก พิจารณาจากสมการ

$$t_e = t_o + \alpha I_t / h_o - \varepsilon \Delta R / h_o$$
(4.9)

ถ้าพิจารณาที่เวลาชั่วโมงเคียวกัน

$$t_e = c + \alpha I_t + h_o \tag{4.10}$$

เมื่อ c เป็นค่าคงที่ และ I, มีค่าสูง จะได้ว่าถ้า α มีค่ามาก พจน์ของ αI, / h_o ก็จะมีค่า มาก แต่ถ้า α มีค่าน้อย พจน์ของ αI, / h_o ก็จะมีค่าน้อย ตารางที่ ก.2 กาคผนวก ก. แสดงค่าอุณห ภูมิโซล-แอร์สำหรับค่าสัมประสิทธิ์การดูดกลืนรังสีอาทิตย์ต่าง ๆ

แต่อย่างไรก็ตามค่าผลต่างอุณหภูมิเทียบเท่าที่คำนวณโดยใช้โปรแกรม BLN-ESP1 สามารถเชื่อถือได้ระดับหนึ่ง เนื่องจากวิธีการ Response Factor ที่ใช้ในโปรแกรม BLN-ESP1 ได้ ถูกทดสอบโดยเปรียบเทียบกับวิธี TFM แล้วให้ผลลัพธ์ที่ใกล้เคียงกันมาก ทั้งนี้เพราะการคำนวณ โดยวิธี Response Factor และวิธี TFM มีลักษณะเป็นการคำนวณแบบ computation ซึ่งได้พัฒนามา จากสมการแม่นตรงทางคณิตศาสตร์เช่นเดียวกัน (บุญชัย เลิศนุวัฒน์, หน้า 27. 2539)

นอกจากนี้จากตารางที่ 4.5.4 พบว่าค่าผลต่างอุณหภูมิเทียบเท่าสำหรับกำแพงแบบค่าเฉลี่ย ตลอดวัน (1.00 น.ถึง 24.00 น.) สำหรับกำแพงที่มีมวลต่างกันมีค่าเท่ากัน ที่ค่าสัมประสิทธิ์การดูด กลืนรังสีอาทิตย์ค่าหนึ่ง ๆ เนื่องมาจากค่าความร้อนที่ถ่ายเทผ่านกำแพงตลอดทั้งปีมีค่าเท่ากัน โดย ในการคำนวณสำหรับแต่ละกำแพงนั้นใช้สกาวะภายในอาคารเดียวกัน และสภาวะภายนอกหรือ ข้อมูลอากาศเดียวกัน แต่ลักษณะของการถ่ายเทความร้อนสำหรับแต่ละกำแพงจะต่างกัน ซึ่งจะเห็น ได้จากค่าความร้อนที่มากที่สุดของแต่ละกำแพงจะอยู่ในชั่วโมงที่ต่างกัน

ตารางที่ 4.8 แสดงค่าความคลาดเคลื่อนของค่าผลต่างอุณหภูมิเทียบเท่าของค่าเฉลี่ยแต่ละ แบบสำหรับกำแพง พบว่าค่าเฉลี่ยแต่ละแบบมีค่าความคลาดเคลื่อนดังนี้

ค่าผลต่างอุณหภูมิเทียบเท่าแบบค่ามากที่สุด มีความคลาดเคลื่อนสูงที่สุด 61.54 % และมี ความคลาดเคลื่อนเฉลี่ย 29.04 %

ค่าผลต่างอุณหภูมิเทียบเท่าแบบค่ามากที่สุด 8 ชั่วโมง มีความคลาดเคลื่อนสูงที่สุด 42.86 % และมีความคลาดเคลื่อนเฉลี่ย 18.95 %

ค่าผลต่างอุณหภูมิเทียบเท่าแบบค่าเฉลี่ยตั้งแต่ 7.00 น. ถึง 18.00 น. มีความคลาดเคลื่อนสูง ที่สุด 57.14 % และมีความคลาดเคลื่อนเฉลี่ย 33.21 % ค่าผลต่างอุณหภูมิเทียบเท่าแบบค่าเฉลี่ยดลอดวัน มีความคลาดเคลื่อนสูงที่สุด 71.43 % และมีความคลาดเคลื่อนเฉลี่ย 48.62 %

ตารางที่ 4.9 แสดงค่าความคลาดเคลื่อนของค่าผลต่างอุณหภูมิเทียบเท่าของค่าเฉลี่ยแต่ละ แบบสำหรับหลังคา พบว่าค่าเฉลี่ยแต่ละแบบมีค่าความคลาดเคลื่อนดังนี้

ค่าผลต่างอุณหภูมิเทียบเท่าแบบค่ามากที่สุด มีความคลาดเคลื่อนสูงที่สุด 65.00 % และมี ความคลาดเคลื่อนเฉลี่ย 24.69 %

ค่าผลต่างอุณหภูมิเทียบเท่าแบบค่ามากที่สุด 8 ชั่วโมง มีความคลาดเคลื่อนสูงที่สุด 70.00 % และมีความคลาดเคลื่อนเฉลี่ย 35.75 %

ค่าผลต่างอุณหภูมิเทียบเท่าแบบค่าเฉลี่ยตั้งแต่ 7.00 น. ถึง 18.00 น. มีความคลาคเคลื่อนสูง ที่สุด 83.33 % และมีความคลาคเคลื่อนเฉลี่ย 57.79 %

ค่าผลต่างอุณหภูมิเทียบเท่าแบบค่าเฉลี่ยุตลอดวัน มีความคลาดเคลื่อนสูงที่สุด 95.00 % และมีความคลาดเคลื่อนเฉลี่ย 80.90 %

มวลของ	ค่าความคลาดเคลื่อนของค่าความแตกต่างอุณหภูมิเทียบเท่าของกำแพง(%)					
กำแพง	ระดับค่าสัมประสิทธิ์การดูดกลืนรังสีอาทิตย์ (α)					
(kg/m^2)	0.1	0.3	0.5	0.7	0.9	
	(0-0.2)	(0.2-0.4)	(0.4-0.6)	(0.6-0.8)	(0.8-1.0)	
	ค่าความเ	เตกต่างอุณหูมิเท็	iยบเท่าแบบค่าม ⁻	เกที่สุ ค		
0-125	35.71	13.33	6.25	29.41	44.44	
126-195	27.27	0.00	23.08	42.86	53.33	
เกินกว่า 195	11.11	10.00	27.27	50.00	61.54	
	ค่าความแตกต	ก่างอุณหูมิเทียบ เ า	ท่าแบบค่ามากที่ส	เค 8 ชั่วโมง		
0-125	42.86	26.67	12.50	0.00	11.11	
126-195	36.36	16.67	0.00	14.29	26.67	
เกินกว่า 195	22.22	10.00	9.09	25.00	30.77	
ค่า	ก่าความแตกต่างอุณหูมิเทียบเท่าแบบก่าเฉลี่ยตั้งแต่ 7.00 น. ถึง 18.00 น.					
0-125	57.14	46.67	37.50	23.53	16.67	
126-195	54.55	41.67	30.77	21.43	13.33	
เกินกว่า 195	55.56	40.00	27.27	16.67	15.38	
ค่าความแตกต่างอุณหูมิเทียบเท่าแบบค่าเฉลี่ยตลอดวัน (1.00 น. ถึง 24.00 น.)						
0-125	71.43	60.00	56.25	52.94	50.00	
126-195	63.64	50.00	46.15	42.86	40.00	
เกินกว่า 195	55.56	40.00	36.36	33.33	30.77	

<u>ตารางที่ 4.8</u> แสดงค่าความคลาดเคลื่อนของผลต่างอุณหภูมิเทียบเท่าสำหรับกำแพง

มวลของ	ค่าความคลาดเคลื่อนของค่าความแตกต่างอุณหภูมิเทียบเท่าของหลังคา(%)					
หลังคา	ระดับค่าสัมประสิทธิการดูดกลืนรังสีอาทิตย์ (α)					
(kg/m^2)	0.1	0.3	0.3 0.5			
	(0-0.2)	(0.2-0.4)	(0.4-0.6)	(0.6-1.0)		
	ค่าความแตก	ต่างอุณหูมิเทียบเท่าแ	บบค่ามากที่สุด			
0-50	65.00	33.33	10.71	6.25		
50-200	56.25	25.00	4.17	14.29		
เกินกว่า 200	50.00	18.75	0.00	12.50		
ค่าความแตกต่างอุณหูมิเทียบเท่าแบบค่ามากที่สุด 8 ชั่วโมง						
0-50	70.00	45.83	32.14	18.75		
50-200	62.50	40.00	25.00	10.71		
เกินกว่า 200	58.33	37.50	20.00	8.33		
ค่าความแตกต่างอุณหูมิเทียบเท่าแบบค่าเฉลี่ยตั้งแต่ 7.00 น. ถึง 18.00 น.						
0-50	80.00	62.50	50.00	40.63		
50-200	81.25	60.00	45.83 35.71			
เกินกว่า 200	83.33	83.33 62.50 50.00 41.6		41.67		
ค่าความแตกต่างอุณหูมิเทียบเท่าแบบค่าเฉลี่ยตลอควัน (1.00 น. ถึง 24.00 น.)						
0-50	95.00	87.50	78.57	75.00		
50-200	93.75	85.00	75.00 71.43			
เกินกว่า 200	91.67	81.25	70.00	66.67		

<u>ตารางที่ 4.9</u> แสดงค่าความคลาคเคลื่อนของผลต่างอุณหภูมิเทียบเท่าสำหรับหลังคา

การคำนวณค่าผลต่างอุณหภูมิอากาศภายนอกและภายในอาคาร จะทำโดยเฉลี่ยค่าอุณหภูมิ อากาศภายนอกอาคารจากข้อมูลอากาศปี 1991 ตลอดปี ออกเป็น 4 แบบ เช่นเดียวกับค่าผลต่าง อุณหภูมิเทียบเท่าดังแสดงไว้ในตารางที่ ง.1 ภาคผนวก ง. ส่วนตารางที่ 4.10 แสดงค่าผลต่าง อุณหภูมิอากาศภายนอกและภายในอาคารในแต่ละแบบของการเฉลี่ยค่าอุณหภูมิอากาศภายนอก

	ΔT (°C)	$avg(T_{ao})$ (^o C)	<i>Т_{аі}</i> ([°] С)	ความกลาด เคลื่อน (%)
ค่าตามคู่มือการอนุรักษ์พลังงาน	5.00	-	-	-
ค่าแบบค่ามากที่สุด	7.38	32.38	25.00	47.60
ค่าแบบค่าเฉลี่ยค่ามากที่สุด 8 ชั่วโมง	6.51	31.51	25.00	30.20
ค่าแบบค่าเฉลี่ยตั้งแต่ 7.00 น. ถึง 18.00 น.	5.15	30.15	25.00	3.00
ค่าแบบค่าเฉลี่ยฅลอควัน	3.47	28.47	25.00	30.60

<u>ตารางที่ 4.10</u> แสดงค่าผลต่างอุณหภูมิอากาศภายนอกและภายในอาคาร

จากตารางที่ 4.10 พบว่าค่าผลต่างอุณหภูมิอากาศภายนอกและภายในอาคารแบบค่าเฉลี่ย ดั้งแต่ 7.00 น. ถึง 18.00 น. มีค่าใกล้เคียงกับค่าตามคู่มือการอนุรักษ์พลังงานมากที่สุด โดยมีค่าความ คลาดเคลื่อน 3 %

นอกจากนี้ค่าผลต่างอุณหภูมิเทียบเท่า (*TD_{eq}*) และค่าผลต่างอุณหภูมิอากาศภายนอกและ ภายในอาคาร (Δ*T*) ซึ่งได้ทำการเฉลี่ยค่าเป็น 4 แบบ ถ้าพิจารณาตามลักษณะการใช้งานของอาคาร แล้ว จะเห็นว่าค่าที่เฉลี่ยแบบตั้งแต่ 7.00 น. ถึง 18.00 น. จะเหมาะสมสำหรับอาคารสำนักงานทั่วไป ที่มีการปรับอากาศในตอนกลางวัน ส่วนค่าที่เฉลี่ยแบบตลอดวันจะเหมาะสมสำหรับอาคารโรง พยาบาลและอาคารโรงแรมที่มีการปรับอากาศตลอด 24 ชั่วโมง