รายการอ้างอิง

<u>ภาษาไทย</u>

- กรมพัฒนาและส่งเสริมพลังงาน . <u>พระราชบัญญัติ การส่งเสริมการอนุรักษ์พลังงาน</u> . พิมพ์ครั้งที่ 3 . กรุงเทพมหานคร: โรงพิมพ์มหาวิทยาลัยธรรมศาสตร์ , 2535.
- กรมพัฒนาและส่งเสริมพลังงาน . <u>กฎกระทรวง ออกตามความในพระราชบัญญัติ การส่งเสริมการ</u> <u>อนุรักษ์พลังงาน</u> . พิมพ์ครั้งที่ 3 . กรุงเทพมหานคร: โรงพิมพ์มหาวิทยาลัยธรรมศาสตร์ , 2535.
- กรมพัฒนาและส่งเสริมพลังงาน . <u>คู่มือการอนุรักษ์พลังงานในอาคาร</u> . พิมพ์ครั้งที่ 2 . กรุงเทพมหานคร: โรงพิมพ์มหาวิทยาลัยธรรมศาสตร์ , 2538.
- กรมพัฒนาและส่งเสริมพลังงาน <u>คู่มือการใช้โปรแกรมคอมพิวเตอร์ คำนวณค่าการถ่ายเทความ</u> <u>ร้อนรวมของกรอบอาคาร</u> พิมพ์ครั้งที่ 2 กรุงเทพมหานคร: โรงพิมพ์มหาวิทยาลัยธรรมศาสตร์ , 2537.
- กิตติ ภักดีวัฒนะกุล และ จำลอง ครูอุตสาหะ . <u>Visual Basic 5 ฉบับ โปรแกรมเมอร์</u> . พิมพ์ครั้งที่ 1 . กรุงเทพมหานคร: ไทยเจริญการพิมพ์ , 2541.
- จิระ จริงจิตร . <u>เรียนลัด Visual Basic</u> . พิมพ์ครั้งที่ 2 . กรุงเทพมหานคร: โปรวิชั่น , 2538. วาสนา ไตรพฤฒิธัญญา และ ปิยะ นิมิตยงสกุล . <u>Microsoft Access2 Step by Step</u> .

าสนา เตรพฤฒธิญญา และ บยะ นมตยจลกุล . <u>Microsoft Access2 Step by Ste</u>

พิมพ์ครั้งที่ 1 . กรุงเทพมหานคร: ซีเอ็ดยูเคชั่น , 2538.

<u>ภาษาอังกฤษ</u>

ASHRAE . 1997 ASHRAE Handbook Fundamentals . Atlanta: ASHRAE , 1997.

- Frank P. Incropera and David P. De Witt . <u>Fundamentals of Heat and Mass Transfer</u> . 3rd ed. New York: John Wiley & Sons , 1990.
- Jan F. Kreider and Ari Rabl . <u>Heating and Cooling of Buildings</u> . New York: McGraw-hill , 1994.

ภาคผนวก ก.

โปรแกรมคำนวณค่าการถ่ายเทความร้อนผ่านกรอบอาคาร และคู่มือการใช้โปรแกรม

โปรแกรมคำนวณค่าการถ่ายเทความร้อนผ่านกรอบอาคาร

- 1. องค์ประกอบหลักของระบบคอมพิวเตอร์
 - โพรเซสเซอร์(CPU) 486 DX4-100 (อย่างน้อย) Pentium หรือ โพรเซสเซอร์ที่เร็วกว่า
 - หน่วยความจำหลัก(RAM) 16 MB (อย่างน้อย) 32 MB (แนะนำ)
 - หน่วยความจำสำรอง(Harddisk) 25 MB
 - ส่วนแสดงผลเป็นแบบ VGA หรือ สูงกว่า โดยมีค่า Resolution แบบ 800*600
 - ระบบปฏิบัติการ วินโดวส์ 95
- 2. การติดตั้ง

เริ่มจากการเรียกใช้โปรแกรม Setup.exe จะปรากฏหน้าต่างแสดงข้อควรระวังในการติด ตั้งโปรแกรม และหน้าต่างแสดงตำแหน่งของไฟล์บนหน่วยความจำสำรองที่จะทำการติดตั้ง ซึ่ง สามารถเปลี่ยนแปลงตำแหน่งดังกล่าวได้โดยกดปุ่ม Change Directory เมื่อพร้อมทำการติดตั้ง โปรแกรมแล้ว ให้ผู้ใช้กดปุ่ม 🗾 เพื่อทำการติดตั้งไฟล์ต่างๆ บนหน่วยความจำสำรอง หลังจากการ ติดตั้งเสร็จแล้วจะปรากฏข้อความว่าทำการติดตั้งเสร็จเรียบร้อยแล้ว

3. ไฟล์ต่างๆของโปรแกรมหลังจากการติดตั้ง

รายชื่อหลักของไฟล์ที่ได้ทำการติดตั้ง ประกอบด้วย

- ottv.exe
- \database\property.mdb คือ ไฟล์ที่รวบรวมฐานข้อมูลต่างๆ สำหรับการคำนวณ เช่น
 ค่าผลต่างอุณหภูมิเทียบเท่า , ค่าสัมประสิทธิ์การถ่ายเทความร้อน เป็นต้น
- \database\original.mdb คือ ไฟล์ต้นแบบสำหรับเก็บฐานข้อมูลของอาคาร
- \report*.rpt คือ ไฟล์รูปแบบต่างๆ สำหรับการพิมพ์ข้อมูล
- \Building*.mdb คือ ไฟล์ข้อมูลของแต่ละอาคาร (Directory จะยังคงอยู่หลังจากการ Uninstall โปรแกรม หากมีไฟล์ข้อมูลของอาคารอยู่ภายใน Directory Building)

โดยรายละเอียดของไฟล์ทั้งหมดที่บันทึกลงในความจำสำรองของคอมพิวเตอร์ อยู่ในไฟล์ ชื่อ St5unst.log ณ. Directory ที่ได้ทำการติดตั้งโปรแกรม

คู่มือการใช้โปรแกรม

เลือกหัวข้อ Programs ด้วยการกดปุ่มเริ่ม (Start Button **สีเร็ม-รเลเ**) คลิกเมาส์บน โปรแกรม OTTV & RTTV Calculation เพื่อทำการเรียกใช้ จากนั้นจะปรากฏหน้าต่างเริ่มต้น ของโปรแกรมดังนี้

File Edit Toole Window Help	THE PARTY N		Stark Starks	San Prant
			STREET, STREET	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100
	Salar and an and	Contraction of	C. C	ACTION OF THE
			and the second sec	
and the second				
			and the second	
		CONSISTENCE OF CONSISTENCE		

รูปที่ ก.1 หน้าต่างเริ่มต้นของโปรแกรม OTTV & RTTV Calculation

1. การจัดการฐานข้อมูลของอาคาร

1.1 การสร้างฐานข้อมูลอาคารใหม่

จากการเลือกเมนูย่อย New จากเมนูหลัก File หรือคลิกเมาส์บนไอคอนรูป 🗋 จะปรากฏหน้าต่างสำหรับป้อนชื่อของไฟล์ หลังจากนั้นจะปรากฏหน้าต่างแสดงข้อมูลของอาคาร

1.2 การเปิดฐานข้อมูลอาคารเก่า

จากการเลือกเมนูย่อย Open จากเมนูหลัก File หรือคลิกเมาส์บนไอคอนรูป 🖨 จะปรากฏหน้าต่างสำหรับป้อนชื่อของไฟล์ หลังจากนั้นจะปรากฏหน้าต่างแสดงข้อมูลของอาคาร

ภายใต้การทำงานของโปรแกรม OTTV & RTTV Calculation สามารถที่จะทำการเปิด ฐานข้อมูลของอาคารได้หลายอาคารพร้อมกัน และสามารถที่จะจัดรูปแบบหน้าต่างแสดงข้อมูล ของอาคารที่เปิดพร้อมกันได้หลายลักษณะดังรูปภาพต่อไปนี้ (โดยการเรียกใช้คำสั่งบนเมนู Window)

n. Tile Horizontally ข. Tile Vertically ค. Cascade
 รูปที่ ก.2 รูปแบบต่างๆ ของฐานข้อมูล

สำหรับหน้าต่างแสดงข้อมูลของอาคาร ประกอบด้วย 2 ส่วนหลักๆ คือ

- แสดงข้อมูลหลักของอาคาร ซึ่งประกอบด้วย ชื่ออาคาร , ทิศทางของอาคาร , ค่า OTTV , ค่า RTTV , ค่า WWR และ ค่า SRR ของอาคาร
- แสดงข้อมูลของกรอบอาคาร ซึ่งข้อมูลของกรอบแต่ละด้านประกอบด้วย ชื่อของผนัง ,
 ชนิดของผนัง , ค่า U , พื้นที่ และค่า OTTV ของผนังแต่ละด้าน

	/		outarg-r	Argin . U	-	1.		1.
	1	OTTY of Build	40.37	RTTV of Building	60 53	MAN 0.01	588 0.00	}
นที่ 1	/	100.05	Data Fel OTTV	Calculation		Data F	or RTTV Calculation	
	_	Texatoria			mintaterit	T U	futinsu? I	011V
		EAST 1	-		สาไป ที่วน	110	200.00	36 91
		EAST 2			and at the later	5.89	4 00	113 21
		EAST 3			สนิปที่บ	173	500.00	39 91
		EAST 4			สนังกับ	110	150.00	39.91
		SOUTH 1			สามังที่น	3.26	200 00	39 08
		STISOUTH 2			อนิงไฟร่อนขะ	5.89	4.00	95.55
		WEST 1			สนไงที่บ	133	200.00	39.91
		AL WEST 2			enJs[ปร่อนชะ	5.89	4 00	108 81
	/	SE WEST 3			0153771	3.33	150.00	39.91
ы <i>н 2</i>	-	1000	date transmission	e			and the second	
		1						

รูปที่ ก.3 ส่วนประกอบต่างๆ ของหน้าต่างแสดงข้อมูลของกรอบอาคาร

โดยผู้ใช้สามารถที่จะทำการตรวจสอบข้อมูลของกรอบอาคารที่เป็นผนัง หรือหลังคาได้ ด้วยการใช้เมาส์คลิกบนปุ่ม Daw Fa 071V Catalation หรือ Daw Fa RTTV Catalation

2. การจัดการข้อมูลของกรอบอาคารแต่ละด้าน

คำสั่งหลักที่ใช้กับข้อมูลของกรอบอาคารแต่ละด้าน ประกอบด้วยคำสั่ง 4 คำสั่งด้วยกัน

- เพิ่มข้อมูลของกรอบอาคาร โดยมีคำสั่งย่อยอยู่ 2 คำสั่ง คือ
 - เพิ่มข้อมูลกรอบอาคารที่มีลักษณะทึบ
 - เพิ่มข้อมูลกรอบอาคารที่มีลักษณะโปร่งแสง
- แก้ไขข้อมูลของกรอบอาคาร
- <u>ลบข้อมูลของกรอบอาคาร</u>
- คัดลอกข้อมูลของกรอบอาคาร

สำหรับการเรียกใช้คำสั่งหลักทั้ง 4 คำสั่งนั้น สามารถที่จะเรียกใช้ได้ 2 วิธี คือ

1. จากการคลิกเมาส์บนไอคอนรูปต่างๆ โดยมีรายละเอียดดังนี้

คลิกบนไอคอนรูป		เพื่อเรียกใช้คำสั่ง เพิ่มข้อมูลกรอบอาคารที่มีลักษณะทึบ
คลิกบนไอคอนรูป		เพื่อเรียกใช้คำสั่ง เพิ่มข้อมูลกรอบอาคารที่มีลักษณะโปร่งแสง
คลิกบนไอคอนรูป	Z	เพื่อเรียกใช้คำสั่ง แก้ไขข้อมูลกรอบอาคาร
คลิกบนไอคอนรูป	0	เพื่อเรียกใช้คำสั่ง ลบข้อมูลกรอบอาคาร
คลิกบนไอคอนรูป		เพื่อเรียกใช้คำสั่ง คัดลอกข้อมูลกรอบอาคาร

 จากการใช้เมนูลัด โดยการคลิกที่ปุ่มขวาของเมาส์ เมนูลัดจะปรากฏใกล้กับดำแหน่ง ของตัวชี้เมาส์ และทำการคลิกเมาส์บนคำสั่งที่ต้องการเรียกใช้

Building Name building-2	Angle 0	in the second second			14 2 1 m
OTTV of Building 40.37	RTTV of Building	60.53	WWR 0.01	SRR 0.0	2
Date For OT	TV Calculation		Dota i	For RTTV Calculation	ń
Sanaamkann	1. 19 Mar 19	ชนิดของสนับ	U	#u\$ [m1.31]	ATTA
NORTH 1		ตามังที่บ การีเป็นเหล	2.83	200.00	56.55
		Del	Na	and the second	
		Del	N0		
新教会的教育		Star Star			
to a construction of the state	Contraction of the second second second	Charles Contraction of the		and the second second second	20.20-20.00 TO 20.00

รูปที่ ก.4 แสดงเมนูลัดเมื่อคลิกที่ปุ่มขวาของเมาส์

เมื่อทำการเรียกใช้คำสั่งลบซ้อมูลกรอบอาคาร จะปรากฏหน้าต่างเพื่อยืนยันการลบข้อมูล กรอบอาคาร โดยมีหน้าต่างยืนยันการลบข้อมูลดังนี้

OTTV Calculation		×
Do you want to delete	e this wall EA	ST_1?
Yes	<u>N</u> o	

รูปที่ ก.5 หน้าต่างยืนยันการลบข้อมูลกรอบอาคาร

หลังจากการเรียกใช้คำสั่งคัดลอกข้อมูลของกรอบอาคาร จะปรากฏหน้าต่างสำหรับการ คัดลอกข้อมูลกรอบอาคารดังนี้

รูปที่ ก.6 หน้าต่างคัดลอกข้อมูลกรอบอาคาร

ผู้ใช้สามารถเลือกกรอบอาคารต้นแบบสำหรับการคัดลอกได้ นอกจากนี้ผู้ใช้สามารถ เปลี่ยนชื่อ และทิศทางของกรอบอาคารที่เป็นเป้าหมายของการคัดลอกได้ โดยการทำเครื่องหมาย บน 🕫 เพื่อทำการเลือกเป้าหมายของกรอบอาคารที่ต้องการคัดลอก

สำหรับรายละเอียดเกี่ยวกับ คำสั่งเพิ่มข้อมูลกรอบอาคารที่มีลักษณะทึบ , คำสั่งเพิ่มข้อ มูลกรอบอาคารที่มีลักษณะโปร่งแสง และคำสั่งแก้ไขข้อมูลของกรอบอาคาร ได้ถูกกล่าวไว้อย่าง ละเอียดในหัวข้อต่อไป การจัดการข้อมูลของกรอบอาคารแต่ละด้านสามารถแบ่งออกได้ตามลักษณะของกรอบ อาคารได้ดังนี้

2.1 กรอบอาคารที่มีลักษณะทึบ

หลังจากการเรียกใช้คำสั่ง แก้ไขข้อมูลของกรอบอาคาร หรือ เพิ่มข้อมูลกรอบ อาคารที่มีลักษณะทึบ จะปรากฎหน้าต่างหลักของกรอบอาคารที่มีลักษณะทึบดังนี้

รูปที่ ก.7 หน้าต่างหลักของกรอบอาคารที่มีลักษณะทึบ

นอกจากสามารถเปลี่ยนแปลงข้อมูลต่างๆ ของกรอบอาคารที่มีลักษณะทึบ (อาทิ เช่น ทิศทาง , ลักษณะโครงสร้าง , ลักษณะของสีที่ทาภายนอกอาคาร) ภายในหน้าต่างหลักยัง ประกอบด้วยเครื่องมืออีก 2 ชนิดเพื่อช่วยในการเปลี่ยนแปลงค่าต่างๆ ตามต้องการ คือ

เครื่องมือคำนวณพื้นที่ของกรอบอาคารที่มีลักษณะทึบ สามารถที่จะเรียกใช้เครื่อง
 มือดังกล่าวด้วยการคลิกเมาส์บนปุ่ม Acc Calcular
 โดยมี 2 แนวทางในการคำนวณพื้นที่

<u>แนวทางที่ 1</u> จากการลบพื้นที่หลักด้วยผลรวมของพื้นที่ย่อยใดๆ เช่น มีพื้นที่หลัก 500 ตร.ม. และมีพื้นที่ย่อย ดังนี้

รายชื่อ	ความกว้าง	ความสูง	จำนวน
หน้าต่าง 1	5	2	20
หน้าต่าง 2	2	1	10

ดังนั้น พื้นที่ลัพธ์ของกรอบอาคารที่มีลักษณะทึบ มีค่าเท่ากับ = 500 - (5*2*20 + 2*1*10) = 280 ตร.ม. เมื่อทำการเรียกใช้ และทำการป้อนข้อมูลข้างต้น หน้าต่างเครื่องมือคำนวณพื้นที่ ของกรอบอาคารที่มีลักษณะทึบจะมีลักษณะดังนี้ ซึ่งมีค่าของผลลัพธ์เท่ากับ 280 ตร.ม.

ด้านวณพื้นที่ทั้งหมด ด้วยการรวมพื้นที่ย่อยเ ข้าด้วยกัน									สืบที่ทั้งพงค
ส้นที่หลัด			m.	ที่บ้อย					280 •
การการเลยนาง	เมืองเพิ่มที่หลัง	(Said		สำคัญชี	คร้าง	H	(4114718	•	8031
				1	5	2	20	A NAME &	PRICH
6 Amueleo	คิงที่ที่งานค		130	2	2	1	10		
	CLARK.		38 <u>0</u>	3	0	0	1	2 2 2 3	มกเลิก
พัน ที่ประกองส	500	85.N.		4	0	0	1	2. 我的意义	Dimin
- All and	TAXABLE IN		高谷	5	0	0	1		Constant and the
C dmueles	สวามกว้างและ	11219181	8	6	0	0	1		
S. S. S. S. S. S. S.	Ja . Cons		8	7	0	0	1	2 500	
נרכחערכת	20	Carrie	100	8	0	0	1	· 2035 5	· · · · · · · · · · · · · · · · · · ·
e givecen	20	M.	調査	R	บช้อมูล	พื้นที่ย่อ	ы		
		Anno		d.X					

รูปที่ ก.8 ตัวอย่างการคำนวณพื้นที่ของกรอบอาคารที่มีลักษณะทึบในแนวทางที่ 1

นอกจากนี้พื้นที่หลักสามารถที่จะกำหนดได้ 2 ลักษณะ คือ โดยพื้นที่ทั้งหมด หรือ โดย ความกว้างและความสูงของพื้นที่หลัก

<u>แนวทางที่ 2</u> จากการรวมพื้นที่ย่อยเข้าด้วยกัน เช่น พื้นที่ย่อยที่มีรายละเอียดเช่นเดียว กันกับแนวทางที่ 1 ดังนั้น พื้นที่ลัพธ์ของกรอบอาคารที่มีลักษณะทึบมีค่าเท่ากับ = (5*2*20 + 2*1*10) = 220 ตร.ม. เมื่อทำการเรียกใช้ และทำการป้อนข้อมูลข้างด้น หน้าต่างเครื่องมือ คำนวณพื้นที่ของกรอบอาคารที่มีลักษณะทึบจะมีลักษณะดังนี้ ซึ่งผลลัพธ์ที่ได้คือ 220 ตร.ม.

คำหวดต์ ชั้น	ในที่กังห เที่ย่อย	າມຸລຸ ລ້ວຍ	มารร	วมพื้นที่เ	อยเ ซ้าด้วยกัน	Anthilenum 220 s
	1064	and I	11	(m)24	1	PCR.)
>	1	5	2	20	No. 2012 Conception	
States and	2	2	1	10	M	ALPER ANTIMATING
	3	0	0	1		10180
A. State	4	0	0	1	and the second state	Dinut
自己分别。但	5	0	0	1		The second second
动行户 经 国	6	0	0	1		
S. S. Haller	7	0	0	1	Starts Congentation	LOUIS BEAM STRATE
·北京市 (187	9	0	0	1	A MULTINE Gal	CALL CONTRACTORS
10 m - 00 - 00		- 0	<u>a</u>	the states	And the second second	and the second second second
	ิล	เบรื่อมูลท่	สันที่ย่	BU		

รูปที่ ก.9 ตัวอย่างการคำนวณพื้นที่ของกรอบอาคารที่มีลักษณะทึบในแนวทางที่ 2

เครื่องมือแก้ไขข้อมูลโครงสร้างของกรอบอาคารที่มีลักษณะทึบ สามารถที่จะเรียกใช้
 เครื่องมือดังกล่าวด้วยการคลิกเมาส์บนปุ่ม แก้นระเข หรือจากการเลือกเมนูย่อย Opaque
 Structure จากเมนูหลัก Tools โดยมีหน้าต่างโครงสร้างกรอบอาคารที่มีลักษณะทึบดังนี้

รูปที่ ก.10 หน้าต่างแสดงโครงสร้างกรอบอาคารที่มีลักษณะทึบ

โดยผู้ใช้สามารถเพิ่มข้อมูล ด้วยการคลิกบนปุ่มเพิ่มข้อมูล และสามารถลบข้อมูลได้ด้วย การเลื่อนเมาส์ไปยังด้านซ้ายของรายชื่อที่ต้องการลบจนเมาส์มีลักษณะ Ø และทำการคลิก ซึ่งจะ ทำให้เกิดแถบสีเข้มบนรายชื่อ หลังจากนั้นให้ทำการกดปุ่ม Delete บน Keyboard เพื่อทำการลบ ข้อมูล

2.2 <u>กรอบอาคารที่มีลักษณะโปร่งแสง</u>

หลังจากการเรียกใช้คำสั่ง แก้ไขข้อมูล หรือ เพิ่มข้อมูลกรอบอาคารที่มีลักษณะ โปร่งแสง จะปรากฏหน้าต่างหลักของกรอบอาคารที่มีลักษณะโปร่งแสงดังนี้

รูปที่ ก.11 หน้าต่างหลักของกรอบอาคารที่มีลักษณะโปร่งแสง

นอกจากสามารถเปลี่ยนแปลงข้อมูลต่างๆ ของกรอบอาคารที่มีลักษณะโปร่งแสง (อาทิเช่น ทิศทาง , ลักษณะโครงสร้าง) ภายในหน้าต่างหลักยังประกอบด้วยเครื่องมืออีก 2 ชนิด เพื่อช่วยในการเปลี่ยนแปลงค่าต่างๆ ตามต้องการ คือ

เครื่องมือแก้ไขข้อมูลโครงสร้างกรอบอาคารที่มีลักษณะโปร่งแสง สามารถที่จะเรียกใช้
 เครื่องมือดังกล่าวด้วยการคลิกเมาส์บนปุ่ม
 แก้เห็ญ
 หรือจากการเลือกเมนูย่อย Glass
 Structure จากเมนูหลัก Tools โดยมีหน้าต่างโครงสร้างกรอบอาคารที่มีลักษณะโปร่งแสงดังนี้

รูปที่ ก.12 หน้าต่างแสดงโครงสร้างกรอบอาคารที่มีลักษณะโปร่งแสง

โดยผู้ใช้สามารถจะเพิ่มและลบข้อมูลได้เช่นเดียวกันกับหน้าต่างโครงสร้างกรอบอาคารที่มี ลักษณะทึบ

 เครื่องมือคำนวณหาค่าสัมประสิทธิ์การบังแดดของอุปกรณ์บังแดด สามารถที่จะเรียก ใช้เครื่องมือดังกล่าวด้วยการคลิกเมาส์บนปุ่ม
 เปลี่มนประสิทธิ์การบังแดดของอุปกรณ์บังแดดดังนี้

รูปที่ ก.13 ลักษณะต่างๆ ของอุปกรณ์บังแดด

โดยผู้ใช้สามารถที่จะเลือกอุปกรณ์บังแดดแบบต่างๆ ได้จากการคลิกบนรูปภาพของ อุปกรณ์บังแดดที่ต้องการ และทำการเปลี่ยนแปลงค่าพารามิเตอร์ต่างๆ ตามต้องการ นอกจากนี้ผู้ ใช้สามารถบันทึกลักษณะของอุปกรณ์บังแดดเพื่อนำมาใช้ในภายหลังได้

ภายหลังจากการคลิกบนปุ่ม <u>มันที่จะตร้อมูลของอุปกรณ์มังแคค</u> เพื่อทำการบันทึก จะปรากฏหน้า ต่างที่ให้ผู้ใช้ป้อนชื่อชุดข้อมูลของอุปกรณ์บังแดดดังนี้

รูปที่ ก.14 หน้าต่างสำหรับป้อนชื่อชุดข้อมูลของอุปกรณ์บังแดด

และภายหลังจากการคลิกบนปุ่ม เรียกโร้ชุดข้อมูลของอุปกรณ์มังแคด เพื่อทำการเรียกใช้ จะปรากฏ หน้าต่างสำหรับเลือกใช้ชุดข้อมูลดังนี้

etback equal 1 m. extend		nav
HADING-1 HADING-2	[uotão	1 สารรักบว
VERTYARWOSU	Content of	

รูปที่ ก.15 หน้าต่างสำหรับเรียกใช้ชุดข้อมูลของอุปกรณ์บังแดด

นอกจากนี้ยังมีเครื่องมือที่ช่วยให้ผู้ใช้สามารถป้อนค่า Tilt และ Azimuth ได้สะดวกมาก ยิ่งขึ้น ซึ่งอยู่ในหน้าต่างหลักของกรอบอาคารที่มีลักษณะทึบ และหน้าต่างหลักของกรอบอาคารที่มี ลักษณะโปร่งแสง ดังแสดงอยู่ในรูปดังนี้

ພພັງກົນ	and the state	6	บนึงกัน		ผนึ่งไปรั้งแสง				1	
• ข้อมูลทั่วไป			• นี้ยนสทั่วไป	1.7	• ข้อมูล ทั่วไป	TAL.		- 5		
นี้อของหนัง	EAST_1		ข้อของผนัง	EAST_1	10 .	EAST_2				100500
มุม Azimuth	90 -		sps Azimuth	90 +	agai Azimuth	0	- auto	HA TR	90	
aa Tik	90 -	1 834	apa Tit	N ·	สวามกร้างกระจก	N	- u	กวามสงกระจก	Wal	1
พื้นที่	Wall	- RS.	พื้นที่		and the second	E	-1		HOOP	-
	1100			S	41123101230	SE	÷	พนททงทมด	4	
· Annor Intra	<u>เร้างของกรอบอาคาร</u>		· SOMULTOFIE	W2 SW	· Minung La sant	SW	2012			
อิธุญาษายุ่ม 10 cm	n	-	โร้ฉาบปู่น 10 cm	NW		NW		-		

รูปที่ ก.16 หน้าต่างแสดงเครื่องมือช่วยในการป้อนค่า Tilt และ Azimuth

การจัดการฐานข้อมูลสำหรับการคำนวณ¹

ฐานข้อมูลสำหรับการคำนวณค่าการถ่ายเทความร้อนรวมผ่านกรอบอาคาร ประกอบด้วย ข้อมูลหลายประเภทด้วยกัน โดยมีรายชื่อของฐานข้อมูลแต่ละประเภทดังนี้

- 1. วัสดุของกรอบอาคารที่มีลักษณะทึบและโปร่งแสง (Opaque and Glass Material)
- 2. รังสีดวงอาทิตย์ (Solar Data)
- 3. ค่าความต้านทานความร้อนของฟิมล์อากาศที่ผิวผนังและหลังคา (Film Resistance)
- 4. ค่าความต้านทานความร้อนของฟิมล์อากาศในช่องว่างผนังหรือหลังคา (Airgap Film Resistance)
- 5. ข้อมูลค่าตัวประกอบปรับแก้ (Correction Factor)
- 6. ข้อมูลค่าความแตกต่างอุณหภูมิเทียบเท่า (TD_{cq})

การแก้ไขข้อมูลของฐานข้อมูลแต่ละประเภท สามารถที่จะกระทำได้โดยการเรียกใช้เมนู ย่อย Parameter ภายในเมนูหลัก Tools ภายหลังจากการเรียกใข้จะปรากฏหน้าต่างหลักของฐาน ข้อมูลสำหรับการคำนวณดังนี้

ມູລຄຳຫຈັນຄາດດຳນວດທ່ານ
paque Materials
ilazs Maleriais
mection Factor
Tdeq
Film Resistance
Airgep Film Resistance
Soler Dete
Close

รูปที่ ก.17 หน้าต่างหลักของฐานข้อมูลสำหรับการคำนวณ

ภายหลังจากคลิกบนปุ่มเพื่อเลือกประเภทของฐานข้อมูลที่จะทำการแก้ไขแล้ว จะปรากฏ หน้าต่างของแต่ละประเภทของฐานข้อมูล โดยความแตกต่างของแต่ละหน้าต่างขึ้นอยู่กับข้อมูล ภายใน ซึ่งบางประเภทสามารถที่จะเปลี่ยนแปลงค่าได้เพียงอย่างเดียว หรือสามารถที่จะเพิ่มข้อมูล , ลบข้อมูล และเปลี่ยนแปลงข้อมูลได้ และมีหน้าต่างของฐานข้อมูลแต่ละประเภทดังนี้

¹ กรมพัฒนาและส่งเสริมพลังงาน , กฏกระทรวง ออกตามความในพระราชบัญญัติ การส่งเสริมการอนุรักษ์พลังงาน พ.ศ. 2535

- n. Opaque Material
- 1. Glass Material
- A. Solar Data

n. noti etiannes A. noi etiannes A. 1 ainti Alarmet A. 1 ainti Alarmet A. 2 ainti Alarbian their autoliki A. 2 aitti Alarbian their autoliki A. 2 aitti Alarbian their autoliki A. 1 ainti Alarbian their autoliki A. 2 ainti Alarbian their autoliki A. 3 ainti Alarbian their a	รริตรองช่องว่างอากาศ	Annadiumatalulaute Auformat (#7:CIW)		
A.) eksörnösenne 0.12 n.1.2 natöfnödense beförsand	8. กรณีะจังตาตาร			
n.1.1 antifelt überdauste beformaktelinge 0.12 n.1.2 antifelt überdauste beformaktelinge 0.28 z. 2 tolsformannet (berlauste beformaktelinge) 0.04 s. nedlend enterster 0.04 s. 1.1 instanten 0.05 s. 1.2 instanten viel die stante 0.102 s. 1.2 instanten viel die stante 0.051 s. 1.2 instanten viel die stante 0.051 s. 1.2 instanten 0.051 s. 1.2 instantiering die stante 0.051 s. 1.2 instantieringer die stante 0.257	ก.1 หนึ่งค้านในสาการ			
n.1.2 กรณีที่2-มีค่ารับราย ร้างส์กานแล้งส์ก่ 3226 n.2 กรณีที่2-มีค่ารับราย ร้างส์กานแล้งส์คุณ 30.04 n.2 กรณีที่2-มีค่ารับราย ร้างส์กานแล้งส์คุณ 30.04 n.1.1 กรณีที่2-มีค่ารับราย ร้างสามาร์ 31.04 n.1.1 กรณีที่2-มีค่ารับราย ร้างสามาร์ 31.02 n.1.1 กรณีที่2-มีค่ารับราย ร้างสามาร์ 31.02 n.1.1 ระดับที่2-มีค่ารับราย ร้างสามาร์ 31.02 n.1.2 ร้องการโอกาณี 2.75 มหา 31.00 n.1.2 ร้องการโอกาณี 2.75 มหา 31.00 n.2.2 ร่องการโอกาณี 2.25 มหา 51.00 ม.2.2 ร่องการโอกาณี 2.25 มหา 51.00 ม.2.2 ร่องการโอกาณี 2.25 มหา 31.00		0.12		
1 2 - Sick Franzensen (Dirk Baulte Benforssall School) 0.044 1 and find sergenses 0.046 1 and sergenses 0.046 1 and sergenses 0.046 1 and sergenses 0.061 1 and sergenses 0.071	ก.1.2 กรมีสถามีการเกิดสินกรรมสำคัญ	0.799		
	ก 2 แล้งคำแหลาดาร (มีคำสังประสิทธิการแล้ริงสิธุง)	0.044		
1 1 สร้าส์ที่ประการ 1 1 กรณีสัตว์เสียงกระสาชารณะไรเชือง 1.11 กรณีสัตว์เสียงกระสาชารณะ 1.12 กรณาโอการณะ 25 มหา 1.12 กรณาโอการณะ 45 มหา 1.22 กรณาโอการณะ 45 มหา 1.22 กรณาโอการณะ 25 มหา 1.22 กรณาโอการณะ 25 มหา 1.23 กรณาโอการณะ 25 มหา 1.25 กรณาโอการณา 25 กรณา 1.25 กรณาโอการณะ 25 กรณาโอการณา	s. and al ormanan			
t.1.1 nedfälzähnlavis en förmalfallige s.1.1.1 mismiser var 25 som s.1.2 mismiser var 25 som s.1.3 sinnilliser var 65 som s.1.2 mismiser var 65 som s.2.2 mismiser var 65 som	3.1 สนังสีกรโนสาหาร	and the second second		
1.11 Internation 0.162 1.1.1 x - Enmilient que 225 anni 0.164 1.1.1 x - Enmilient que 225 anni 0.164 1.1.2 x - Enmilient que 255 anni 0.162 1.2 x - Enmilient que 255 anni 0.160 1.2 x - Enmilient que 255 anni 0.959 1.2 2 x - Enmilient loortique 255 anni 0.959 1.2 2 x - Enmilient loortique 255 anni 0.291	ะ.1.1 กรณีที่สิวมีค่าสีเก่าเร็กสี่ภาณตัวเลียง			
1.1.12 × ExertSpringe 225 sum 0.146 1.1.13 × ExertSpringe 225 sum 0.137 1.2.1 × ExertSpringe 255 sum 0.137 1.2.1 × ExertSpringe 255 sum 0.301 1.2.1 × ExertSpringe 255 sum 0.595 1.2.2 × ExertSpringe 255 sum 0.595 1.2.2 × ExertSpringe 255 sum 0.595 1.2.3 × ExertSpringe 255 sum 0.595	s.1.1.1 märmastu	0.162		
1.113 + Jamil Sorb yu 45 aam [0.10] 1.2 ordefe advised of new 55 adv 1.21 + Samil Yau 1.22 signi Sorbay 225 uam 1.23 signi Sorbay 225 uam 0.00 1.23 signi Sorbay 45 aam 0.20	1.1.2 + Kanna Soarthaps 22.5 aama	0.148		
v.1.2 middla skristivni skristivni (2007) v.1.21 milianna (2007) v.1.22 milianni šonthusi 22 5 stant (2007) v.1.23 milianni šonthusi 42 5 stant (2007)	1.1.1.3 หลึ่งการสี่งกรับอย่ 45 sem	a 130		
ร.1.21 หรือการาช 0.801 ร.1.22 พร้อการโองทำแล 22 5 เลก 0.595 ร.1.23 หรือการโองทำแล 62 5 เลก 0.291	 1.2 กรมีที่สำมีค่าของระจำสังวานส่วงสิง 	States and the second s		
s 1.22 miliont ilionthus 22 5 som 0.595 s 1.23 milionthus 45 som 0.391	1.1.2.1 + Samara	0.801		
1.23 slanslanfuga 45 aam	\$ 1.22 manual certaun 22.5 ann	0.595		
	1.23 samilanfuga 45 sam	0.391		

1. Film Resistance

70-50 ASAT	50-3	5 2011	30-15 AHT	10-0
	sastaa (arm)			
94	50	65	00	73
ใสเหมือ	0.7	0.78	0.87	0 96
การรับออกเดียรเขาไข -	0.87	0.96	1.05	114
fm:วันออกเฉียอ	112	1.72	132	1.42
ฟะเมษะการสายได้	1.17	129	1.4	1.52
enla	<u>In</u>	1.24	1.37	1.5
1 กระวันตกเลืองได้	113	1.25	1.37	1.48
1785วันคก	103	117	1.28	1.38
1 การวันตกเลืองเหนือ	0 84	0 \$3	102	112

a. Correction Factor

รูปที่ ก.18 หน้าต่างฐานข้อมูลแต่ละประเภท

28 and clarify and	สาครามสำนักหลายสายรองพื้นโรง สาวั <i>1011</i>			
a line	5 112.	30 Lai,	105 01	
t alla High Enimites	011	0 148	0 16	
and the states	0.75	0 578	0 606	
a nije oce Highi Eanacha Maga O ason	Q 11	0148	a 174	
A BIT HIS ERITA HIS 22.5 SIT	0 11	0148	0 1625	
Endimition Emissio Wage 46 anti	1011	0.148	0 158	
Minitor Enime ship 0 arm	123	0.572	1 423	
	0 75	0 571	1 095	
Ballatztime Enhañn Visgo 46 aven	0.25	0.57	0 768	
9 swantii High Radissaa	0 458	0 458	0 458	
10 cherat Low Emailie	1 356	1 356	1 356	

۹. Airgap Film Resistance

42A					
2 2842 C 48	16 -	informedia dan Indonesere Die besteriefen			
MA / #134	11	F3 (\$250)	0.5 <346 6;	- 1.7 •0 6-6.8•	12 42 31-31-
6 125	14	15	16	17	18
126-195	In	. 12	13	14	15
> 195	9	10	11	12	13
-	0.00	-	-		
rh slenessere	1470.000 M	ngangah rinsa sali ni	สารของหนึ่งสา ประสิทธิภาษา	(องสารเหล่า (องสารเหล่า	rii)
rh slmersere strmersere	17 CO 0 7	andraigenage andreise	การของหนึ่งกา ประสำคัญระ ประ สาย	(0077583) 108 - 139 - 13	rii) ri (15-1,25
ela samesente na./ws.xc 020	000 22	40-mgi)ribra (0.34 (0.34	การของหนึ่งการ ประจำกักระ ประจำกักระ ประจำกักระ (7)	(0071034) 105 14-355	m) 10 (15-12) 12
da accessionia na./ws.sc. 0.50 SD-200	17 200 07 10 (10 0 27 (20 [16	.a. .e. .24 .24 .20	การของหนึ่งการ ประสำนักการ 145 - 20 [7] [24	(m) m (15-12) (12 [22 [28

ภายในฐานข้อมูลแต่ละประเภทสามารถที่จะแก้ไขเปลี่ยนแปลงค่าต่างๆได้ นอกจากนี้ภาย ในฐานข้อมูล Opaque Material และ Glass Material สามารถที่จะเพิ่มหรือทำการลบข้อมูลได้ โดยวิธีการเพิ่มข้อมูลสามารถที่จะกระทำได้โดยการบันทึกข้อมูลวัสดุที่ต้องการเพิ่มลงในบรรทัดสุด ท้ายของตาราง และทำการกดปุ่ม Refresh Data เพื่อทำการปรับปรุงข้อมูล สำหรับการลบข้อมูล สามารถที่จะกระทำได้โดย การเลื่อนเมาส์ไปยังด้านช้ายของรายชื่อที่ต้องการลบจนเมาส์มี ลักษณะ Ø และทำการคลิก ซึ่งจะทำให้เกิดแถบสีเข้มบนรายชื่อ หลังจากนั้นให้ทำการกดปุ่ม Delete บน Keyboard เพื่อทำการลบข้อมูล

4. การพิมพ์ผลการคำนวณ

จากการเรียกใช้คำสั่ง Print จากเมนู File หรือการคลิกบุนปุ่ม 🎒 จะปรากฏหน้าต่าง สำหรับการพิมพ์ดังนี้

hintet : Canon BJ-2	ОК	
Prìr	Cancel	
Print Inp	Preview	
Pres incut Plange	Print Output Range	
G Gody	Summary	
С Сиребрерие	עדדס ד	A Same
C Grandist	C Gray Glass	
N	Select Al	

รูปที่ ก.19 หน้าต่างพิมพ์ผลการคำนวณ

โดยข้อมูลต่างฯที่ผู้ใช้ต้องการพิมพ์ หรือข้อมูลที่ผู้ใช้ต้องการตรวจสอบข้อมูลก่อนการพิมพ์ (โดยการคลิกบนปุ่ม Preview) มีลักษณะของข้อมูลดังนี้

- 1. <u>ข้อมูล Input</u> แบ่งออกเป็น ข้อมูลกรอบอาคารที่มีลักษณะทึบและโปร่งแสง
- 2. <u>ข้อมูล Output</u> แบ่งออกเป็น 3 หัวข้อ คือ
 - ผลลัพธ์การคำนวณแบบ Summary
 - ผลลัพธ์การคำนวณเฉพาะ OTTV
 - ผลลัพธ์การคำนวณเฉพาะ RTTV

สำหรับการตรวจสอบข้อมูลก่อนการพิมพ์ในหน้าต่างสำหรับการพิมพ์นั้น จำนวนหน้าต่าง ตรวจสอบข้อมูลก่อนการพิมพ์ที่ปรากฏ จะมีจำนวนเท่ากับจำนวนลักษณะของข้อมูลที่ผู้ใช้ต้องการ ตรวจสอบ โดยมีลักษณะทั่วไปของหน้าต่างตรวจสอบข้อมูลดังนี้

รูปที่ ก.20 หน้าต่างตรวจสอบข้อมูลก่อนการพิมพ์

โดยคำสั่งต่างฯบนหน้าต่างตรวจสอบข้อมูลประกอบด้วย

- 1. ไอคอนรูป 101 101 INI เป็นคำสั่งที่ใช้สำหรับ การเปลี่ยนแปลงหน้าที่ต้องการ ตรวจสอบเมื่อข้อมูลที่ต้องการตรวจสอบมีมากกว่า 1 หน้า
- 2. ไอคอนรูป 🛃 เป็นคำสั่งเพื่อย่อหรือขยายมุมมอง ในการตรวจสอบข้อมูล
- 3. ไอคอนรูป 🛃 เป็นคำสั่งพิมพ์ข้อมูล
- 4. ไอคอนรูป 💼 💷 เป็นกลุ่มคำสั่งเพื่อการสงออกข้อมูลในรูปของไฟล์แบบต่างฯ
- 5. ไอคอนรูป Close เป็นคำสั่งปิดหน้าต่างตรวจสอบข้อมูล

นอกจากนี้ผู้ใช้ยังสามารถที่ทำการตรวจสอบ ผลลัพธ์การคำนวณแบบ Summary โดย การเรียกใช้คำสั่ง Preview จากเมนู File หรือการคลิกปุ่ม 🗟 5. การหมุนอาคาร

จากการเรียกใช้คำสั่ง Rotate Building จากเมนู Tools จะปรากฏหน้าต่างสำหรับการ หมุนอาคารดังนี้

Actorizad 4 Operators in 360 degree) 5 degree (8 Drientation in 360 degree) 25 degree (16 Drientation in 360 degree) ROTAL
5 degree (8 Drientation in 360 degree) 2.5 degree (16 Drientation in 360 degree) RDTA1
125 demos (22 Ocimitation in 200 demos)
C25 degree (52 olientation in 300 degree)
A userer in metraturi
Press rotate button before view the result (!!!
Press rotate button before view the result (!!!
Press rotate button before view the result (!!!
Press rotate button before view the result (!!!
Press rotate button before view the result !!!!
Press rotate button before view the result ()))
Press rotate button before view the result """ Means OTFV None Whan A None Deg ATTV Means OTFV None Whan A None Deg Means OTFV None Whan A None Deg

รูปที่ ก.21 หน้าต่างการหมุนอาคาร

ภายในหน้าต่างการหมุนอาคาร ผู้ใช้สามารถที่จะทำการเลือกลักษณะการหมุนได้ 5 รูป แบบ คือ หมุนอาคารทุกๆ 90, 45, 22.5, 11.25 และ 5.625 องศา โดยผลลัพธ์ของการหมุน อาคารประกอบด้วย ค่า OTTV, RTTV และ Heat Gain ซึ่งสามารถที่จะตรวจสอบผลการ คำนวณในรูปของกราฟ หรือ ตารางได้ นอกจากนี้ยังแสดงถึงทิศทางของอาคารที่มีค่า OTTV, RTTV, Heat Gain ต่ำสุดและสูงสุดได้ในกรณีที่ทำการตรวจสอบผลการคำนวณในรูปของกราฟ ดังรูปภาพแสดงตัวอย่างของผลการคำนวณดังนี้

otate every 22.5 degree (16 Orientation in 360 degree) 💌		Rotate	every 22.5 degree	(16 Orientation in 360	degree)	•	to
0.2 100.2	ROTATE	02	<u>114 53 6</u>			100 % R	OTA
ITV and RTTV Result in Graph (w/agas)		Result is	Table				
50	Sea and a sea	1	Angle (Degree)	OTTV (W/mg.m.)	RTTV (W/mm)	HEAT GAIN (W	T
	2 C	1.000	0	48.62952	44,9822	845034.3	- 23
	South States and the	1.57	72.5	48.79087	44.9822	847658.2	102
			45	49.00646	44 9822	851142.2	
	- OTTY		67.5	48.62242	44.9822	844935.8	
46		13.555	90	48.16748	44.9822	837583.4	
	The second second	1000	112.5	47.77363	44.9822	831221.5	-12
4		10122	135	47.40199	44.9822	825212.2	- 10
0 50 190 270 360			157.5	46.99095	44.9822	818569.4	
Original Start (Dames Original Start Start)	CALCULATION OF L	10000	180	45.48068	44 9822	810322.9	-12
Unersaion (Degree, Gookwise nom Horon)		11200	202 5	47 03178	44.9822	819229.3	
		Sale er-	217.5	47.0/300	44.36/2	62/391.3	-63
Ja Type Maximum 011V 49.23 W/sqm Al 315	5.00 Degree	1000	270	48 69045	44 9822	8460351	
COTTY I BITY Home OTTY 4548 When At 18	0.00 Deces	1.000	292.5	48 96729	44 9822	850509.1	
		11.5	315	49,23364	44 9872	854813.8	- 53
C Heat Gain Maximum RITV 44.98 W/rg.m. At 15.	7.50 Degree	and the second	337.5	48.96951	44,9822	850545.2	
Winnin BTTV 44.98 William At 200	2.50 Denne	10.00	360	495363	44 9872	845/34 3	

รูปที่ ก.22 หน้าต่างแสดงตัวอย่างของผลการคำนวณ

ภาคผนวก ข.

ข้อมูลกรอบอาคารของอาคารตัวอย่าง 3 ตัวอย่าง

ข้อมูลกรอบอาคารของอาคารตัวอย่าง 3 ตัวอย่าง

<u>ตัวอย่างอาคารที่ 1</u>

ลักษณะของกรอบอาคารตัวอย่างที่คำนวณมีลักษณะดังนี้

- ผนังทางด้านทิศเหนือ
 - ส่วนที่เป็นผนังทึบ

สื่อ	พื้นที่	โครงสร้างผนังทึบ
ผนังทึบ 1	105	คอนกรีต 50 cm.
ผนังทึบ 2	445.86	อิฐฉาบปูน 10 cm.

ส่วนที่เป็นผนังโปร่งแลง

สือ	พื้นที่	โครงสร้างผนังโปร่งแสง	อุปกรณ์บังแดด
	(n x ส x จำนวน)		
ผนังโปร่งแสง 1	3 x 1.2 x 3	กระจก 1 ชั้น	ไม่มีอุปกรณ์บังแดด
ผนังโปร่งแสง 2	4 x 1.2 x 3	กระจก 1 ชั้น	ไม่มีอุปกรณ์บังแดด
ผนังโปร่งแสง 3	4.5 x 1.2 x 3	กระจก 1 ชั้น	ไม่มีอุปกรณ์บังแดด
ผนังโปร่งแสง 4	2.0 x 1.2 x 3	กระจก 1 ชั้น	ไม่มีอุปกรณ์บังแดด
ผนังโปร่งแสง 5	0.5 x 0.8 x 33	กระจก 1 ชั้น	ไม่มีอุปกรณ์บังแดด
ผนังโปร่งแสง 6	2.6 x 2.2 x3	กระจก 1 ชั้น	อุปกรณ์บังแดด-1
ผนังโปร่งแลง 7	2.4 x 2.2 x 3	กระจก 1 ชั้น	อุปกรณ์บังแดด-1
ผนังโปร่งแสง 8	1.6 x 2.2 x 3	กระจก 1 ชั้น	อุปกรณ์บังแดด-1
ผนังโปร่งแลง 9	1.8 x 2.2 x 3	กระจก 1 ชั้น	อุปกรณ์บังแดด-1
ผนังโปร่งแสง 10	2.0 x 2.2x 12	กระจก 1 ชั้น	อุปกรณ์บังแดด-1

• ผนังทางด้านทิศตะวันออก

ส่วนที่เป็นผนังทึบ

ชื่อ	พื้นที่	โครงสร้างผนังทึบ
ผนังทึบ 1	73.5	คอนกรีต 50 cm.
ผนังทึบ 2	140.4	คอนกรีต 50 cm.
ผนังทึบ 3	590.38	อิฐฉาบปูน 10 cm.

ส่วนที่เป็นผนังโปร่งแลง

สื่อ	พื้นที่	โครงสร้างผนังโปร่งแสง	อุปกรณ์บังแดด
	(ก x ส x จานวน)		
ผนังโปร่งแสง 1	0.5x0.8x36	กระจก 1 ชั้น	ไม่มีอุปกรณ์บังแดด
ผนังโปร่งแลง 2	4.2x1.2x3	กระจก 1 ชั้น	ไม่มีอุปกรณ์บังแดด
ผนังโปร่งแสง 3	5.2x1.2x5	กระจก 1 ชั้น	ไม่มีอุปกรณ์บังแดด
ผนังโปร่งแลง 4	1.9x2.2x36	กระจก 1 ชั้น	อุปกรณ์บังแดด-1
ผนังโปร่งแสง 5	1.6x2.2x6	กระจก 1 ชั้น	อุปกรณ์บังแดด-1

ผนังทางด้านทิศตะวันตก

๑ ส่วนที่เป็นผนังทึบ

สื่อ	พื้นที่	โครงสร้างผนังทึบ
ผนังทึบ 1	52.5	คอนกรีต 50 cm.
ผนังทึบ 2	139.5	คอนกรีต 50 cm.
ผนังทึบ 3	868.38	อิฐฉาบปูน 10 cm.

ם ส่วนที่เป็ ¹	นผนังโปร่งแลง		
ชื่อ	พื้นที่	โครงสร้างผนังโปร่งแสง	อุปกรณ์บังแดด
	(ก x ส x จำนวน)		
ผนังโปร่งแลง 1	0.8x1.1x24	กระจก 1 ชั้น	ไม่มีอุปกรณ์บังแดด
ผนังโปร่งแสง 2	9x1.4x6	กระจก 1 ชั้น	อุปกรณ์บังแดด-2

• ผนังทางด้านทิศใต้

ส่วนที่เป็นผนังทึบ

ชื่อ	พื้นที่	โครงสร้างผนังทึบ
ผนังทึบ 1	105	คอนกรีต 50 cm.
ผนังทึบ 2	402.72	อิฐฉาบปูน 10 cm.

ส่วนที่เป็นผนังโปร่งแลง

สือ	พื้นที่	โครงสร้างผนังโปร่งแสง	อุปกรณ์บังแดด
	(IIX & X 11414)		
ผนังโปร่งแสง 1	0.5x0.8x36	กระจก 1 ชั้น	ไม่มีอุปกรณ์บังแดด
ผนังโปร่งแลง 2	1.9x2.2x12	กระจก 1 ชั้น	อุปกรณ์บังแดด-1
ผนังโปร่งแลง 3	1.7x2.2x18	กระจก 1 ชั้น	อุปกรณ์บังแดด-1
ผนังโปร่งแลง 4	2.4x2.2x12	กระจก 1 ชั้น	อุปกรณ์บังแดด-1
ผนังโปร่งแลง 5	1.2x2.2x6	กระจก 1 ชั้น	อุปกรณ์บังแดด-1

• หลังคาของอาคาร

ส่วนที่เป็นผนังทึบ

ชื่อ	พื้นที่	โครงสร้างผนังทึบ
ผนังทึบ 1	1396.36	คอนกรีต 15 cm.

* <u>หมายเหตุ</u> *

- 1. <u>คอนกรีต 50 cm.และคอนกรีต 15 cm.</u> มีค่าการนำความร้อน 1.442 W/m^{2.0}c และ ความหนาแน่น 2400 kg/m³
- <u>อิฐฉาบปุ่น</u> ประกอบด้วย ปูนทั้ง 2 ด้าน หนา 1 ซม. มีค่าการนำความร้อน 0.533 W/m^{2.0}c และความหนาแน่น 1568 kg/m³ และอิฐหนา 8 ซม. มีค่าการนำความร้อน 0.807 W/m^{2.0}c และความหนาแน่น 1760 kg/m³
- <u>กระจก 1 ชั้น</u> มีความหนา 6 มม. มีค่าการนำความร้อน 1.053 W/m^{2.0}c , ความหนาแน่น
 2512 kg/m³ และค่าสัมประสิทธ์การบังแดดของกระจก 0.64
- <u>อุปกรณ์บังแดด-1</u> มี Fin และ Overhang เป็นอุปกรณ์บังแดด ด้วยความยาว 1 ม. และทำมุม 90[°] กับกระจก
- <u>อุปกรณ์บังแดด-2</u> มี Fin เป็นอุปกรณ์บังแดด ด้วยความยาว 11 ม. ห่างจากกระจก 1.3 ม. และทำมุม 90⁰ กับกระจก
- ค่าสัมประสิทธิ์การแผ่รังสีของผนังด้านนอก , ผนังด้านในของผนังทึบ และ ผนังโปร่งแสง มีค่า สัมประสิทธิ์การแผ่รังสีสูง
- 7. ลักษณะของสีผิวด้านนอกของผนังทึบ มีลักษณะสีผิวอ่อน

<u>ตัวอย่างอาคารที่ 2</u>

ลักษณะของกรอบอาคารตัวอย่างที่คำนวณมีลักษณะดังนี้

ผนังทางด้านทิศเหนือ

ส่วนที่เป็นผนังทึบ

สื่อ	พื้นที่	โครงสร้างผนังทึบ
 ผนังทึบ 1	672	คอนกรีต 100 cm.
ผนังทึบ 2	2741.24	คอนกรีตบุกระเบื้อง
ผนังทึบ 3	337.80	คอนกรีตฉาบปูนเรียบ
ผนังกึบ 4	96.60	ก่ออิฐครึ่งแผ่น

ส่วนที่เป็นผนังโปร่งแสง

สื่อ	พื้นที่	โครงสร้างผนังโปร่งแสง	อุปกรณ์บังแดด
	(IIX X X Y IUJU) 51/ 5v1v1	กระลก 1 ตั้งเ	ไม่มีอุปกรภ์นับเลล
ผนังโปร่งแลง 2	58.5x1x1	กระจก 1 ชั้น	ไม่มีอปกรณ์บังแดด
ผนังโปร่งแสง 3	5x5.8x1	กระจก 1 ชั้น	้ อุปกรณ์บังแดด-1
ผนังโปร่งแลง 4	30x3x1	กระจก 1 ชั้น	อุปกรณ์บังแดด-2

- ผนังทางด้านทิศออก
 - ส่วนที่เป็นผนังทึบ

ขื่อ	พื้นที่	โครงสร้างผนังทึบ
ผนังทึบ 1	302.40	คอนกรีต 100 cm.
ผนังทึบ 2	1872.82	คอนกรีตบุกระเบื้อง
ผนังทึบ 3	243.36	คอนกรีตฉาบปูนเรียบ
ผนังทึบ 4	60.66	ก่ออิฐครึ่งแผ่น
ผนังทึบ 5	16.56	อิฐเต็มแผ่นบุกระเบื้อง

,			
	นทเปนเ	านงเปรง	แสง

สือ	พื้นที่	โครงสร้างผนังโปร่งแสง	อุปกรณ์บังแดด
	(ก x ส x จำนวน)		
ผนังโปร่งแสง 1	56.2x1x1	กระจก 1 ขั้น	ไม่มีอุปกรณ์บังแดด
ผนังโปร่งแสง 2	522.48x1x1	กระจก 1 ชั้น	ไม่มีอุปกรณ์บังแดด
ผนังโปร่งแสง 3	101.19x1x1	กระจก 1 ชั้น	ไม่มีอุปกรณ์บังแดด
ผนังโปร่งแสง 4	7.3x5.8x1	กระจก 1 ชั้น	อุปกรณ์บังแดด-3
ผนังโปร่งแสง 5	8.7x7.2x1	กระจก 1 ชั้น	อุปกรณ์บังแดด-4

- ผนังทางด้านทิศตก
 - ๐ ส่วนที่เป็นผนังทึบ

ซื้อ	พื้นที่	โครงสร้างผนังทึบ
ผนังทึบ 1	302.40	คอนกรีต 100 cm.
ผนังทึบ 2	1867.02	คอนกรีตบุกระเบื้อง
ผนังทึบ 3	243.36	คอนกรีตฉาบปูนเรียบ
ผนังทิบ 4	60.66	ก่ออิฐูครึ่งแผ่น
ผนังทิบ 5	16.56	อิฐเต็มแผ่นบุกระเบื้อง

ส่วนที่เป็นผนังโปร่งแลง

สือ	พื้นที่	โครงสร้างผนังโปร่งแสง	อุปกรณ์บังแดด
	(ก x ส x จำนวน)		
ผนังโปร่งแลง 1	56.2x1x1	กระจก 1 ชั้น	ไม่มีอุปกรณ์บังแดด
ผนังโปร่งแสง 2	522.48x1x1	กระจก 1 ชั้น	ไม่มีอุปกรณ์บังแดด
ผนังโปร่งแลง 3	101.19x1x1	กระจก 1 ชั้น	ไม่มีอุปกรณ์บังแดด
ผนังโปร่งแลง 4	7.3x5.8x1	กระจก 1 ชั้น	อุปกรณ์บังแดด-3
ผนังโปร่งแสง 5	8.7x7.2x1	กระจก 1 ชั้น	อุปกรณ์บังแดด-4

• ผนังทางด้านทิศใต้

ส่วนที่เป็นผนังทึบ

สื่อ	พื้นที่	โครงสร้างผนังทึบ
ผนังทึบ 1	688.80	คอนกรีต 100 cm.
ผนังทึบ 2	2647.49	คอนกรีตบุกระเบื้อง
ผนังทึบ 3	50.46	ก่ออิฐครึ่งแผ่น

ส่วนที่เป็นผนังโปร่งแลง

ชื่อ	พื้นที่	โครงสร้างผนังโปร่งแสง	อุปกรณ์บังแดด
	(ก x ส x จำนวน)		
ผนังโปร่งแลง 1	1123.50x1x1	กระจก 1 ชั้น	ไม่มีอุปกรณ์บังแดด
ผนังโปร่งแสง 2	146.70x1x1	กระจก 1 ชั้น	ไม่มีอุปกรณ์บังแดด
ผนังโปร่งแสง 3	19x5.8x1	กระจก 1 ชั้น	อุปกรณ์บังแดด-5
ผนังโปร่งแสง 4	42x3x1	กระจก 1 ชั้น	อุปกรณ์บังแดด-2
ผนังโปร่งแสง 5	24x7.2x1	กระจก 1 ชั้น	อุปกรณ์บังแดด-2

• หลังคาของอาคาร

ส่วนที่เป็นผนังทึบ

สื่อ	พื้นที่	โครงสร้างผนังทึบ
ผนังทึบ 1	1155.92	คอนกรีต 20 cm.
ผนังทึบ 2	158.92	คอนกรีต 20 cm.

* <u>หมายเหตุ</u> *

- <u>คอนกรีต 20 cm. และคอนกรีต 100 cm.</u> มีค่าการนำความร้อน 1.442 W/m^{2.0}c และความ หนาแน่น 2400 kg/m³
- คอนกรีตบุกระเบื้อง ประกอบด้วย กระเบื้องที่ผนังด้านนอก หนา 5 มม. มีค่าการนำความร้อน
 0.836 W/m^{2.0}c และความหนาแน่น 1890 kg/m³ และคอนกรีตหนา 30 ซม. มีค่าการนำ
 ความร้อน 1.442 W/m^{2.0}c และความหนาแน่น 2400 kg/m³ และปูนที่ผนังด้านใน หนา
 15 มม. มีค่าการนำความร้อน 0.533 W/m^{2.0}c และความหนาแน่น 1568 kg/m³
- <u>คอนกรีตฉาบปูนเรียบ</u> ประกอบด้วย ปูนทั้ง 2 ด้าน หนา 15 มม. มีค่าการนำความร้อน 0.533
 W/m².⁰c และความหนาแน่น 1568 kg/m³ และคอนกรีตหนา 30 ฃม. มีค่าการนำความร้อน
 1.442 W/m².⁰c และความหนาแน่น 2400 kg/m³
- <u>ก่ออิฐคริ่งแผ่น</u> ประกอบด้วย ปูนทั้ง 2 ด้าน หนา 15 มม. มีค่าการนำความร้อน 0.533
 W/m^{2.0}c และความหนาแน่น 1568 kg/m³ และอิฐหนา 7 ฃม. มีค่าการนำความร้อน 0.807
 W/m^{2.0}c และความหนาแน่น 1760 kg/m³
- <u>อิฐเต็มแผ่นบุกระเบื้อง</u> ประกอบด้วย กระเบื้องทางด้านนอก หนา 5 มม. มีค่าการนำความร้อน
 0.836 W/m^{2.0}c และความหนาแน่น 1890 kg/m³ , อิฐหนา 15 ซม. มีค่าการนำความร้อน
 0.807 W/m^{2.0}c และความหนาแน่น 1760 kg/m³ และปูนที่ผนังด้านใน หนา 15 มม. มีค่า
 การนำความร้อน 0.533 W/m^{2.0}c และความหนาแน่น 1568 kg/m³
- <u>กระจก 1 ชั้น</u> มีความหนา 6 มม. มีค่าการนำความร้อน 1.053 W/m^{2.0}c , ความหนาแน่น
 2512 kg/m³ และค่าสัมประสิทธ์การบังแดดของกระจก 0.64
- 8. อ<u>ุปกรณ์บังแดด-1</u> มี Overhang เป็นอุปกรณ์บังแดด ขนาด 13 ม. และทำมุม 90⁰ กับกระจก
- 9. อ<u>ุปกรณ์บังแดด-2</u> มี Overhang เป็นอุปกรณ์บังแดด ขนาด 2 ม. และทำมุม 90⁰ กับกระจก
- 10. <u>อุปกรณ์บังแดด-3</u> มี Overhang เป็นอุปกรณ์บังแดด ขนาด 12 ม. และทำมุม 90⁰ กับกระจก
- 11. <u>อุปกรณ์บังแดด-4</u> มี Overhang เป็นอุปกรณ์บังแดด ขนาด 4 ม. และทำมุม 90⁰ กับกระจก
- 12. <u>อุปกรณ์บังแดด-5</u> มี Overhang เป็นอุปกรณ์บังแดด ขนาด 3 ม. และทำมุม 90⁰ กับกระจก
- ค่าสัมประสิทธิ์การแผ่รังสีของผนังด้านนอก , ผนังด้านในของผนังทึบ และ ผนังโปร่งแสง มีค่า สัมประสิทธิ์การแผ่รังสีสูง
- 14. ลักษณะของสีผิวด้านนอกของผนังทึบ มีลักษณะสีผิวอ่อน

<u>ตัวอย่างอาคารที่ 3</u>

ลักษณะของกรอบอาคารตัวอย่างที่คำนวณมีลักษณะดังนี้

 ผนังทางด้านทิศตะวันออกเฉียงเหนือ , ทิศตะวันออกเฉียงใต้ , ทิศตะวันตกเฉียงเหนือ และทิศตะวันตกเฉียงใต้

ชื่อ	พื้นที่	โครงสร้างผนังทีบ
ผนังทิบ 1	332.40	คอนกรีตบุแกรนิต
ผนังทึบ 2	1814.40	คอนกรีตปูนฉาบเรียบ

ส่วนที่เป็นผนังทึบ

ส่วนที่เป็นผนังโปร่งแลง

สื่อ	พื้นที่ (n x ส x จำนวน)	โครงสร้างผนังโปร่งแสง	อุปกรณ์บังแดด
ผนังโปร่งแสง 1	1x5x24	กระจก 1 ชั้น	อุปกรณ์บังแดด-1
ผนังโปร่งแลง 2	1x2.5x528	กระจก 1 ชั้น	อุปกรณ์บังแดด-1

- หลังคาของอาคาร
 - ส่วนที่เป็นผนังทึบ

ชื่อ	พื้นที่	โครงสร้างผนังทึบ
ผนังทึบ 1	1339.56	คอนกรีต 15 cm.

* <u>หมายเหตุ</u> *

- คอนกรีตบุแกรนิต ประกอบด้วย แกรนิตทางด้านนอก หนา 10 มม. มีค่าการนำความร้อน 1.298 W/m^{2.0}c และความหนาแน่น 2640 kg/m³, คอนกรีตหนา 60 ซม. มีค่าการนำความ ร้อน 1.442 W/m^{2.0}c และความหนาแน่น 2400 kg/m³ และปูนที่ผนังด้านใน หนา 15 มม. มี ค่าการนำความร้อน 0.533 W/m^{2.0}c และความหนาแน่น 1568 kg/m³
- คอนกรีตฉาบปูนเรียบ ประกอบด้วย ปูนทั้ง 2 ด้าน หนา 15 มม. มีค่าการนำความร้อน 0.533
 W/m².⁰c และความหนาแน่น 1568 kg/m³ และคอนกรีตหนา 60 ซม. มีค่าการนำความร้อน 1.442 W/m².⁰c และความหนาแน่น 2400 kg/m³
- 3. <u>คอนกรีต 15 cm.</u> มีค่าการนำความร้อน 1.442 W/m^{2.0}c และความหนาแน่น 2400 kg/m³
- กระจก 1 ขั้น มีความหนา 6 มม. มีค่าการนำความร้อน 1.053 W/m^{2.0}c , ความหนาแน่น
 2512 kg/m³ และค่าสัมประสิทธ์การบังแดดของกระจก 0.64
- <u>อุปกรณ์บังแดด-1</u> มี Fin และ Overhang เป็นอุปกรณ์บังแดด ด้วยความยาว 0.5 ม. และทำ มุม 90⁰ กับกระจก
- ค่าสัมประสิทธิ์การแผ่รังสีของผนังด้านนอก , ผนังด้านในของผนังทึบ และ ผนังโปร่งแสง มีค่า สัมประสิทธิ์การแผ่รังสีสูง
- 10. ลักษณะของสีผิวด้านนอกของผนังทึบ มีลักษณะสีผิวอ่อน

ภาคผนวก ค.

ผลการคำนวณของอาคารตัวอย่าง 3 อาคาร

ผลการคำนวณในส่วนที่เป็นผนังของอาคาร (OTTV)

<u>ตัวอย่างอาคารที่ 1</u>

ผนังด้านทิศเหนือ

ตารางที่ ค.1 ผลลัพธ์การคำนวณทางด้านทิศเหนือของอาคารตัวอย่างที่ 1 ในส่วนที่เป็นผนังของอาคาร

		Nor	th-1		North-2				North-3				North-4			
•	А	В	С	D	А	В	С	D	А	В	С	D	А	В	С	D
A _w	105	105	105	105	445.9	445.8	445.9	445.9	-	-	-	-	-	-	-	
U,	2	2	1.96	1.96	3.3	3.3	3.3	3.33	-	-	-	-	-	-	-	-
TD _{ea}	10	10	10	. 10	12	12	12	12	-	-	-	-	-	-	-	-
A	-	-	-	-	-	-	-	-	10.8	10.8	10.8	10.8	14.4	14.4	14.4	14.4
Uf	-	-	-	-		-	-	-	5.9	5.9	5.9	5.89	5.9	5.9	5.9	5.89
Tdiff		-	-	-	-	-	-	-	5	5	5	5	5	5	5	5
SF		-	-	-	3	-	-	-	111.3	112	112	112	111.3	112	112	112
SC		-	-	-	-	-	-	-	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64
Q	2100	2054.8	2055.9	2055.8	17657.6	17778.6	17795.1	17797.1	1087.9	1091.79	1092.4	1092.4	1450.5	1455.7	1456.5	1456.5

		Nor	th-5		North-6				North-7				North-8			
	А	В	С	D	А	В	С	D	А	В	С	D	А	В	С	D
A _w	-	-	-	-	-	•	-	-	-	-		-	-	-	-	-
U,	-	-	-	-	¢	-	-	-	-	-	-	-	-	-	-	-
TD∝	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Af	16.2	16.2	16.2	16.2	7.2	7.2	7.2	7.2	13.2	13.2	13.2	13.2	11.9	11.88	11.9	11.88
Uf	5.9	5.9	5.9	5.89	5.9	5.9	5.9	5.89	5.9	5.9	5.9	5.89	5.9	5.9	5.9	5.89
Tdiff	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
SF	111.3	112	112	112	111.3	112	112	112	111.3	112	112	112	111.3	112	112	112
SC	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.574	0.567	0.567	0.567
Q	1631.9	1637.7	1638.5	1638.5	725.3	727.9	728.2	728.2	1329.7	1334.4	1335.1	1335.1	1111.3	1103.6	1106.33	1104.2

ตารางที่ ค.1 ผลลัพธ์การคำนวณทางด้านทิศเหนือของอาคารตัวอย่างที่ 1 ในส่วนที่เป็นผนังของอาคาร (ต่อ)

		Nor	th-9		North-10				North-11					North-12			
·	А	В	С	D	А	В	С	D	А	В	С	D	А	В	С	D	
A _w	4			4	-	Ŕ	-	÷		- 99		-	÷	é		. Q.	
Uw	-	18		Υ.	-	6				1		-	1	5		÷	
TD _{eq}					1.5			÷.					-			5	
A _f	17.2	17.2	17.2	17.16	15.8	15.8	15.8	15.84	10.6	10.6	10.6	10.56	52.8	52.8	52.8	52.8	
Uf	5.9	5.9	5.9	5.89	5.9	5.9	5.9	5.89	5.9	5.9	5.9	5.89	5.9	5.9	5.9	5.89	
Tdiff	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	
SF	111.3	112	112	112	111.3	112	112	112	111.3	112	112	112	111.3	112	112	112	
SC	0.574	0.567	0.567	0.567	0.574	0.567	0.567	0.567	0.574	0.567	0.567	0.567	0.574	0.567	0.567	0.567	
Q	1606.2	1594.1	1599.0	1595.0	1475.5	1471.5	1468.9	1472.3	989.9	980.9	985.4	981.54	4930.8	4904.9	4908.7	4907.7	

ตารางที่ ค.1 ผลลัพธ์การคำนวณทางด้านทิศเหนือของอาคารตัวอย่างที่ 1 ในส่วนที่เป็นผนังของอาคาร (ต่อ)

ผนังด้านทิศตะวันออก

ตารางที่ ค.2 ผลลัพธ์การคำนวณทางด้านทิศตะวันออกของอาคารตัวอย่างที่ 1 ในส่วนที่เป็นผนังของอาคาร

		Eas	st-l		East-2				East-3				East-4			
	А	В	С	D	А	В	С	D	А	В	, C	D	А	В	С	D
A _w	73.5	73.5	73.5	73.5	140.4	140.4	140.4	140.4	590.4	590.3	590.4	590.40	-	-	-	-
U,	2	2	1.96	1.96	2	2	1.96	1.96	3.3	3.3	3.3	3.33	-	-	-	-
TD _{eq}	10	10	10	10	10	10	10	10	12	12	12	12	-	-	-	-
Af	-	-	-	-	-	-	-	-	-	-	-	-	150.5	150.5	150.5	150.48
U _f	-	-	-	-	-	-	-	-	-	-	-	-	5.9	5.9	5.9	5.89
Tdiff	-	-		-	-	-	-	-	-	-	-	-	5.0	5	5	5
SF		-	-	-	-	-	-	•	-	-	-	-	179	179.2	179.2	179.2
SC		-	-	-	-	1	-		-	-	-	-	0.504	0.472	0.472	0.472
Q	1470	1438.36	1439.13	1439.1	2808	2747.6	2749.03	2748.9	23379.8	23541.4	23564.0	23564.5	18030.7	17156.1	17164.1	17163.8

		Ea	st-5			Ea	st-6		East-7				East-8			
	А	В	С	D	А	В	С	D	А	В	С	D	А	В	С	D
A _w									÷	-	-3.0	-	1 en	18	20	12
Uw	-		-				-		÷		140	•	1940 -	1.1		÷
TD _{eq}	-	-	3		÷	-	-	-	-	÷	- 7			-		
A _f	14.4	14.4	14.4	14.4	15.1	15.1	15.1	15.12	21.1	21.1	21.1	21.12	31.2	31.2	31.2	31.2
Uf	5.9	5.9	5.9	5.89	5.9	5.9	5.9	5.89	5.9	5.9	5.9	5.89	5.9	5.9	5.9	5.89
Tdiff	5.0	5	5	5	5.0	5	5	5	5.0	5	5	5	5.0	5	5	5
SF	179	179.2	179.2	179.2	179	179.2	179.2	179.2	179	179.2	179.2	179.2	179	179.2	179.2	179.2
SC	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.504	0.466	0.466	0.466	0.64	0.64	0.64	0.64
Q	2074.5	2075	2075.8	2075.8	2175.3	2178.8	2176.7	2179.6	2527.9	2384.9	2383.7	2385.9	4494.7	4495.9	4497.6	4497.6

ตารางที่ ค.2 ผลลัพธ์การคำนวณทางด้านทิศตะวันออกของอาคารตัวอย่างที่ 1 ในส่วนที่เป็นผนังของอาคาร (ต่อ)

ผนังด้านทิศตะวันตก

ตารางที่ ค.3 ผลลัพธ์การคำนวณทางด้านทิศตะวันตกของอาคารตัวอย่างที่ 1 ในส่วนที่เป็นผนังของอาคาร

		We	st-1		West-2				West-3				West-4			
	А	В	С	D	А	В	С	D	A	В	С	D	А	В	С	D
A _w	52.5	52.5	52.5	52.5	868.4	868.3	868.4	868.4	139.5	139.5	139.5	139.5	-	-		
U,	2	2	1.96	1.96	3.3	3.3	3.33	3.33	2	2	1.96	1.96	-	-	-	-
TDea	10	10	10	10	12	12	12	12	10	10	10	10	-	-	-	-
A _f	-	-	-	-	-	-	-	-	-	-	-	-	21.1	21.1	21.1	21.12
U _f	-	-	-	-	-	-	-	-	-	-	-	-	5.9	5.9	5.89	5.89
Tdiff	-	- ÷ -	*		-	-		-	-	-	-	-	5	5	5	5
SF	-	-	-	-	-	-		-	-	-	-	-	171.5	164.8	164.8	164.8
SC		-	-	-	-	-	-	-		-	-	-	0.64	0.64	0.64	0.64
Q	1050	1027.4	1027.9	1027.9	34388.6	34628.1	34659.6	34660.2	2790	2729.9	2731.4	2731.3	2938.4	2848.8	2847.1	2849.85

		We	st-5		-
	А	В	С	D	-
A _w	-	-		-	
Uw	-		-	-	
TD_{eq}	~	4.	~		
Af	75.6	75.6	75.6	75.6	
Uf	5.9	5.9	5.89	5.89	
Tdiff	5	5	5	5	
SF	171.5	164.8	164.8	164.8	
SC	0.531	0.531	0.531	0.531	
Q	9121.3	8845.2	8849.2	8849.1	

ตารางที่ ค.3 ผลลัพธ์การคำนวณทางด้านทิศตะวันตกของอาคารตัวอย่างที่ 1 ในส่วนที่เป็นผนังของอาคาร (ต่อ)

ผนังด้านทิศใต้

ตารางที่ ค.4 ผลลัพธ์การคำนวณทางด้านทิศใต้ของอาคารตัวอย่างที่ 1 ในส่วนที่เป็นผนังของอาคาร

		Sou	ith-1			Sou	th-2			Sou	ıth-3			Sou	1th-4	
	А	В	С	D	А	В	С	D	A	В	С	D	А	В	С	D
A _w	105	105	105	105	402.7	402.7	402.7	402.7	-	-	-	-	-		-	-
U,	2	2	1.96	1.96	3.3	3.3	3.33	3.33	-	-	-	-	-	-	-	-
TDea	10	10	10	10	12	12	12	12	-	-	-	-	-	-	-	-
A _f	-	-	-	-	-	4	-	-	14.4	14.4	14.4	14.4	50.2	50.2	50.2	50.16
U _f	-	-	-	-	-	-	-	-	5.9	5.9	5.89	5.89	5.9	5.9	5.89	5.89
Tdiff	-	<u>.</u>	-	-	-	1		-	5	5	5	5	5	5	5	5
SF	-	-	-	-	-	-	-	-	178.2	177.6	177.6	177.6	178.2	177.6	177.6	177.6
SC	-	-	-	-	-	-	-	-	0.64	0.64	0.64	0.64	0.449	0.398	0.398	0.398
Q	2100	2054.8	2055.9	2055.8	15946.9	16059.8	16072.6	16072.9	2067.1	2060.3	2061.1	2061.0	5502.0	5022.7	5027.5	5025.21

		Sou	th-5			Sou	th-6			Sou	ıth-7	
	А	В	С	D	А	В	С	D	А	В	С	D
A _w	-			-	-	-	-	-	-			-
U,	-	-	-	-	-	-	-	-	-	-		-
TD _{eq}	-	÷	-	-	1	-	-	1.	-	1	÷1	1.1
Af	67.3	67.3	67.3	67.32	63.4	63.4	63.4	63.36	15.8	15.8	15.8	15.84
Uf	5.9	5.9	5.89	5.89	5.9	5.9	5.89	5.89	5.9	5.9	5.89	5.89
Tdiff	5	5	5	5	5	5	5	5	5	5	5	5
SF	178.2	177.6	177.6	177.6	178.2	177.6	177.6	177.6	178.2	177.6	177.6	177.6
SC	0.449	0.394	0.394	0.394	0.449	0.408	0.408	0.408	0.449	0.382	0.382	0.382
Q	7376.1	6686.2	6692.3	6689.7	6948.7	6458.0	6162.1	6461.2	1731.7	1540.4	1537.5	1541.2

ตารางที่ ค.4 ผลลัพธ์การคำนวณทางด้านทิศใต้ของอาคารตัวอย่างที่ 1 ในส่วนที่เป็นผนังของอาคาร (ต่อ)

<u>ตัวอย่างอาคารที่ 2</u>

ผนังด้านทิศเหนือ

ตารางที่ ค.5 ผลลัพธ์การคำนวณทางด้านทิศเหนือของอาคารตัวอย่างที่ 2 ในส่วนที่เป็นผนังของอาคาร

		Nor	th-l			Nor	th-2			Nor	th-3			No	rth-4	
	А	В	С	D	А	В	С	D	А	В	С	D	А	В	С	D
A _w	672	672	672	672	2741.2	2741	2741.2	2741.24	337.8	337.8	337.8	337.8	96.6	96.6	96.6	96.6
U,	1.2	1.2	1.17	1.17	2.5	2.5	2.46	2.46	2.2	2.3	2.33	2.33	3.3	3.3	3.26	3.26
TD _{eq}	10	10	10	10	10	10	10	10	10	10	10	10	12	12	12	12
A _f	-	-				-	2.4	-	1.1	11	-	-	-	-	-	
Uf	-	-	-	-	-	-	-	-	-	-	-		-		-	
Tdiff	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SF	-	-	-	-	-	-	-	-	-	-	• •	-	-	-	• -	-
SC		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Q	8064	7841.3	7835.5	7836.9	68530.0	67512.3	67488.3	67490.3	7769.4	7892.5	7.887.6	7886.5	3825.4	3779.6	3775.5	3775.6

		Nor	th-5			Nor	th-6			Nor	th-7			No	rth-8	
	А	В	С	D	А	В	С	D	А	В	С	D	А	В	С	D
A _w	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Uw	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TD _{eq}	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A _f	29	29	29	29	90	90	90	90	514.5	514.5	514.5	514.5	58.5	58.5	58.5	58.5
Uf	5.9	5.9	5.89	5.89	5.9	5.9	5.89	5.89	5.9	5.9	5.89	5.89	5.9	5.9	5.89	5.89
Tdiff	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
SF	111.3	112	112	112	111.3	112	112	112	111.3	112	112	112	111.3	112	112	112
SC	0.567	0.567	0.567	0.567	0.57	0.57	0.57	0.57	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64
Q	2685	2694.0	2696.1	2695.5	8367.7	8395.7	8397.5	8400.3	52011.8	52038.6	52039.1	52038.6	5892.8	5913.9	5916.9	5916.9

ตารางที่ ค.5 ผลลัพธ์การคำนวณทางด้านทิศเหนือของอาคารตัวอย่างที่ 2 ในส่วนที่เป็นผนังของอาคาร (ต่อ)

ผนังด้านทิศตะวันออก

ดารางที่ ค.6 ผลลัพธ์การคำนวณทางด้านทิศตะวันออกของอาคารตัวอย่างที่ 2 ในส่วนที่เป็นผนังของอาคาร

1.00

		Ea	st-1			Eas	st-2			Ea	st-3			Ea	st-4	
	A	В	С	D	А	В	С	D	А	В	С	D	А	В	С	D
Au	302.4	302.4	302.4	302.4	1872.8	1872.0	1872.8	1872.8	243.4	243.3	243.4	243.36	60.7	60.7	60.7	60.66
U,	1.2	1.2	1.17	1.17	2.5	2.5	2.46	2.46	2.3	2.3	2.33	2.33	3.3	3.3	3.26	3.26
T'D _{eq}	10	10	10	10	10	10	10	10	10	10	10	10	12	12	12	12
A _f	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
Uſ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tdiff	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	· · ·	-
Q	3628.8	3529.6	3525.9	3526.6	46820.0	46108.4	46108.8	46109.5	5598.2	5684.6	5683.4	5681.6	2403.7	2373.4	2370.8	2370.9

		Eas	st-5			Ea	st-6			Eas	st-7			Ea	st-8	
·	А	В	С	D	Α	В	С	D	А	В	С	D	А	В	С	D
A _w	16.6	16.6	16.6	16.56	-		-	-	-	-	-	-	-	-	-	-
U.	2.6	2.6	2.6	2.6	-	-	-	-	-	-	-	-	-	-	-	-
TDeg	10	10	10	10	-	-	-	-	-	-	-	-	-	-	-	-
Af	-	-	-	-	42.3	42.3	42.3	42.34	56.2	56.2	56.2	56.2	522.5	522.5	522.5	522.48
U _f	-	-	71	-	5.9	5.9	5.89	5.89	5.9	5.9	5.89	5.89	5.9	5.9	5.89	5.89
Tdiff	-	-	+	-	5.0	5	5	5	5.0	5	5	5	5.0	5	5	5
SF	-	-	-	-	179	179.2	179.2	179.2	179	179.2	179.2	179.2	179	179.2	179.2	179.2
SC	-	-	-	-	0.383	0.383	0.383	0.383	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64
Q	431.6	431.36	432.3	431.25	4145.5	4148.6	4149.6	4150.80	8096.2	8098.42	8101.4	8101.35	75271.4	75289.4	75319.9	75316.6

ตารางที่ ค.6 ผลลัพธ์การคำนวณทางด้านทิศตะวันออกของอาคารตัวอย่างที่ 2 ในส่วนที่เป็นผนังของอาคาร (ต่อ)

		Eas	st-9			Eas	t-10	
	А	В	С	D	А	В	С	D
A _w	4	4	-	-	-	-		-
Uw					-	-		
TD_{eq}		2	-			1.1		-
A _f	101.2	101.2	101.2	101.19	62.6	62.6	62.6	62.64
Uf	5.9	5.9	5.89	5.89	5.9	5.9	5.89	5.89
Tdiff	5.0	5	5	5	5.0	5	5	5
SF	179	179.2	179.2	179.2	179	179.2	179.2	179.2
SC	0.64	0.64	0.64	0.64	0.486	0.486	0.486	0.486
Q	14578.9	14581.5	14588.3	14586.8	7291.4	7297.1	7296.4	7300.3

ตารางที่ ค.6 ผลลัพธ์การคำนวณทางด้านทิศตะวันออกของอาคารตัวอย่างที่ 2 ในส่วนที่เป็นผนังของอาคาร (ต่อ)

ผนังด้านทิศตะวันตก

ตารางที่ ค.7 ผลลัพธ์การคำนวณทางด้านทิศตะวันตกของอาคารตัวอย่างที่ 2 ในส่วนที่เป็นผนังของอาคาร

		We	st-1			We	st-2			We	est-3			We	st-4	
	А	В	С	D	А	В	С	D	А	В	С	D	А	В	С	D
A _w	302.4	302.4	302.4	302.4	1867	1867	1867	1867.02	243.4	243.3	243.4	243.36	60.7	60.7	60.7	60.66
U.	1.2	1.2	1.17	1.17	2.5	2.5	2.46	2.46	2.3	2.3	2.36	2.33	3.3	3.3	3.26	3.26
TD _{eq}	10	10	10	10	10	10	10	10	10	10	10	10	12	12	12	12
A _f		140		-	4	-	-	-	-	-	-	-	-	-	-	-
U _f	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tdiff	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SF	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
SC	-	-	-	-	-	-		-	-	-	-	-	-	-	_	-
Q	3628.8	3528.6	3525.9	3526.6	46675.0	45982.2	45965.5	45966.7	5598.2	5684.6	5683.4	5681.6	2403.7	2373.4	2372.4	2370.9

		We	st-5			We	st-6			We	st-7			We	est-8	
	А	В	С	D	А	В	С	D	А	В	С	D	А	В	С	D
A _w	16.6	16.6	16.6	16.56	-	-	-	-	-		-	-	-	-	-	
Uw	2.6	2.6	2.6	2.6	-	-	-	-	-		-	-	-	-	-	-
TD _{ea}	10	10	10	10	-	-	-	-	-		-	-	-	-	-	
A _f	-	-	-		42.3	42.3	42.3	42.34	56.2	56.2	56.2	56.2	522.5	522.5	522.5	522.48
Uf	-	-	-	-	5.9	5.9	5.89	5.89	5.9	5.9	5.89	5.89	5.9	5.9	5.89	5.89
Tdiff		-	-	÷	5.0	5	5	5	5.0	5	5	5	5.0	5	5	5
SF	-	-	-	-	171.5	164.8	164.8	164.8	171.5	164.8	164.8	164.8	171.5	164.8	164.8	164.8
SC	-	-	-	-	0.399	0.399	0.399	0.399	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64
Q	431.6	431.36	432.3	431.3	4142.4	4029.5	4027.8	4031.66	7826.4	7580.5	7583.5	7583.4	72763.4	70474.2	70504.6	70501.4

ตารางที่ ค.7 ผลลัพธ์การคำนวณทางด้านทิศตะวันตกของอาคารตัวอย่างที่ 2 ในส่วนที่เป็นผนังของอาคาร (ต่อ)

		We	st-9			Wes	st-10	
	А	В	С	D	А	В	С	D
A _w	-	-	-	-	-	-	-	-
Uw	-	-	-	-		-	-	-
TD _{eq}	-	-	-	-	-	-	-	-
A _f	101.2	101.2	101.2	101.19	62.6	62.6	62.6	62.64
Uf	5.9	5.9	5.89	5.89	5.9	5.9	5.89	5.89
Tdiff	5.0	5	5	5	5.0	5	5	5
SF	171.5	164.8	164.8	164.8	171.5	164.8	164.8	164.8
SC	0.64	0.64	0.64	0.64	0.493	0.493	0.493	0.493
Q	14093.1	13648.9	13655.6	13654.2	7139.5	6932.1	6930.5	6935.4

ตารางที่ ค.7 ผลลัพธ์การคำนวณทางด้านทิศตะวันตกของอาคารตัวอย่างที่ 2 ในส่วนที่เป็นผนังของอาคาร (ต่อ)

ผนังด้านทิศใต้

ตารางที่ ค.8 ผลลัพธ์การคำนวณทางด้านทิศใต้ของอาคารตัวอย่างที่ 2 ในส่วนที่เป็นผนังของอาคาร

		Sou	th-1			Sou	ith-2			Sou	th-3	·		Sou	ıth-4	
	А	В	С	D	А	В	С	D	Α	В	С	D	А	В	С	D
A _w	688.8	688.8	688.8	688.8	2647.5	2647	2647.5	2647.49	50.5	50.5	50.5	50.46	-	-	-	-
U,	1.2	1.2	1.17	1.17	2.5	2.5	2.46	2.46	3.3	3.3	3.26	3.26	-	-	-	-
TD _{eq}	10	10	10	10	10	10	10	10	12	12	12	12	-		-	-
A _f	-	-	-	-	-	-	-	-	-	-	-	-	110.2	110.2	110.2	110.2
Uf	-		-	-	•	-	-	-	-	-	-	-	5.9	5.9	5.89	5.89
Tdiff	-		-	-	-	-	-	-	-	-	-	-	5	5	5	5
SF	-	-	-	-		-	-	-	-	-	-	-	178.2	177.6	177.6	177.6
SC	-	-	-	-		-	-	-	-	-	-	-	0.437	0.437	0.437	0.437
Q	8265.6	8037.3	8031.4	8032.8	66187.5	65197	65181.2	65182.2	1999.8	1974.3	1973.7	1972.2	11832.5	11794	11799.8	11799.7

		Sou	th-5		_	Sou	th-6			Sou	th-7			Sou	ıth-8	
	А	В	С	D	А	В	С	D	А	В	С	D	А	В	С	D
A _w	-		-	-	-	-	-	-	-	-		1.÷.1		÷	e.	
U,	-	-	-	-	-	-	-	-	-	-	-			1		-
TD _{eq}		-		-	-	-	-	-	- ÷	•	÷	1.00		- E	-	12
Ar	126	126	126	126	1123.5	1123.5	1123.5	1123.5	146.7	146.7	146.7	146.7	172.8	172.8	172.8	172.8
Uf	5.9	5.9	5.89	5.89	5.9	5.9	5.89	5.89	5.9	5.9	5.89	5.89	5.9	5.9	5.89	5.89
Tdiff	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
SF	178.2	177.6	177.6	177.6	178.2	177.6	177.6	177.6	178.2	177.6	177.6	177.6	178.2	177.6	177.6	177.6
SC	0.407	0.407	0.407	0.407	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.485	0.485	0.485	0.485
Q	11832.5	12817.2	12820.3	12823.8	161276	160745	160805	160804	21058.5	20989.3	20997	20996.9	20035.3	19968.6	19975.9	19978.5

ตารางที่ ค.8 ผลลัพธ์การคำนวณทางด้านทิศใต้ของอาคารตัวอย่างที่ 2 ในส่วนที่เป็นผนังของอาคาร (ต่อ)

<u>ตัวอย่างอาคารที่ 3</u>

ผนังด้านทิศตะวันออกเฉียงเหนือ

ตารางที่ ค.9 ผลลัพธ์การคำนวณทางด้านทิศตะวันออกเฉียงเหนือของอาคารตัวอย่างที่ 3 ในส่วนที่เป็นผนังของอาคาร

		North	-East 1			North-East 2			North-East 3				North-East 4			
	А	В	С	D	А	В	С	D	А	В	С	D	А	В	С	D
A _w	332.4	332.4	332.4	332.4	- 1814.4	1814	1814.4	1814.4	-	-	-	-	-			-
U,	1.6	1.6	1.62	1.63	1.6	1.6	1.57	1.57	-	-	-	-	-			-
TD _{eq}	10	10	10	10	10	10	10	10	-	-	-	-	-	-	-	-
A _f	-	-	-	-	-	-	-	-	120	120	120	120	1320	1320	1320	1320
Uf	-	-	-	-			-	-	5.9	5.9	5.89	5.89	5.9	5.9	5.89	5.89
Tdiff	-	÷	-	-	-	-	-	-	5	5	5	5	5	5	5	5
SF	-	÷	-	-	-	-	-	-	138.7	139.2	139.2	139.2	138.7	139.2	139.2	139.2
SC	-	-	-	-	-	-	-	-	0.607	0.523	0.526	0.526	0.58	0.511	0.514	0.514
Q	5318.4	5439.4	5398.2	5434.5	29030.4	28513.1	28504.2	28511.5	13642.9	12272.3	12322.1	12328.2	145092	132768	133338	133371

ผนังด้านทิศตะวันออกเฉียงใต้

ตารางที่ ค.10 ผลลัพธ์การคำนวณทางด้านทิศตะวันออกเฉียงใต้ของอาคารตัวอย่างที่ 3 ในส่วนที่เป็นผนังของอาคาร

		South	-East 1			South	-East 2			South	-East 3			South	-East 4	
	А	В	С	D	А	В	С	D	А	В	С	D	А	В	С	D
A _w	332.4	332.4	332.4	332.4	1814.4	1814	1814.4	1814.4	-	-				-	-	
U,	1.6	1.6	1.62	1.63	1.6	1.6	1.57	1.57		-		-	-	-	-	-
TDeg	10	10	10	10	10	10	10	10	-	-	-		-	-	-	-
A _f	-	-	-	-	-	-	-	-	120	120	120	120	1320	1320	1320	1320
Uſ	-	-	-	-	-	-	-	-	5.9	5.9	5.89	5.89	5.9	5.9	5.89	5.89
Tdiff	-	-	-	-	-	-	-	-	5	5	5	5	5	5	5	5
SF	-	-	-	-	-	-	-	-	186.9	187.2	187.2	187.2	186.9	187.2	187.2	187.2
SC	-	-	-	-	-	-	-	-	0.595	0.519	0.52	0.516	0.556	0.496	0.496	0.491
Q	5318.4	5439.4	5398.2	5434.5	29030.4	28513.1	28504.2	28511.5	16884.7	15198.1	15217.1	15119.6	176085	161338	161457	160292

ผนังด้านทิศตะวันตกเฉียงใต้

ตารางที่ ค.11 ผลลัพธ์การคำนวณทางด้านทิศตะวันตกเฉียงใต้ของอาคารตัวอย่างที่ 3 ในส่วนที่เป็นผนังของอาคาร

		South-	West 1	_		South-	West 2			South-	West 3			South	-West 4	
	А	В	С	D	А	В	С	D	А	В	С	D	А	В	С	D
Au	332.4	332.4	322.4	332.4	1814.4	1814	1814.4	1814.4	-	-	-		-		-	-
U,	1.6	1.6	1.62	1.63	1.6	1.6	1.57	1.57	-	-	-	-	-	-	-	-
TD _{eq}	10	10	10	10	10	10	10	10	-	-	-	-	-	-	-	-
Ar	-	-	-	-	-	-	-	-	120	120	120	120	1320	1320	1320	1320
Uf	-	-	-		-	-	-	-	5.9	5.9	5.89	5.89	5.9	5.9	5.89	5.89
Tdiff	-	-	-	-		-	-	-	5	5	5	5	5	5	5	5
SF	-	-	-	-	-	-	-	-	180.7	180.8	180.8	180.8	180.7	180.8	180.8	180.8
SC	-	-	-			-	-	-	0.595	0.530	0.53	0.535	0.557	0.506	0.506	0.511
Q	5318.4	5439.4	5398.2	5434.5	29030.4	28513.1	28504.2	28511.5	16444.1	15027.4	15034.7	15135.7	171797	159546	159653	160832

ผนังด้านทิศตะวันตกเฉียงใต้

ตารางที่ ค.12 ผลลัพธ์การคำนวณทางด้านทิศตะวันตกเฉียงเหนือของอาคารตัวอย่างที่ 3 ในส่วนที่เป็นผนังของอาคาร

		North-	West 1			North-	West 2			North-	West 3			North	West 4	
	А	В	С	D	Α	В	С	D	А	В	С	D	А	В	С	D
A _w	332.4	332.4	322.4	332.4	1814.4	1814	1814.4	1814.4	-	-			-	-	-	
U,	1.6	1.6	1.62	1.63	1.6	1.6	1.57	1.57	-	-	-	-	-	-		-
TD _{eq}	10	10	10	10	10	10	10	10	-	-	-	-	-	1.0	-	-
A _f	-	-	-	-	-	-	-	-	120	120	120	120	1320	1320	1320	1320
U_{f}	-	-	-	-	-	-	-	-	5.9	5.9	5.89	5.89	5.9	5.9	5.89	5.89
Tdiff	-	-	-		-	-	-	-	5	5	5	5	5	5	5	5
SF			-	· ·	-	-	-	-	134.3	137.4	134.4	134.4	134.3	134.4	134.4	134.4
SC	-	-	-		-	-	-	-	0.608	0.533	0.533	0.533	0.582	0.523	0.524	0.523
Q	5318.4	5439.4	5398.2	5434.5	29030.4	28513.1	28504.2	28511.5	13332.1	12122.2	12132	12129.4	142114	131681	131855	131760

ผลการคำนวณในส่วนที่เป็นหลังคาของอาคาร (RTTV)

<u>ตัวอย่างอาคารที่ 1</u>

ผนังด้านทิศเหนือ

ตารางที่ ค.13 ผลลัพธ์การคำนวณทางด้านทิศเหนือของอาคารตัวอย่างที่ 1 ในส่วนที่เป็นหลังคาของอาคาร

		North-1									
	А	В	С	D							
A _w	1396.4	1396.3	1396.4	1396.36							
Uw	3.1	3.12	3.12	3.12							
TD_{eq}	16	16	16	16							
A _f			-	-							
Ur		-	-	-							
Tdiff	-	-	-	-							
SF	-	-	-	-							
SC	-	-	-	-							
Q	69261.4	69597.5	69594.6	69595.7							

<u>ตัวอย่างอาคารที่ 2</u>

ผนังด้านทิศเหนือ

ē		Nor	-th-1		North-2					
	А	В	С	D	А	В	С	D		
A _w	1155.9	1155.9	1155.9	1155.92	158.9	158.9	158.9	158.92		
U.	2.8	2.8	2.8	2.81	2.8	2.8	2.81	2.81		
TDea	16	16	16	16	16	16	16	16		
A	- 3 -	•	•	-	-	-	÷	-		
U_{f}	-	-	-	-	-	-	-	-		
Tdiff	-	-	-	-	-	-	-	-		
SF	-	-	-	-	-	-		-		
SC	-	-	-	-	-	-	-	-		
Q	51784.3	51950.6	51988.7	51995.8	7118.7	7142.5	7146.7	7148.6		

ตารางที่ ค.14 ผลลัพธ์การคำนวณทางด้านทิศเหนือของอาคารตัวอย่างที่ 2 ในส่วนที่เป็นหลังคาของอาคาร

<u>ตัวอย่างอาคารที่ 3</u>

ผนังด้านทิศเหนือ

	North-1									
	А	В	С	D						
A _w	1339.6	1339.5	1339.6	1339.6						
U,	3.1	3.1	3.12	3.12						
TD _{eq}	16	16	16	16						
A _f	-	-	-	-						
Uf	-	-	-	-						
Tdiff	-	-	-	-						
SF	-	-	-	-						
SC		-	-	-						
Q	66444.2	66766.4	66765.7	66764.7						

ตารางที่ ค.15 ผลลัพธ์การคำนวณทางด้านทิศเหนือของอาคารตัวอย่างที่ 3 ในส่วนที่เป็นหลังคาของอาคาร

.-

* หมายเหตุ *

- A หมายถึงการใช้โปรแกรมของ กรมพัฒนาและส่งเสริมพลังงานในการคำนวณ
- B หมายถึงการใช้โปรแกรมของ บริษัท สยามไฟเบอร์กลาส จำกัด ในการคำนวณ

.

- C หมายถึงการใช้โปรแกรมของ สถาบันวิจับหลังงานจุฬาลงกรณ์มหาวิทยาลับ
- D หมายถึงการใช้โปรแกรมที่พัฒนาขึ้น ในการคำนวณ

ประวัติผู้เขียน

นายทวิชาติ กิตติรัตนาภรณ์ เกิดวันที่ 25 กรกฎาคม พ.ศ. 2515 กรุงเทพมหานคร สำเร็จการศึกษาวิศวกรรมศาสตรบัณฑิต สาขาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าพระนครเหนือ ในปีการศึกษา 2527 และเข้าศึกษาต่อในหลักสูตร วิศวกรรมศาสตรมหาบัณฑิต สาขาวิศวกรรมเครื่องกล จุฬาลงกรณ์มหาวิทยาลัย ในปีการศึกษา 2538

