CHAPTER|
PRELIMINARIES

LetN, . ands denote the set of all positive integers, the set of all integers
and the set of all real numbers. Forn e N, let the notation (Z,, ¢ denote the
multiplicative semigroup of integers modulo and forx e .. let jfe .. be the
equivalence class modulo  containing .

Let beasemigroup. If hasazeroOandxy=0forallxy e s, we call
azero semigroup. IS Said to be regular if foreverya e , a = axa for some Xe
. A nonempty subset A of is called a left [right] ideal of IfSA & A [AS € A].
We call  aleft [right] simple semigroup if.5 is the only left [right] ideal of . If
hasazero 0, 2* {0} and and {0} are the only left [right] ideals of , then s
said to be left [right] o-simple. A nonempty subset @ of s called aquasi-ideal of
if SQ QS (- Q. We call anonempty subset B of abi-ideal of 1fBS'B ¢ B
where 1'1="if has an identity and ' is the semigroup ~ with an identity
adjoined if  does not have an identity.

The following statements hold clearly.

(1) If is commutative, then a nonempty subset @ of s a quasi-ideal of

ifandonly if sQ ¢z Q.

(2) If Is commutative, then a nonempty subset B of is a bi-ideal of if
andonly if 1B2¢zB.

(3) If hasazero0, then every quasi-iceal and every bi-ideal of - contain
0.

(4) If s commutative, hasazero0, B is anonempty subset of
containing 0 and 2= {0}, then8 is abi-iceal of .

(5) If hasan identity and Q is aquasi-iceal of ~containing a unit of |
thenQ = .

(6) If has anidentity and B is abi-ideal of containing a unit of , then
B= .



Quasi-ideals are a generalization of left iceals and right ideals and it is
given in [L1] that every quasi-ideal of a semigroup is a bi-ideal. However, a bi-
ideal of a semigroup need not be a quasi-ideal. Let s o denote the class of all
semigroups whose sets of bi-ideals and quasi-ideals coincide. The following three
theorems show some kinds of semigroups belonging t0s o

Theorem 1.1 ([6], . Lajos ). Every regular semigroup belongs to the class s ¢ .

Theorem 1.2 ( [5], KM. Kapp ). Every left simple semigroup and every right
simple semigroup helongs to s q.

Theorem 1.3 ( [5], K. Kapp ). Every left 0-simple semigroup and every right 0-
impie semigroup belongs tosq .

The class = o does not contain only these kinds of semigroups. A zero
semigroup containing more than one element is an obvious example.

Let e a semigroup. The intersection of any set of quasi-ideals of s
either empty or a quasi-ideal of . This is also true for bi-ideals. For $* » C , the
quasi-ideal of generated by A IS the Intersection of all quasi-ideals of
containing A which is denoted by (A)g. The bi-ideal of generated by & with
A * 91is defined similarly and it is denoted (A)o. For Xi, X2 ..xn €, let
(XI, X2 ... xmo @nd (Xi, X2 ... xnp denote ({xi, X2 ... X,.})9and ({xi, X2 .. xn v,
respectively. The following results are known.

Theorem 1.4 ( [2], page 85 ). For a nonempty subset A of , (A)g = 'An AS".
Theorem 1.5 ([2], page 84 ). For a nonempty subset A of , (a)p Zas'a .
ThenforX6 , (x)9=s wsiand s =xs {x}.

A characterization of semigroups ins o was give by J. Calais in [1] &
follows:
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Theorem 16 ( [1], J.Calais ). Let be a semigroup. Then e BQ ifand only if
(X, ¥)a = (x,y)b for all X yeS.

The characterization given in Theorem 16 is not practical to use to
determine whether a given semigroup belongs to BQ.

The following theorem was introduced in [8] and the detail of a proof was
given by . Ritkeao in [9]. This theorem shows that there are exactly 15 types of
multiplicative interval semigroups onR.

Theorem 17 ( [8], KR. Pearson ). A subset of R is a multiplicative interval
semigroup on R ifandonly if isone ofthefollowing types :

1) R, (2) {of (3) {1t} (4) (0, CO)

) (a, CO where a > 1,

) [a, OO where a > 1,

) (0, b) where 0<b <1,

) (0,b] where 0 <b <1,

0) [0, b) where 0<b <1,

[0,b] where 0<h <1,

(a, b) where -1 <a <0 <a2<b <1,

(11)

(12)

(13)  (a,b] where -I<a<0<a2<b<l,
(14) [a,b) where -1 <a <0 <a2<b <],
(15)

[a,b] where -1 <a <0 <a2<b <1l

There are exactly 6 types of additive interval semigroups. This was proved
by K. Palasri in [7].

Theorem L8 ( [7], K. Palasri ). A subset ofR is an additive interval semigroup
onR ifandonlyif isoneofthefollowing types:
(1)  {of @ R



(3)  (a o where a>0, (4) [a, oo where a>0,
(5)  (-00, b) where b <0, (6)  (-o0,bj where b<0.

For e N, issaid tobesquare-free if s not divisible by the square of
any integer greater than 1. G. Ehrlich has proved the following result in [4],

Theorem 1.9 ( [4], G. Ehrlich ). For any positive integer , the semigroup (Zn, 1)
is reqular ifand only if issquare-free.

Let X be aset. Let
Px - the partial transformation semigroup on X,

Tx = the full transformation semigroup onx,

Ix = the one-to-one partial transformation semigroup on X
( the symmetric inverse semigroup onx),

Mx = the semigroup of one-to-one transformations ofx,

Ex = the semigroup of onto transformations ofx and

Gx - the symmetric grouponx .
Px, Tx, Ix and Gx are standard transformation semigroups and all of them are
reqular for any cardinality ofx. By Theorem 1.1, Px, Tx, Ix 1Gx € BQ for every
cardinality of x. Mx and Ex are also standard transformation semigroups and each
of them is the symmetric group on x if X is finite. Then mx , Ex e BQ IfX IS
finite.

Let 7 be aninterval onr with IV > 1 Let clandpj denote the semigroup
of continuous functions and the semigroup of differentiable functions of 7 into
itself under usual topology on 7. Then CI and Di are subsemigroups of Tj.
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