

CHAPTER IV

RESULTS AND DISCUSSION

4.1 The CNSL and decarboxylated CNSL

Cashew nut shell liquid (CNSL) was obtained from the hexane extracts of spongy layers of cashew nut shells (*Anaccardium occidentale*). It was a dark brown viscous liquid, insoluble in water, freely soluble in organic solvents, alcohol, and petroleum ether. Its major component was anacardic acid, whose structure is shown below.

The infrared spectrum of CNSL (Fig. 4-1) showed absorption peaks at 3300-2500 cm⁻¹ (OH-stretching of carboxylic acid). 3016 cm⁻¹ and 2929 cm⁻¹ (=C-H stretching of aromatic), 2852 cm⁻¹ (C-H stretching of aliphatic), 1649 cm⁻¹ (C=O stretching of carboxylic acid), 1608 cm⁻¹ and 1454 cm⁻¹ (C=C ring stretching of aromatic), and 1311 cm⁻¹ and 1250 cm⁻¹ (C-O stretching). Moreover, the ¹³C-NMR spectrum (CDCl₃) of CNSL showed prominently a signal of the C=O group of a carboxylic acid at δ_C 176.0 ppm (Fig. 4-2).

CNSL was decarboxylated by heating at 110 °C for 3 hrs to yield decarboxylated CNSL, which was a dark brown viscous liquid. freely soluble in organic solvents, and alcohol. TLC on silica gel (25% ethyl acetate in hexane) revealed two major products (intense UV absorption) with the R_F value of 0.52 and 0.64; these two products were probably cardanol and cardol, whose structures are depicted below.

where n = 0, 2, 4, 6

The infrared spectrum of decarboxylated CNSL (Fig. 4-3) showed absorption peaks at 3354 cm⁻¹ (O-H stretching of phenol). 3011 cm⁻¹ (=C-H stretching of aromatic), 2929 cm⁻¹ and 2852 cm⁻¹ (C-H stretching of aliphatic), 1603 cm⁻¹ and 1465 cm⁻¹ (C=C ring stretching of aromatic), 1352 cm⁻¹ (O-H bending of phenol), and 1265 cm⁻¹ (C-O stretching of phenol). No C=O absorption at 1630-1700 cm⁻¹ (C=O stretching of carboxylic acid) was observed. The ¹³C-NMR spectrum (CDCl₃) of decarboxylated CNSL did not showed the C=O signal of the carboxylic acid (Fig. 4-4).

Both ¹³C-NMR data and infrared spectral data of decarboxylated CNSL conclusively confirmed that anacardic acid was completely decarboxylated to cardanol.

4.2 Cardanol

The decarboxylated CNSL was partially purified by reacting dihydric phenol (e.g. cardol and 2-methylcardol) with formaldehyde and diethylenetriamine to give high molecular weight products while leaving cardanol unreacted. As a result, cardanol was removed from the reaction after working up. TLC analysis revealed that this residue contained mainly cardanol, with a small amount of cardol and unidentified polar compounds.

Partially purified cardanol was obtained as light brown and less viscous liquid. The structure of cardanol is shown below.

The infrared spectrum of partially purified cardanol (Fig 4-5) showed absorption peaks at 3354 cm⁻¹ (O-H stretching of phenol), 3010 cm⁻¹ (=C-H stretching of aromatic), 2921 cm⁻¹ and 2859 cm⁻¹ (C-H stretching of aliphatic), 1598 cm⁻¹ and 1457 cm⁻¹ (C=C ring stretching of aromatic), 1369 cm⁻¹ (O-H bending of phenol), and 1264 cm⁻¹ (C-O stretching of phenol).

The ¹H-NMR spectrum (CDCl₃) of cardanol (Fig. 4-6) showed signals at the positions a, b, c, and d at δ_H 6.70 (*br s*), 6.80 (*d*, 7.5 Hz), 7.10 (*t*, 7.6 Hz), and $\frac{1}{2}$ 6.60 (*br s*), respectively. In addition, the spectrum also demonstrated the signal of methylene protons adjacent to the aromatic at δ_H 2.80.

The ¹³C-NMR spectrum (CDCl₃) of partially purified cardanol (Fig. 4-7) revealed the presence of an oxycarbon in the aromatic ring at δ_C 155.4. methylene and methyl groups at δ_C 14.1-35.8, and double bonds in the aromatic ring and side chain at δ_C 112.5-136.8.

4.3 Synthetic marker dyes

Marker dyes were prepared from the coupling reaction between diazotized aniline derivatives and 3-alkylphenoxide ions, which were derived from cardanol in an alkali solution. General chemical structures of marker dyes in this research are shown below.

Where n = 0, 2, 4, 6; R_1 and R_2 are each nitro, chloro groups and etc.,

The presence of azo group (N=N) was confirmed by reducing the marker dye with stannous chloride in an acid solution, yielding aniline derivatives and amino-cardanol; this reaction was easily observed, because the yellow reaction mixture changed to colorless.

where n = 0, 2, 4, 6

4.3.1 Cardanol-phenyl azo

Cardanol-phenyl azo was prepared by reacting aniline diazonium salt with 3-alkylphenoxide ions, to yield a yellowish-brown azo dye. The structure of cardanol-phenyl azo is:

The infrared spectrum of cardanol-phenyl azo (Fig. 4-8) showed absorption peaks at 3354 cm⁻¹ (O-H stretching of phenol), 3010 cm⁻¹ (=C-H stretching of aromatic), 2926 cm⁻¹ and 2859 cm⁻¹ (C-H stretching of aliphatic), 1603 cm⁻¹ and 1462 cm⁻¹ (C=C ring stretching of aromatic), 1364 cm⁻¹ (O-H bending of phenol), and 1244 cm⁻¹ (C-O stretching of phenol).

The ¹H-NMR spectrum (CDCl₃) of cardanol-phenyl azo (Fig. 4-9) revealed the presence of a benzene ring in the marker dye at δ_{H} 7.90 (2H, *d*, 7.5 Hz, positions d and h), 7.50 (2H, *t*, 7.8 Hz, positions e and g), and 7.45 (*t*, 7.0 Hz, position f). This spectrum also demonstrated the existence of a coupled cardanol in the marker dye, whose δ_{H} at the positions a, b, and c were at 6.80 (*br s*), 6.75 (*dd*, 1.6 and 8.7 Hz), and 7.70 (*d*, 8.7 Hz), respectively. In addition, the δ_{H} of the methylene adjacent to the aromatic of a coupled cardanol was shifted downfield from 2.80 (in unreacted cardanol) to 3.15 (in the marker dye product); this downfield shift may be due to the presence of azo substituted cardanol. As seen on the ¹H-NMR spectrum of cardanol-phenyl azo, a quantitative amount of

unreacted cardanol (indication by the size of the protons of unreacted cardanol at δ_{ll} 2.80) was observed. The assignments are concluded in Table 4-1.

Position	δ_{II} , multiplicity, J (Hz)
а	6.80. <i>br s</i>
b	6.75, <i>dd</i> , 1.6 and 8.7
с	7.70, <i>d</i> , 8.7
d	7.90, <i>d</i> , 7.5
e	7.50. 1. 7.8
f	7.45. 1, 7.0
g	7.50. <i>t</i> , 7.8
h	7.90. <i>d</i> , 7.5

Table 4-1: The ¹H-NMR spectral data of cardanol-phenyl azo.

The ¹³C-NMR spectrum (CDCl₃) of cardanol-phenyl azo (Fig. 4-10) revealed the presence of oxycarbon in an aromatic ring (C-OH) at δ_C 158.4, methylene and methyl groups at δ_C 14.1-35.8, and double bonds in an aromatic ring and side chain at δ_C 112.5-136.8.

4.3.2 Cardanol-p-nitrophenyl azo

Cardanol-p-nitrophenyl azo was prepared by the reaction of p-nitroaniline diazonium salt and 3-alkylphenoxide ions, to yield a reddish-brown azo dye. The structure of cardanol-p-nitrophenyl azo is:

The infrared spectrum of cardanol-*p*-nitrophenyl azo (Fig. 4-11) showed absorption peaks at 3380 cm⁻¹ (O-H stretching of phenol), 3013 cm⁻¹ (=C-H stretching of aromatic), 2922 cm⁻¹ and 2855 cm⁻¹ (C-H stretching of aliphatic), 1606 cm⁻¹ and 1467 cm⁻¹ (C=C ring stretching of aromatic), 1529 cm⁻¹ (N=O asymmetric stretching of the NO₂ group), 1348 cm⁻¹ (N=O symmetric stretching of the NO₂ group), 1244 cm⁻¹ (C-O stretching of phenol), and 866 cm⁻¹ (C-N stretching vibration of C-N bond).

The ¹H-NMR spectrum (CDCl₃) of cardanol-*p*-nitrophenyl azo (Fig. 4-12) showed the presence of a *para*-substituted azo benzene ring at δ_H 8.37 (2H, *d*, 8.7 Hz, positions e and f), and 7.95 (2H, *d*, 8.9 Hz, positions d and g). The ¹H-NMR spectrum of cardanol-*p*-nitrophenyl azo also demonstrated the existence of a coupled cardanol in the marker dye, whose δ_H at the positions a, b, and c were at 6.80 (*d*, 2.2 Hz), 6.75 (*br d*, 8.6 Hz), and 7.70 (*d*, 8.8 Hz). In addition, the δ_H of the methylene adjacent to the aromatic of a coupled cardanol was shifted downfield from 2.80 (in unreacted cardanol) to 3.15 (in the marker dye product);

this downfield shift may be due to the presence of azo substituted cardanol. The ¹H-NMR spectrum of cardanol-*p*-nitrophenyl azo also implied that there was a quantitative amount of unreacted cardanol in the reaction mixture, as suggested by the size of unreacted cardanol at δ_{ll} 2.80. The assignments are concluded in Table 4-2.

Position	δ_{H} , multiplicity, J (Hz)
а	6.80, <i>d</i> , 2.2
b	6.75, br d, 8.6
С	7.70, <i>d</i> , 8.8
d	7.95, <i>d</i> , 8.9
e	8.37, <i>d</i> , 8.7
f	8.37, <i>d</i> , 8.7
g	7.95, <i>d</i> , 8.9

Table 4-2: The ¹H-NMR spectral data of cardanol-*p*-nitrophenyl azo.

The ¹³C-NMR spectrum (CDCl₃) of cardanol-*p*-nitrophenyl azo (Fig. 4-13) showed prominently at δ_C 120.9 and 124.7, attributable to carbon positions d and g, and e and f, respectively. The ¹³C-NMR spectrum of this marker dye also revealed the presence of oxycarbon in an aromatic ring (C-OH) at δ_C 156.3, methylene and methyl groups at δ_C 14.1-35.8, and double bonds in an aromatic ring and side chain at δ_C 112.5-136.8.

4.3.3 Cardanol-*m*-nitrophenyl azo

Cardanol-*m*-nitrophenyl azo was prepared by the reaction of *m*-nitroaniline diazonium salt and 3-alkylphenoxide ions, to yield a yellowish-brown azo dye. The structure of cardanol-*m*-nitrophenyl azo is:

The infrared spectrum of cardanol-*m*-nitrophenyl azo (Fig. 4-14) showed absorption peaks at 3370 cm⁻¹ (O-H stretching of phenol). 3009 cm⁻¹ (=C-H stretching of aromatic), 2927 cm⁻¹ and 2855 cm⁻¹ (C-H stretching of aliphatic). 1601 cm⁻¹ and 1472 cm⁻¹ (C=C ring stretching of aromatic). 1539 cm⁻¹ (N=O asymmetric stretching of the NO₂ group), 1353 cm⁻¹ (N=O symmetric stretching of the NO₂ group), 1249 cm⁻¹ (C-O stretching of phenol), and 876 cm⁻¹ (C-N stretching vibration of C-N bond).

The ¹H-NMR spectrum (CDCl₃) of cardanol-*m*-nitrophenyl azo (Fig. 4-15) showed the characteristic of a *meta*-substituted azo benzene ring of the dye product at δ_{H} 8.70 (*s*, position d), 8.30 (*dd*, 2.2 and 8.0 Hz, position e), 7.60 (*t*, 8.0 Hz, position f), and 8.20 (*d*, 8.0 Hz, position g). The ¹H-NMR spectrum of cardanol-*m*-nitrophenyl azo also demonstrated the existence of a coupled cardanol in the marker dye, showing a typical set of protons at the positions a, b, and c at δ_{H} 6.8 (*d*, 2.5 Hz), 6.75 (*dd*, 2.3 and 8.6 Hz), and 7.75 (*d*, 8.7 Hz), respectively. Moreover, the downfield shift of the methylene next to the aromatic of a coupled

cardanol was observed; this downfield shift may be due to the presence of azo substituted cardanol. The ¹H-NMR spectrum of cardanol-*m*-nitrophenyl azo also revealed a quantitative amount of unreacted cardanol left in the reaction mixture. The assignments are concluded in Table 4-3.

Position	δ_{H} , multiplicity, J (Hz)
a	6.80, <i>d</i> , 2.5
b	6.75, <i>dd</i> , 2.3 and 8.6
с	7.75, <i>d</i> , 8.7
d	6.75, <i>s</i>
е	8.30, <i>dd</i> , 2.2 and 8.0
f	7.60, 1, 8.0
g	8.20, <i>d</i> , 8.0

Table 4-3: The ¹H-NMR spectral data of cardanol-*m*-nitrophenyl azo.

The ¹³C-NMR spectrum (CDCl₃) of cardanol-*m*-nitrophenyl azo (Fig. 4-16) revealed the presence of an oxycarbon in an aromatic ring (C-OH) at δ_C 159.6, methylene and methyl groups at δ_C 13.8-35.8, and double bonds in an aromatic ring and side chain at δ_C 112.5-136.8. The ¹³C-NMR spectrum of cardanol-*m*-nitrophenyl azo also showed δ_C 147.2 and 148.9 (attributable to nitro group, C-NO₂), and δ_C 153.5 and 155.4 (of an azo substituted benzene).

4.3.4 Cardanol-o-nitrophenyl azo

Cardanol-*o*-nitrophenyl azo was prepared by the reaction of *o*-nitroaniline diazonium salt and 3-alkylphenoxide ions, to yield a reddish-brown azo dye. The structure of cardanol-*o*-nitrophenyl azo is:

The infrared spectrum of cardanol-*o*-nitrophenyl azo (Fig. 4-17) showed absorption peaks at 3329 cm⁻¹ (O-H stretching of phenol). 3004 cm⁻¹ (=C-H stretching of aromatic), 2926 cm⁻¹ and 2853 cm⁻¹ (C-H stretching of aliphatic), 1603 cm⁻¹ and 1488 cm⁻¹ (C=C ring stretching of aromatic), 1535 cm⁻¹ (N=O asymmetric stretching of the NO₂ group), 1363 cm⁻¹ (N=O symmetric stretching of the NO₂ group), 1233 cm⁻¹ (C-O stretching of phenol), and 876 cm⁻¹ (C-N stretching vibration of C-N bond).

The ¹H-NMR spectrum (CDCl₃) of cardanol-*o*-nitrophenyl azo (Fig. 4-18) revealed the presence of an *ortho*-substituted azo benzene ring at δ_H 7.80 (*d*, 8.1 Hz, position d), 7.65 (*br s*, positions e and g), and 7.50 (*m*. position f). The ¹H-NMR spectrum of cardanol-*o*-nitrophenyl azo also demonstrated the existence of a coupled cardanol in the marker dye, whose δ_H at the positions a, b, and c were at 6.80 (*br s*), 6.70 (*br d*, 7.6 Hz), and 7.70 (*d*, 7.4 Hz), respectively. In addition, the δ_H of the methylene adjacent to the aromatic of a coupled cardanol was shifted downfield from 2.80 (in unreacted cardanol) to 3.15 (in the marker dye product);

this downfield shift may be due to the presence of azo substituted cardanol. The ¹H-NMR spectrum of cardanol-*o*-nitrophenyl azo indicated that there was a quantitative amount of unreacted cardanol left in the reaction mixture. The assignments are concluded in Table.4-4.

Position	δ_{H} , multiplicity, J (Hz)
а	6.80, br s
b	6.70, br d, 7.6
С	7.70, <i>d</i> , 7.4
d	7.80, <i>d</i> , 8.1
e	7.65, <i>br</i> s
f	7.50, <i>m</i>
g	7.65, br s

Table 4-4: The ¹H-NMR spectral data of cardanol-*o*-nitrophenyl azo.

The ¹³C-NMR spectrum (CDCl₃) of cardanol-*o*-nitrophenyl azo (Fig. 4-19) revealed the presence of oxycarbon in an aromatic ring (C-OH) at δ_C 155.5, methylene and methyl groups at δ_C 14.1-35.8, and double bonds in an aromatic ring and side chain at δ_C 112.5-132.7.

4.3.5 Cardanol-*p*-chlorophenyl azo

Cardanol-*p*-chlorophenyl azo was prepared by the reaction of *p*-chloroaniline diazonium salt and 3-alkylphenoxide ions, to yield a yellowish-brown azo dye. The structure of cardanol-*p*-chlorophenyl azo is:

The infrared spectrum of cardanol-*p*-chlorophenyl azo (Fig 4-20) showed absorption peaks at 3360 cm⁻¹ (O-H stretching of phenol), 3009 cm⁻¹ (=C-H stretching of aromatic), 2922 cm⁻¹ and 2860 cm⁻¹ (C-H stretching of aliphatic), 1591 cm⁻¹ and 1461 cm⁻¹ (C=C ring stretching of aromatic), 1363 cm⁻¹ (O-H bending of phenol), 1244 cm⁻¹ (C-O stretching of phenol), and 1098 cm⁻¹ (C-Cl stretching vibration of C-Cl bond).

The ¹H-NMR spectrum (CDCl₃) of cardanol-*p*-chlorophenyl azo (Fig. 4-21) showed the presence of a *para*-substituted azo benzene ring at δ_H 7.85 (2H, *d*, 8.6 Hz, positions e and f), and 7.50 (2H, *d*, 8.6 Hz, positions d and g). This spectrum also indicated the characteristic of a coupled cardanol in the marker dye, whose δ_H at the positions a, b, and c were at 6.80 (*d*, 2.4 Hz), 6.75 (*br d*, 8.8 Hz), and 7.70 (*d*, 8.7 Hz), respectively. Furthermore, the δ_H of the methylene adjacent to the aromatic of a coupled cardanol was shifted downfield from 2.80 (in unreacted cardanol) to 3.15 (in the marker dye product), conclusively confirmed the presence of the marker dye product in the reaction mixture. The ¹H-NMR

spectrum of cardanol-*p*-chlorophenyl azo revealed a quantitative amount of unreacted cardanol in the reaction mixture. The assignments are concluded in Table 4-5.

Position	δ_{H} , multiplicity, J (Hz)
а	6.80, <i>d</i> , 2.4
b	6.75, <i>hr d</i> , 8.8
С	7.70, <i>d</i> , 8.7
d	7.50. <i>d</i> , 8.6
e	7.85. d, 8.6
f	7.85, d, 8.6
g	7.50, <i>d</i> , 8.6

Table 4-5: The ¹H-NMR spectral data of cardanol-*p*-chlorophenyl azo.

The ¹³C-NMR spectrum (CDCl₃) of cardanol-*p*-chlorophenyl azo (Fig. 4-22) indicated the presence of oxycarbon in an aromatic ring (C-OH) at δ_C 155.4, methylene and methyl groups at δ_C 14.1-35.8, and double bonds in an aromatic ring and side chain at δ_C 112.5-136.8.

4.3.6 Cardanol-*m*-chlorophenyl azo

Cardanol-*m*-chlorophenyl azo was prepared by the reaction of *m*-chloroaniline diazonium salt and 3-alkylphenoxide ions, to yield a yellowish-brown azo dye. The structure of cardanol-*m*-chloroaniline azo dye is:

The infrared spectrum of cardanol-*m*-chlorophenyl azo (Fig. 4-23) showed absorption peaks at 3350 cm⁻¹ (O-H stretching of phenol), 3009 cm⁻¹ (=C-H stretching of aromatic), 2922 cm⁻¹ and 2865 cm⁻¹ (C-H stretching of aliphatic), 1601 cm⁻¹ and 1467 cm⁻¹ (C=C ring stretching of aromatic), 1363 cm⁻¹ (O-H bending of phenol), 1250 cm⁻¹ (C-O stretching of phenol), and 1089 cm⁻¹ (C-Cl stretching vibration of C-Cl bond).

The ¹H-NMR spectrum (CDCl₃) of cardanol-*m*-chlorophenyl azo (Fig. 4-24) showed the presence of a *meta*-substituted azo benzene ring at δ_{H} 7.85 (*s*, position d), 7.80 (*br d*, 7.4 Hz, position e), 7.42 (*t*, 8.2 Hz, position f), and 7.45 (*d*, 7.8 Hz, position g). This spectrum also demonstrated the existence of a coupled cardanol in the marker dye, whose δ_{H} at the positions a, b, and c were at 6.80 (*d*, 2.3 Hz), 6.75 (*dd*, 2.3 and 8.8 Hz), and 7.70 (*d*, 8.7 Hz), respectively. In addition, the δ_{H} of the methylene adjacent to the aromatic of a coupled cardanol was shifted downfield from 2.80 (in unreacted cardanol) to 3.15 (in the marker dye product); this readily confirmed the existence of the marker dye product in the

reaction mixture. The ¹H-NMR spectrum of cardanol-*m*-chlorophenyl azo revealed a quantitative amount of unreacted cardanol in the reaction mixture. The assignments are concluded in Table 4-6.

Position	δ_{II} , multiplicity, J (Hz)
а	6.80. <i>d</i> , 2.3
b	6.75, <i>dd</i> , 2.3 and 8.8
С	7.70, <i>d</i> , 8.7
d	7.85, <i>s</i>
e	7.80, <i>br d</i> , 7.4
f	7.42, 1, 8.2
g	7.45, <i>d</i> , 7.8

Table 4-6: The ¹H-NMR spectral data of cardanol-*m*-chlorophenyl azo.

The ¹³C-NMR spectrum (CDCl₃) of cardanol-*m*-chlorophenyl azo (Fig. 4-25) revealed the presence of oxycarbon in an aromatic ring (C-OH) at δ_C 155.8, methylene and methyl groups at δ_C 14.1-35.8, and double bonds in an aromatic ring and side chain at δ_C 112.5-136.8.

4.3.7 Cardanol-o-chlorophenyl azo

Cardanol-*o*-chlorophenyl azo was prepared by the reaction of *o*-chloroaniline diazonium salt and 3-alkylphenoxide ions, to yield a yellowishbrown azo dye. The structure of cardanol-*o*-chlorophenyl azo is:

The infrared spectrum of cardanol-*o*-chlorophenyl azo (Fig. 4-26) showed absorption peaks at 3355 cm⁻¹ (O-H stretching of phenol), 3009 cm⁻¹ (=C-H stretching of aromatic), 2922 cm⁻¹ and 2860 cm⁻¹ (C-H stretching of aliphatic). 1601 cm⁻¹ and 1472 cm⁻¹ (C=C ring stretching of aromatic), 1373 cm⁻¹ (O-H bending of phenol), 1239 cm⁻¹ (C-O stretching of phenol), and 1070 cm⁻¹ (C-Cl stretching vibration of C-Cl bond).

The ¹H-NMR spectrum (CDCl₃) of cardanol-*o*-chlorophenyl azo (Fig. 4-27) indicated the presence of an *ortho*-substituted azo benzene ring at δ_{H} 7.55 (*d*, 9.2 Hz, position d), 7.35 (*m*, positions e and f), and 7.65 (*d*, 9.6 Hz, position g). This spectrum also demonstrated the existence of a coupled cardanol in the marker dye, whose δ_{H} at the positions a, b, and c were at 6.80 (*d*, 2.2 Hz), 6.75 (*dd*, 2.3 and 8.6 Hz), and 7.80 (*d*, 8.8 Hz), respectively. In addition, the downfield shift of the methylene next to the aromatic of a coupled cardanol was observed; this downfield shift may be due to the presence of azo substituted cardanol. The ¹H-NMR spectrum of cardanol-*o*-chlorophenyl azo revealed a quantitative amount

of unreacted cardanol left in the reaction mixture. The assignments are summarized in Table 4-7.

Position	δ_{II} , multiplicity, <i>J</i> (Hz)
а	6.80, <i>d</i> , 2.2
b	6.75. <i>dd</i> , 2.3 and 8.6
с	7.80, <i>d</i> , 8.8
d	7.55, <i>d</i> , 9.2
e	7.35, <i>m</i>
f	7.35, <i>m</i>
g	7.65. <i>d</i> , 9.6

Table 4-7: The ¹H-NMR spectral data of cardanol-*o*-chlorophenyl azo.

The ¹³C-NMR spectrum (CDCl₃) of cardanol- σ -chlorophenyl azo (Fig. 4-28) indicated the presence of oxycarbon in an aromatic ring (C-OH) at δ_C 155.4, methylene and methyl groups at δ_C 14.1-35.8, and double bonds in an aromatic ring and side chain at δ_C 112.5-130.7.

.

.

4.3.8 Cardanol-2-chloro-4-nitrophenyl azo

Cardanol-2-chloro-4-nitrophenyl azo was prepared by the reaction of 2-chloro-4-nitroaniline diazonium salt and 3-alkylphenoxide ions, to yield a reddish-brown azo dye. The structure of cardanol-2-chloro-4-nitrophenyl azo is:

The infrared spectrum of cardanol-2-chloro-4-nitrophenyl azo (Fig. 4-29) showed absorption peaks at 3370 cm⁻¹ (O-H stretching of phenol), 3009 cm⁻¹ (=C-H stretching of aromatic), 2923 cm⁻¹ and 2855 cm⁻¹ (C-H stretching of aliphatic), 1597 cm⁻¹ and 1457 cm⁻¹ (C=C ring stretching of aromatic), 1524 cm⁻¹ (N=O asymmetric stretching of the NO₂ group), 1348 cm⁻¹ (N=O symmetric stretching of the NO₂ group), 1239 cm⁻¹ (C-O stretching of phenol), 1055 cm⁻¹ (C-Cl stretching vibration of C-Cl bond), and 896 cm⁻¹ (C-N stretching vibration of C-N bond).

The ¹H-NMR spectrum (CDCl₃) of cardanol-2-chloro-4-nitrophenyl azo (Fig. 4-30) indicated that there was a marker dye product, with a quantitative yield, formed in the reaction mixture (as suggested by the methylene signal resonanced at δ_{H} 3.15). The ¹H-NMR spectrum of this marker dye showed the typical pattern of a coupled cardanol, and protons at the positions a, b, and c resonanced at δ_{H} 6.80 (*br s*), 6.75 (*br d*, 7.6 Hz), and 7.82 (*d*, 8.8 Hz), respectively. Protons at the positions d, e, and f were assigned at δ_{H} 8.45 (*d*, 2.3

Hz), 8.20 (*dd*, 2.3 and 8.7 Hz), and 7.70 (*d*, 8.8 Hz), respectively. The assignments are concluded in Table 4-8.

Position	δ_{II} , multiplicity, J in (Hz)
а	6.80, <i>br s</i>
b	6.75, <i>br d</i> , 7.6
с	7.82, <i>d</i> , 8.8
d	8.45. <i>d</i> , 2.3
е	8.20. <i>dd</i> , 2.3 and 8.7
f	7.70, <i>d</i> , 8.8

Table 4-8: The ¹H-NMR spectral data of cardanol-2-chloro-4-nitrophenyl azo.

The ¹³C-NMR spectrum (CDCl₃) of cardanol-2-chloro-4-nitrophenyl azo (Fig. 4-31) revealed the presence of oxycarbon in an aromatic ring (C-OH) at δ_C 152.7, methylene and methyl groups at δ_C 14.1-35.8, and double bonds in an aromatic ring and side chain at δ_C 112.4-130.2.

.

4.3.9 Cardanol-2-chloro-5-nitrophenyl azo

Cardanol-2-chloro-5-nitrophenyl azo was prepared by the reaction of 2-chloro-5-nitroaniline diazonium salt and 3-alkylphenoxide ions, to yield a yellowish-brown azo dye. The structure of cardanol-2-chloro-5-nitrophenyl azo is:

The infrared spectrum of cardanol-2-chloro-5-nitrophenyl azo (Fig. 4-32) revealed absorption peaks at 3360 cm⁻¹ (O-H stretching of phenol), 3004 cm⁻¹ (=C-H stretching of aromatic), 2928 cm⁻¹ and 2855 cm⁻¹ (C-H stretching of aliphatic), 1601 cm⁻¹ and 1457 cm⁻¹ (C=C ring stretching of aromatic), 1534 cm⁻¹ (N=O asymmetric stretching of the NO₂ group), 1348 cm⁻¹ (N=O symmetric stretching of the NO₂ group), 1348 cm⁻¹ (N=O symmetric stretching of C-Cl stretching of C-Cl bond), and 885 cm⁻¹ (C-N stretching vibration of C-N bond).

As seen on the ¹H-NMR spectrum (CDCl₃) of cardanol-2-chloro-5nitrophenyl azo (Fig. 4-33), protons a, b, c, d, e, and f were assigned at δ_H 6.80 (*d*, 2.3 Hz), 6.75 (*br d*, 7.4 Hz), 7.82 (*d*, 8.9 Hz), 7.70 (*d*, 9.1 Hz), 8.20 (*dd*, 1.9 and 8.6 Hz), and 8.50 (*d*, 3.0 Hz), respectively. Methylene protons adjacent to a coupled cardanol resonanced at δ_H 3.15, indicating the marker dye product formed in the reaction mixture. The assignments are concluded in Table 4-9.

Position	δ_{II} , multiplicity, J (Hz)
а	6.80, <i>d</i> , 2.3
b	6.75, <i>br d</i> , 7.4
с	7.82, <i>d</i> , 8.9
d	7.70, <i>d</i> , 9.1
e	8.20, <i>dd</i> , 1.9 and 8.6
f	8.50, <i>d</i> , 3.0

Table 4-9: The ¹H-NMR spectral data of cardanol-2-chloro-5-nitrophenyl azo.

The ¹³C-NMR spectrum (CDCl₃) of cardanol-2-chloro-5-nitrophenyl azo (Fig. 4-34) revealed the presence of oxycarbon in an aromatic ring (C-OH) at δ_C 155.4, methylene and methyl groups at δ_C 14.1-35.8, and double bonds in an aromatic ring and side chain at δ_C 112.5-131.3.

4.3.10 Cardanol-4-chloro-2-nitrophenyl azo

Cardanol-4-chloro-2-nitrophenyl azo was prepared by the reaction of 4-chloro-2-nitroaniline diazonium salt and 3-alkylphenoxide ions, to yield a reddish-brown azo dye. The structure of cardanol-4-chloro-2-nitrophenyl azo is:

$$CI \xrightarrow{d} NO_2$$

 $e f$ $N=N \xrightarrow{c} b$
 $GI \xrightarrow{d} OH$ where $n = 0, 2, 4, 6$
 $C_{15}H_{31-n}$

The infrared spectrum of cardanol-4-chloro-2-nitrophenyl azo (Fig. 4-35) revealed absorption peaks at 3345 cm⁻¹ (O-H stretching of phenol), 3013 cm⁻¹ (=C-H stretching of aromatic), 2928 cm⁻¹ and 2860 cm⁻¹ (C-H stretching of aliphatic). 1597 cm⁻¹ and 1462 cm⁻¹ (C=C ring stretching of aromatic), 1534 cm⁻¹ (N=O asymmetric stretching of the NO₂ group), 1353 cm⁻¹ (N=O symmetric stretching of the NO₂ group), 1353 cm⁻¹ (N=O symmetric stretching of the NO₂ group), 1243 cm⁻¹ (C-O stretching of phenol), 1107 cm⁻¹ (C-Cl stretching vibration of C-Cl bond), and 890 cm⁻¹ (C-N stretching vibration of C-N bond).

As seen on the ¹H-NMR spectrum (CDCl₃) of cardanol-4-chloro-2nitrophenyl azo (Fig. 4-36), protons a, b, c, d, e, and f were assigned at δ_{H} 6.80 (*d*, 2.4 Hz), 6.75 (*dd*, 2.2 and 8.8 Hz), 7.65 (*d*, 9.9 Hz), 7.80 (*br s*), 7.60 (*dd*, 1.5 and 8.2 Hz), and 7.70 (*d*, 9.2 Hz), respectively. Methylene protons adjacent to a coupled cardanol resonanced at δ_{H} 3.15, indicating the marker dye product formed in the reaction mixture. The assignments are concluded in Table 4-10.

Position	δ_{II} , multiplicity, J (Hz)
а	6.80. <i>d</i> . 2.4
b	6.75, <i>dd</i> , 2.2 and 8.8
с	7.65. <i>d</i> . 9.9
d	7.80, <i>br</i> s
e	7.60, <i>dd</i> , 1.5 and 8.2
f	7.70, <i>d</i> , 9.2

Table 4-10: The ¹H-NMR spectral data of cardanol-4-chloro-2-nitrophenyl azo.

The ¹³C-NMR spectrum (CDCl₃) of cardanol-4-chloro-2-nitrophenyl azo (Fig. 4-37) revealed the presence of oxycarbon in an aromatic ring (C-OH) at δ_C 155.5. methylene and methyl groups at δ_C 14.1-35.8, and double bonds in an aromatic ring and side chain at δ_C 112.5-132.8.

4.3.11 Cardanol-4-chloro-3-nitrophenyl azo

Cardanol-4-chloro-3-nitrophenyl azo was prepared by the reaction of 4-chloro-3-nitroaniline diazonium salt and 3-alkylphenoxide ions, to yield a yellowish-brown azo dye. The structure of cardanol-4-chloro-3-nitrophenyl azo is:

The infrared spectrum of cardanol-4-chloro-3-nitrophenyl azo (Fig. 4-38) revealed absorption peaks at 3345 cm⁻¹ (O-H stretching of phenol), 3009 cm⁻¹ (=C-H stretching of aromatic), 2928 cm⁻¹ and 2855 cm⁻¹ (C-H stretching of aliphatic), 1597 cm⁻¹ and 1462 cm⁻¹ (C=C ring stretching of aromatic), 1540 cm⁻¹ (N=O asymmetric stretching of the NO₂ group), 1363 cm⁻¹ (N=O symmetric stretching of the NO₂ group), 1363 cm⁻¹ (N=O symmetric stretching of the NO₂ group), 1254 cm⁻¹ (C-O stretching of phenol), 1050 cm⁻¹ (C-Cl stretching vibration of C-Cl bond), and 871 cm⁻¹ (C-N stretching vibration of C-N bond).

As seen on the ¹H-NMR spectrum (CDCl₃) of cardanol-4-chloro-3nitrophenyl azo (Fig. 4-39), protons a, b, c, d, e, and f were assigned at δ_{H} 6.80 (*br s*), 6.75 (*br d*, 7.6 Hz), 7.75 (*d*, 8.8 Hz), 8.35 (*d*, 1.8 Hz), 7.70 (*d*, 8.5 Hz), and 8.00 (*dd*, 2.2 and 8.3 Hz), respectively. Methylene protons adjacent to a coupled cardanol resonanced at δ_{H} 3.15, indicating the marker dye product formed in the reaction mixture. The assignments are concluded in Table 4-11.

Position	δ_{II} , multiplicity, J (Hz)
а	6.80. <i>br</i> s
b	6.75, <i>br d</i> , 7.6
с	7.75, <i>d</i> , 8.8
d	8.35, <i>d</i> , 1.8
е	7.70, <i>d</i> , 8.5
f	8.00, <i>dd</i> , 2.2 and 8.3

Table 4-11: The ¹H-NMR spectral data of cardanol-4-chloro-3-nitrophenyl azo.

The ¹³C-NMR spectrum (CDCl₃) of cardanol-4-chloro-3-nitrophenyl azo (Fig. 4-40) revealed the presence of oxycarbon in an aromatic ring (C-OH) at δ_C 155.3, methylene and methyl groups at δ_C 14.1-35.8. and double bonds in an aromatic ring and side chain at δ_C 112.5-132.8.

.

4.3.12 Cardanol-p-methylphenyl azo

Cardanol-*p*-methylphenyl azo was prepared by the reaction of *p*-toluidine diazonium salt and 3-alkylphenoxide ions, to yield a yellowish-brown azo dye. The structure of cardanol-*p*-methylphenyl azo is:

The infrared spectrum of cardanol-*p*-methylphenyl azo (Fig. 4-41) revealed absorption peaks at 3350 cm⁻¹ (O-H stretching of phenol), 3009 cm⁻¹ (=C-H stretching of aromatic), 2923 cm⁻¹ and 2860 cm⁻¹ (C-H stretching of aliphatic), 1591 cm⁻¹ and 1457 cm⁻¹ (C=C ring stretching of aromatic), 1363 cm⁻¹ (O-H bending of phenol), and 1255 cm⁻¹ (C-O stretching of phenol).

The ¹H-NMR spectrum (CDCl₃) of cardanol-*p*-methylphenyl azo (Fig. 4-42) showed the presence of a *para*-substituted azo benzene ring at δ_{H} 7.32 (2H. *d*, 8.1 Hz, positions d and g), and 7.80 (2H, *d*, 8.2 Hz. positions e and f). This spectrum also demonstrated the existence of a coupled cardanol in the marker dye, whose δ_{H} at the positions a, b, and c were at 6.80 (*d*, 2.6 Hz), 6.75 (*br d*, 7.6 Hz), and 7.70 (*d*, 8.7 Hz). The methyl moiety on the aromatic ring resonanced characteristically at δ_{H} 2.75. In addition, the downfield shift of the methylene next to the aromatic of a coupled cardanol was observed; this downfield shift may be due to the presence of azo substituted cardanol. As seen on the ¹H-NMR spectrum of cardanol-*p*-methylphenyl azo, the quantitative

amount of unreacted cardanol was observed. The assignments are concluded in Table 4-12.

Position	δ_{H} , multiplicity, J (Hz)
а	6.80, <i>d</i> , 2.6
b	6.75, <i>hr d</i> , 7.6
с	7.70, d. 8.7
d	7.32, <i>d</i> , 8.1
e	7.80, <i>d</i> , 8.2
f	7.80. <i>d</i> , 8.2
g	7.32, <i>d</i> , 8.1

Table 4-12: The ¹H-NMR spectral data of cardanol-*p*-methylphenyl azo.

The ¹³C-NMR spectrum (CDCl₃) of cardanol-*p*-methylphenyl azo (Fig. 4-43) revealed the presence of oxycarbon in an aromatic ring (C-OH) at δ_C 155.3, methylene and methyl groups at δ_C 14.1-35.8, and double bonds in an aromatic ring and side chain at δ_C 112.5-132.8.

4.3.13 Cardanol-*m*-methylphenyl azo

Cardanol-*m*-methylphenyl azo was prepared by the reaction of *m*-toluidine diazonium salt and 3-alkylphenoxide ions. to yield a yellowish-brown azo dye. The structure of cardanol-*m*-methylphenyl azo is:

The infrared spectrum of cardanol-*m*-methylphenyl azo (Fig. 4-44) revealed absorption peaks at 3355 cm⁻¹ (O-H stretching of phenol). 3007 cm⁻¹ (=C-H stretching of aromatic), 2930 cm⁻¹ and 2858 cm⁻¹ (C-H stretching of aliphatic), 1609 cm⁻¹ and 1470 cm⁻¹ (C=C ring stretching of aromatic). 1370 cm⁻¹ (O-H bending of phenol), and 1255 cm⁻¹ (C-O stretching of phenol).

The ¹H-NMR spectrum (CDCl₃) of cardanol-*m*-methylphenyl azo (Fig. 4-45) showed the positions of protons d, e, f, g, and h at δ_{H} 7.75 (*br s*), 7.72 (*br s*), 7.40 (*t*, 8.2 Hz), and 6.75 (*d*, 7.7 Hz), respectively. This spectrum also demonstrated the existence of a coupled cardanol in the marker dye, whose δ_{H} at the positions a, b, and c were at 6.80 (*br s*), 6.75 (*br d*, 7.7 Hz), and 7.70 (*d*. 8.8 Hz). The methyl moiety on the aromatic ring resonanced characteristically at δ_{H} 2.50. In addition, the downfield shift of the methylene next to the aromatic of a coupled cardanol was observed; this downfield shift may be due to the presence of azo substituted cardanol. As seen on the ¹H-NMR spectrum of cardanol-*m*-

methylphenyl azo, the quantitative amount of unreacted cardanol was observed. The assignments are concluded in Table 4-13.

Position	δ_{II} , multiplicity, J (Hz)
а	6.80. <i>hr</i> s
b	6.75, hr d. 7.7
С	7.70, <i>d</i> , 8:8
d	7.75, br s
e	7.72, br s
f	7.40, 1, 8.2
g	6.75. d. 7.7

Table 4-13: The ¹H-NMR spectral data of cardanol-*m*-methylphenyl azo.

The ¹³C-NMR spectrum (CDCl₃) of cardanol-*m*-methylphenyl azo (Fig. 4-46) revealed the presence of oxycarbon in an aromatic ring (C-OH) at δ_C 155.3, methylene and methyl groups at δ_C 14.1-35.8, and double bonds in an aromatic ring and side chain at δ_C 112.5-132.8.

•

4.3.14 Cardanol-o-methylphenyl azo

Cardanol-*o*-methylphenyl azo was prepared by the reaction of *o*-toluidine diazonium salt and 3-alkylphenoxide ions, to yield a yellowish-brown azo dye. The structure of cardanol-*o*-methylphenyl azo is:

The infrared spectrum of cardanol- ω -methylphenyl azo (Fig. 4-47) revealed absorption peaks at 3355 cm⁻¹ (O-H stretching of phenol), 3007 cm⁻¹ (=C-H stretching of aromatic), 2930 cm⁻¹ and 2858 cm⁻¹ (C-H stretching of aliphatic), 1598 cm⁻¹ and 1470 cm⁻¹ (C=C ring stretching of aromatic), 1365 cm⁻¹ (O-H bending of phenol), and 1250 cm⁻¹ (C-O stretching of phenol).

The ¹H-NMR spectrum (CDCl₃) of cardanol-o-methylphenyl azo (Fig. 4-48) showed the positions of protons d, e, f, g, and h at δ_{II} 7.65 (*d*, 7.7 Hz), 7.35 (*br s*), 7.30 (*m*), and 7.35 (*br s*), respectively. This spectrum also demonstrated the existence of a coupled cardanol in the marker dye, whose δ_{II} at the positions a, b, and c were at 6.80 (*br s*), 6.75 (*br d*, 7.6 Hz), and 7.70 (*d*, 8.8 Hz). The methyl moiety on the aromatic ring resonanced characteristically at δ_{II} 2.75. In addition, the downfield shift of the methylene next to the aromatic of a coupled cardanol was observed; this downfield shift may be due to the presence of azo substituted cardanol. As seen on the ¹H-NMR spectrum of cardanol-*o*-

methylphenyl azo, the quantitative amount of unreacted cardanol was observed. The assignments are concluded in Table 4-14.

Position	δ_{II} , multiplicity, J (Hz)
а	6.80, <i>br s</i>
b	6.75, <i>br d</i> , 7.6
с	7.70. <i>d</i> . 8.8
d	7.65, d, 7.7
e	7.35, br s
f	7.30. <i>m</i>
ğ	7.35, br s

Table 4-14: The ¹H-NMR spectral data of cardanol-*o*-methylphenyl azo.

The ¹³C-NMR spectrum (CDCl₃) of cardanol-*o*-methylphenyl azo (Fig. 4-49) showed the presence of oxycarbon in an aromatic ring (C-OH) at δ_C 155.3, methylene and methyl groups at δ_C 14.1-35.8, and double bonds in an aromatic ring and side chain at δ_C 112.5-132.8.

4.3.15 Cardanol-2-methoxy-4-nitrophenyl azo

Cardanol-2-methoxy-4-nitrophenyl azo was prepared by the reaction of 2-methoxy-4-nitroaniline diazonium salt and 3-alkylphenoxide ions, to yield a reddish-brown azo dye. The structure of cardanol-2-methoxy-4-nitrophenyl azo is:

The infrared spectrum of cardanol-2-methoxy-4-nitrophenyl azo (Fig. 4-50) showed absorption peaks at 3365 cm⁻¹ (O-H stretching of phenol), 3012 cm⁻¹ (=C-H stretching of aromatic), 2930 cm⁻¹ and 2853 cm⁻¹ (C-H stretching of aliphatic), 1603 cm⁻¹ and 1460 cm⁻¹ (C=C ring stretching of aromatic), 1531 cm⁻¹ (N=O asymmetric stretching of the NO₂ group), 1347 cm⁻¹ (N=O symmetric stretching of the NO₂ group), 1255 cm⁻¹ (C-O stretching of phenol). and 881 cm⁻¹ (C-N stretching vibration of C-N bond).

The ¹H-NMR spectrum (CDCl₃) of cardanol-2-methoxy-4-nitrophenyl azo (Fig. 4-51) indicated that there was a marker dye product, with a quantitative yield, formed in the reaction mixture (as suggested by the methylene signal resonanced at δ_H 3.15). The ¹H-NMR spectrum of this marker dye showed the typical pattern of a coupled cardanol, and protons at the positions a, b, and c resonanced at δ_H 6.80 (*br s*), 6.75 (*br d*, 7.6 Hz), and 7.72 (*d*, 8.8 Hz),

respectively. Protons at the positions d, e, and f were assigned at δ_{II} 7.95 (*br s*), 7.92 (*br s*), and 7.65 (*d*, 8.7 Hz), respectively. The methoxy methyl protons (position g) resonanced characteristically at δ_{II} 4.10. The assignments are concluded in Table 4-15.

Position	δ_{H} , multiplicity, J (Hz)
a	6.80, <i>br s</i>
b	6.75, br d, 7.6
с	7.72, <i>d</i> , 8.8
d	7.95, hr s
е	7.92, br s
f	7.65, <i>d</i> , 8.7
g	4.10, <i>s</i>

Table 4-15: The ¹H-NMR spectral data of cardanol-2-methoxy-4-nitrophenyl azo.

The ¹³C-NMR spectrum (CDCl₃) of cardanol-2-methoxy-4-nitrophenyl azo (Fig. 4-52) revealed the presence of oxycarbon in an aromatic ring (C-OH) at δ_C 155.5, methylene and methyl groups at δ_C 14.1-35.8, and double bonds in an aromatic ring and side chain at δ_C 112.5-130.4. The ¹³C-NMR spectrum of cardanol-2-methoxy-4-nitrophenyl azo also showed δ_C 56.7 (attributable to methoxy group, C-OCH₃).

4.3.16 Cardanol-Fast Blue B azo

Cardanol-Fast Blue B azo was prepared by the reaction of Fast Blue B diazonium salt and 3-alkylphenoxide ions, to yield a reddish-brown azo dye. The structure of cardanol-Fast Blue B azo is:

where n = 0, 2, 4, 6

The infrared spectrum of cardanol-Fast Blue B azo (Fig. 4-53) showed absorption peaks at 3360 cm⁻¹ (O-H stretching of phenol), 3012 cm⁻¹ (=C-H stretching of aromatic), 2925 cm⁻¹ and 2858 cm⁻¹ (C-H stretching of aliphatic), 1598 cm⁻¹ and 1465 cm⁻¹ (C=C ring stretching of aromatic), 1370 cm⁻¹ (O-H bending of phenol), and 1255 cm⁻¹ (C-O stretching of phenol).

The ¹H-NMR spectrum (CDCl₃) of cardanol-Fast Blue B azo (Fig. 4-54) indicated that there was a marker dye product, with a quantitative yield, formed in the reaction mixture (as suggested by the methylene signal resonanced at δ_{H} 3.15). The ¹H-NMR spectrum of this marker dye also showed the methoxy methyl protons at δ_{H} 4.15. However, the ¹H-NMR spectrum of this marker dye is too complex, since there are many aromatic protons in the molecule, therefore, the aromatic protons of this marker dye could not be conclusively assigned.

4.3.17 Cardanol-Fast Blue BB azo

Cardanol-Fast Blue BB azo was prepared by the reaction of Fast Blue BB diazonium salt and 3-alkylphenoxide ions, to yield a yellowish-brown azo dye. The structure of cardanol-Fast Blue BB azo is:

The infrared spectrum of cardanol-Fast Blue BB azo (Fig. 4-55) showed absorption peaks at 3370 cm⁻¹ (O-H stretching of phenol). 3007 cm⁻¹ (=C-H stretching of aromatic), 2925 cm⁻¹ and 2858 cm⁻¹ (C-H stretching of aliphatic), 1598 cm⁻¹ and 1460 cm⁻¹ (C=C ring stretching of aromatic). 1360 cm⁻¹ (O-H bending of phenol), and 1265 cm⁻¹ (C-O stretching of phenol).

The ¹H-NMR spectrum (CDCl₃) of cardanol-Fast Blue B azo (Fig. 4-56) suggested that poor yield of this marker dye was obtained from the reaction mixture. The oxymethylene of the ethylene group resonanced characteristically at δ_{H} 4.35 and 4.20, as seen on the ¹H-NMR spectrum. However, the ¹H-NMR spectrum of this marker dye is too complex, since there are many aromatic protons in the molecule, therefore, the aromatic protons of this marker dye could not be conclusively assigned.

4.3.18 Cardanol-Fast Red RC azo

Cardanol-Fast Red RC azo was prepared by the reaction of Fast Red RC diazonium salt and 3-alkylphenoxide ions, to yield a reddish-brown azo dye. The structure of cardanol-Fast Red RC azo is:

The infrared spectrum of cardanol-Fast Red RC azo (Fig. 4-57) revealed absorption peaks at 3365 cm⁻¹ (O-H stretching of phenol). 3011 cm⁻¹ (=C-H stretching of aromatic), 2925 cm⁻¹ and 2853 cm⁻¹ (C-H stretching of aliphatic), 1598 cm⁻¹ and 1460 cm⁻¹ (C=C ring stretching of aromatic), 1365 cm⁻¹ (O-H bending of phenol), 1276 cm⁻¹ (C-O stretching of phenol). and 1168 cm⁻¹ (C-Cl stretching vibration of C-Cl bond).

The ¹H-NMR spectrum (CDCl₃) of cardanol-Fast Red RC azo (Fig. 4-58) indicated that there was a marker dye product, with a quantitative yield, formed in the reaction mixture (as suggested by the methylene signal resonanced at δ_{H} 3.15). The ¹H-NMR spectrum of this marker dye showed the typical pattern of a coupled cardanol, and protons at the positions a, b, and c resonanced at δ_{H} 6.80 (*br s*). 6.75 (*br d*, 7.6 Hz), and 7.68 (*d*, 8.2 Hz), respectively. Protons at the positions d, e, and f were assigned at δ_{H} 7.18 (*d*, 8.9 Hz), 7.40 (*br d*, 8.6 Hz), and 7.62 (*d*, 2.5 Hz), respectively. The methoxy methyl protons of this marker dye (position g)

resonanced characteristically at δ_{II} 4.10 (s). The assignments are concluded in Table 4-8.

Position	δ_{H} , multiplicity, J (Hz)
а	6.80, <i>br s</i>
b	6.75. <i>hr d</i> , 7.6
с	7.68. <i>d</i> . 8.2
d	7.18. <i>d</i> . 8.9
е	7.40, <i>br d</i> , 8.6
f	7.62, <i>d</i> . 2.5
g	4.10, <i>s</i>

Table 4-16: The ¹H-NMR spectral data of cardanol-Fast Red RC azo.

The ¹³C-NMR spectrum (CDCl₃) of cardanol-Fast Red RC azo (Fig. 4-59) revealed the presence of oxycarbon in an aromatic ring (C-OH) at δ_C 155.4, methylene and methyl groups at δ_C 14.1-35.8, and double bonds in an aromatic ring and side chain at δ_C 112.5-131.3. The ¹³C-NMR spectrum of cardanol-Fast Red RC azo also showed δ_C 56.6 (attributable to methoxy group, C-OCH₃).

4.4 Suitable extraction system for the detection of marker dyes in fuel oils

Gasoline containing 2 ppm of cardanol-2-chloro-4-nitrophenyl azo was used for the determination of suitable extraction system. The appropriate extraction system was chosen from the basis of the color developed in the extracted phase, the intensity and stability of the developed color, and the ability to separate from an oil phase.

The extraction systems in this research were divided into 3 major systems on the basis of the type of bases used, which were potassium hydroxide, ethylenediamine, and diethylenetriamine. After the dyed gasoline was extracted individually with each bases, the UV/VIS absorption at the maximum wavelength were measured and summarized in Table 4-17.

7

Table 4-17: The absorbance of the developed color with various base-types, when extracted cardanol-2-chloro-4-nitrophenyl azo (2 ppm) in gasoline.

Extraction systems	λ_{max}	Absorbance	Visual	Ability to
	(nm)		color	separate
System A:				
A1. 1% potassium hydroxide in 1:1 ethylene glycol and methanol	528.5	0.3989	Purple	Easy
A2. 2% potassium hydroxide in 1:1 ethylene glycol and methanol	528.2	0.3897	Purple	Easy
A3. 3% potassium hydroxide in 1:1 ethylene glycol and methanol	527.7	0.3969	Purple	Easy
A4. 4% potassium hydroxide in 1:1 ethylene glycol and methanol	528.0	0.3838	Purple	Easy
A5. 5% potassium hydroxide in 1:1 ethylene glycol and methanol	528.9	0.3656	Purple	Easy
System B:				
B1. 10% ethylenediamine in 1:1 ethylene glycol and methanol	540.5	0.3480	Purple	Easy
B2. 20% ethylenediamine in 1:1 ethylene glycol and methanol	547.3	0.4070	Purple	Easy
B3. 30% ethylenediamine in 1:1 ethylene glycol and methanol	554.8	0.4262	Violet	Easy

90

. .

Table 4-17 (cont.): The absorbance of the developed color with various base-types, when extracted cardanol-2-chloro-4nitrophenyl azo (2 ppm) in gasoline.

Extraction systems		Absorbance	Visual color	Ability to
	(nm)			separate
System B (cont.):				
B4. 40% ethylenediamine in 1:1 ethylene glycol and methanol	562.1	0.4642	Violet	Easy
B5. 50% ethylenediamine in 1:1 ethylene glycol and methanol	568.4	0.4731	Bluish-violet	Easy
System C:				
B1. 10% diethylenetriamine in 1:1 ethylene glycol and methanol	538.9	0.3378	Purple	Easy
B2. 20% diethylenetriamine in 1:1 ethylene glycol and methanol	547.0	0.4044	Purple	Easy
B3. 30% diethylenetriamine in 1:1 ethylene glycol and methanol	554.0	0.4098	Violet	Easy
B4. 40% diethylenetriamine in 1:1 ethylene glycol and methanol	561.1	0.4352	Violet	Easy
B5. 50% diethylenetriamine in 1:1 ethylene glycol and methanol	568.6	0.4586	Bluish-violet	Easy

91

From Table 4-17, it was shown that extraction systems A-C were very easy to separate from an oil phase, these results may be due to ethylene glycol. which itself could be acted as phase separation enhancer [2].

The extraction system A, employing a strong alkali (potassium hydroxide) to react with the marker dyes, developed unstable colors that resulted in the errors during the quantitative determination of the marker dyes. This system was therefore not suitable for the extraction of marker dyes, although its cost was the lowest when comparing with the extraction systems B and C.

The extraction systems B and C were weak alkali solutions of ethylenediamine, and diethylenetriamine, respectively. Both systems gave clearly defined and deep colors with high absorbance at the maximum wavelength of the developed colors in an extracted phase. However, when comparing the costs of ethylenediamine and diethylenetriamine, the cost of ethylenediamine was lower than that of diethylenetriamine. Thus, the extraction system B was the most suitable system for the extraction of marker dyes from fuel oils.

Regarding to the percentages of base used in extraction system B and the maximum wavelength obtained, it was found that when the percentage of base was increased, the maximum wavelength of the developed color would shift to the longer wavelength, this effect is called "Bathochromic shift" or "Red shift". This bathochromic shift presumably resulted from a reduction in the energy level of the excited state accompanying dipole-dipole interaction, and hydrogen bonding between ethylenediamine and marker dyes. It was shown that the extraction system B5 (50% ethylenediamine) gave the highest absorbance at the maximum

wavelength (Table 4-17). The extraction system B5 was therefore chosen as the most appropriate extraction system for the marker dyes in this research.

The synthetic marker dyes (each with 5 ppm) were dyed in gasoline and diesel fuel, they were subsequently extracted with 50% ethylenediamine in a solution of 1:1 ethylene glycol and methanol. The UV/VIS absorbance at their maximum wavelengths and visual colors were observed as shown in Table 4-18.

Marker dye	Gasoline		Diesel fuel	
	λ_{max} (nm)	Visual color	λ_{max} (nm)	Visual color
1. cardanol-phenyl azo	418.1	Yellow	424.0	Yellow
2. cardanol- <i>p</i> -nitrophenyl azo	537.5	Purple	538.2	Purple
3. cardanol- <i>m</i> -nitrophenyl azo	470.3	Yellowish-orange	471.2	Yellowish-orange
4. cardanol-o-nitrophenyl azo	479.1	Orange	483.0	Orange
5. cardanol- <i>p</i> -chlorophenyl azo	418.3	Yellow	454.0	Yellow
6. cardanol- <i>m</i> -chlorophenyl azo	432.4	Yellow	450.4	Yellow
7. cardanol-o-chlorophenyl azo	434.2	Yellow	462.5	Yellow
8. cardanol-2-chloro-4-nitrophenyl azo	567.7	Bluish-violet	-569.8	Bluish-violet
9. cardanol-2-chloro-5-nitrophenyl azo	490.2	Orange	495.6	Orange

Table 4-18: The UV/VIS absorbance at their maximum wavelengths and visual colors in the extracted phase of marker dyes

(each with 5 ppm).

94

Table 4-18 (cont.): The UV/VIS absorbance at their maximum wavelengths and visual colors in the extracted phase of marker

Marker dye	Gasoline		Diesel fuel	
	λ_{\max} (nm)	Visual color	λ _{max} (nm)	Visual color
10. cardanol-4-chloro-2-nitrophenyl azo	495.2	Reddish-orange	500.6	Reddish-orange
11. cardanol-4-chloro-3-nitrophenyl azo	480.9	Orange	495.3	Orange
12. cardanol- <i>p</i> -methylphenyl azo	407.3	Yellow	420.7	Yellow
13. cardanol- <i>m</i> -methylphenyl azo	407.8	Yellow	420.9	Yellow
14. cardanol-o-methylphenyl azo	407.4	Yellow	421.3	Yellow
15. cardanol-2-methoxy-4-nitrophenyl azo	546.3	Purple	550.8	Purple
16. cardanol-Fast Blue B azo	507.0	Reddish-orange	510.5	Reddish-orange
17. cardanol-Fast Blue BB azo	478.3	Orange	480.6	Orange
18. cardanol-Fast Red RC azo	436.6	Yellow	450	Yellow

dyes (each with 5 ppm).

• 95

Visual colors in an extracted phase when extracted the dyed fuel oils in this research were compared with those in the master thesis of Thowongs, K. [3], and Silapakampeerapab, S. [4] as shown in Table 4-19.

Table 4-19: The visual colors in extracted phase of marker dyes in this research comparing with marker dyes obtained from the master thesis of Thowongs.K., and Silapakampeerapab, S.

	Aniline	Color in extracted phase				
		Marker dye A [*]	Marker dye B ^{**}	This research		
1.	<i>p</i> -nitroaniline	_ (¥)	Red	Purple		
2.	<i>m</i> -nitroaniline	-	Yellow	Yellowish-orange		
3.	o-nitroaniline	-	Orange-yellow	Orange		
4.	<i>p</i> -chloroaniline	Yellow	-	Yellow		
5.	<i>m</i> -chloroaniline	Yellow	-	Yellow		
6.	o-chloroaniline	Yellow	-	Yellow		
_		[[

Marker dyes in master thesis of Thowongs, K. [3]

Extraction solution was 10% potassium hydroxide in methanol

** Marker dyes in master thesis of Silapakampeerapab, S. [4]

Extraction solution was 2% potassium hydroxide in ethylene glycol

In chloroaniline series, the colors in the extracted phase of marker dyes set A, and marker dyes in this research were yellow. Therefore, it could be concluded that the use of 10% potassium hydroxide in methanol, and 50% ethylenediamine in

a solution of 1:1 ethylene glycol and methanol for the extraction of marker dyes in chloroaniline series from the dyed fuel oils were not significantly different.

On the other hand, when extracted the marker dyes in nitroaniline series, the colors in extracted phase of marker dyes in this research were clearer and deeper than the ones obtained from the extraction of marker dyes set B. Therefore, it could be concluded that 50% ethylenediamine in a solution of 1:1 ethylene glycol and methanol was more appropriate for the extraction of marker dyes in nitroaniline series from the dyed fuel oils than 2% potassium hydroxide in ethylene glycol.

These marker dyes could be detected in the dyed fuel oils by extraction into 50% ethylenediamine in a solution of 1:1 ethylene glycol and methanol. The detection of marker dyes (each with 5 ppm) in fuel oils are shown below.

Fig. 4-60: The detection of cardanol-phenyl azo (1), cardanol-*p*-nitrophenyl azo (2), and cardanol-*m*-nitrophenyl azo (3) in gasoline comparing with undyed gasoline (0).

Fig. 4-61: The detection of cardanol-phenyl azo (1), cardanol-*p*-nitrophenyl azo (2), and cardanol-*m*-nitrophenyl azo (3) in diesel fuel comparing with undyed diesel fuel (0).

Fig. 4-62: The detection of cardanol-*o*-nitrophenyl azo (4), cardanol-*p*-chlorophenyl(5), and cardanol-*m*-chlorophenyl azo (6) in gasoline comparing with undyed gasoline (0).

Fig. 4-63: The detection of cardanol-*o*-nitrophenyl azo (4), cardanol-*p*-chlorophenyl (5), and cardanol-*m*-chlorophenyl azo (6) in diesel fuel comparing with undyed diesel fuel (0).

Fig. 4-64: The detection of cardanol-*o*-chlorophenyl azo (7), cardanol-2-chloro-4nitrophenyl azo (8), and cardanol-2-chloro-5-nitrophenyl azo (9) in gasoline comparing with undyed gasoline (0).

Fig. 4-65: The detection of cardanol-*o*-chlorophenyl azo (7), cardanol-2-chloro-4nitrophenyl azo (8), and cardanol-2-chloro-5-nitrophenyl azo (9) in diesel fuel comparing with undyed diesel fuel (0).

Fig. 4-66: The detection of cardanol-4-chloro-2-nitrophenyl azo (10), cardanol-4chloro-3-nitrophenyl azo (11), and cardanol-*p*-methylphenyl azo (12) in gasoline comparing with undyed gasoline (0).

Fig. 4-67: The detection of cardanol-4-chloro-2-nitrophenyl azo (10). cardanol-4chloro-3-nitrophenyl azo (11). and cardanol-*p*-methylphenyl azo (12) in diesel fuel comparing with undyed diesel fuel (0).

Fig. 4-68: The detection of cardanol-*m*-methylphenyl azo (13), cardanol-*o*methylphenyl azo (14), and cardanol-2-methoxy-4-nitrophenyl azo (15) in gasoline comparing with undyed gasoline (0).

Fig. 4-69: The detection of cardanol-*m*-methylphenyl azo (13), cardanol-*o*methylphenyl azo (14), and cardanol-2-methoxy-4-nitrophenyl azo (15) in diesel fuel comparing with undyed diesel fuel (0).

Fig. 4-70: The detection of cardanol-Fast Blue B azo (16), cardanol-Fast Blue BB azo (17), and cardanol-Fast Red RC azo (18) in gasoline comparing with undyed gasoline (0).

Fig. 4-71: The detection of cardanol-Fast Blue B azo (16). cardanol-Fast Blue BB azo (17), and cardanol-Fast Red RC azo (18) in diesel fuel comparing with undyed diesel fuel (0).

The colors of the marker dyes were visible by complexation reaction of ethylenediamine and marker dyes. These reactions resulted in the oil-soluble marker dyes being rendered soluble in an aqueous medium, thus extractable into an aqueous phase. The complexation mechanism is schemed below.

From this mechanism, it is shown that the negative charge would appear in the *para* and *ortho*-position to the azo group. If the *para* or *ortho*-position to the azo group is occupied by an electron-withdrawing group, such as nitro group, the structure is stabilized by an inductive effect. Moreover, if the substituent at the *para* or *ortho*-position to the azo group is the nitro group, the structure is stabilized not only by the inductive effect but also the resonance effect, because nitro group could distribute the negative charge through its structure.

From Table 4-18, the color in the extracted phase of cardanol-*p*-nitrophenyl azo was purple, while the color in the extracted phase of cardanol-*o*-nitrophenyl azo was orange. Both ionized structures were stabilized by the inductive, and the resonance effects, but the differences in colors supported that the substitutions of the electron-withdrawing group at the *ortho*-position were less effective than the substitutions of the electron-withdrawing groups at the *para*-position to the amino moiety.

4.5 Effects of marker dye on the physical properties of dyed fuel oils

Physical properties of dyed fuel oils were determined and compared with the undyed fuel oils. The marker dyes suitable for the fuel oils are the marker dyes that do not give any effects on the physical properties of the dyed fuel oils.

4.5.1 Effects of marker dye on the physical properties of dyed gasoline

Gasoline containing 2 ppm of cardanol-2-chloro-4-nitrophenyl azo was employed for testing physical properties, using the ASTM methods. The physical properties of dyed and undyed gasoline were compared. The results are listed in Table 4-20. Table 4-20: The effects of marker dye on the physical properties of dyed and undyed gasoline.

Test items	ASTM	Limit	Result	
			Dyed	Undyed
APl gravity @ 60 °F	D 1298	Report	56.0	58.2
Specific gravity @ 60 / 60 °F	D 1298	Report	0.7547	0.7459
Octane number				
- Research method (RON)	D 2699	95	96.6	95.2
Reid vapor pressure @ 37.8 °C ,kPa				
- Oxygenated blends	D 5191	62 max	56.0	59.7
Copper strip corrosion, Number	D 130	No. 1	No. 1	No. 1
(3 hrs, @ 50 °C)				
Distillation: (Correct. temp.)	D 86			
IBP, °C		Report	36.5	37.2
10 %vol. evaporated, ^o C		70 max	54.1	52.2
50 %vol. evaporated, ^o C		70 –110	87.6	80.4
90 %vol. evaporated, ^o C		170 max	153.7	149.5
End point, ^o C		200 max	191.9	187.6
Recovery, %vol.		Report	97.8	97.3
Residue, %vol.		2.0 max	1.0	1.0
Color	D 1500	2.0 max	< 0.5	< 0.5
	Visual	-	Yellow	Yellow
Total acid number, mg KOH/ g	D 974	-	0.008	0.004

The physical properties of dyed gasoline were not significantly different from those of undyed gasoline (Table 4-20). Both dyed and undyed gasoline gave similar specific gravity, distillation properties, and color. The Research Octane Number (RON) of dyed gasoline was slightly greater than undyed gasoline; this effect may be due to the contamination of toluene from the marker dye stock solution. However, toluene contamination did not show significant effected on physical properties of the gasoline. From these reasons, this marker dye was applicable as the marker in gasoline.

4.5.2 Effects of marker dye on the physical properties of dyed diesel fuel

Diesel fuel containing 2 ppm of cardanol-2-chloro-4-nitrophenyl azo was used for testing physical properties, using the ASTM methods. The physical properties of the dyed and undyed fuel oils were compared. The results are shown in Table 4-21.

Test items	ASTM	Limit	Result	
÷.			Dyed	Undyed
API gravity @ 60 °F	D 1298	Report	38.8	38.9
Specific gravity @ 15.6 / 15.6 °C	D 1298	Report	0.8309	0.8304
Calculated cetane index	D 976	47 min	55.7	55.5
Kinematic viscosity @ 40 °C, cSt	D 445	1.8 - 4.1	3.1	3.1
Pour point, ^o C	D 97	10	-2.0	-2.0
Sulfur content. %wt	D 4294	0.05	0.03	0.03
Copper strip corrosion, Number	D 130	No. 1	No. 1	No. 1
(3 hrs, @ 50 °C)				
Flash Point (P.M), ^o C	D 93	52	62	61
Distillation: (Correct. Temp.)	D 86			
IBP, °C		Report	173.7	171.6
10 % rec., °C		Report	213.4	210.5
50 % rec., °C		Report	276.8	275.4
90 % rec., ^o C		357 max	354.0	352.1
Color	D 1500	2.0 max	< 0.5	< 0.5
- X	Visual	-	Yellow	Yellow
Total acid number, mg KOH/ g	D 974		0.007	0.004

Table 4-21: The effects of marker dye on the physical properties of dyed and undyed diesel fuel.

The physical properties of dyed diesel fuel were not significantly different from those of the undyed diesel fuel (Table 4-21). Both dyed and undyed diesel fuels provided similar specific gravity, calculated cetane index, pour point, flash point, distillation properties, and colors. Since the marker dye did not have effects on the physical properties of diesel fuel, it is therefore possible to use this marker dye as the marker in diesel fuel.

4.6 Quantitative determination of marker dyes in dyed fuel oils

The standard calibration curve of each marker dyes in gasoline and diesel fuel was prepared by adding each marker dyes into fuel oils at different concentrations. This dyed fuel oils was then extracted with 50% ethylenediamine in a solution of 1:1 ethylene glycol and methanol, and the standard calibration curve was a plot between absorbance and the concentration of the marker dye in fuel oil.

The standard calibration equations of marker dyes in gasoline and diesel fuel are listed in Table 4-22, while the standard calibration curves of marker dyes are shown in the Appendix section.

Marker dye	Standard calibration equation			
	Gasoline	Diesel fuel		
1. cardanol-phenyl azo	Y = 2.862000 e-03 + 9.888300 e-02 * x	Y = 1.394000 e-03 + 1.193835 e-01 * x		
	$(\lambda_{\max} = 418.1, r = 0.999915)$	$(\lambda_{\max} = 424.0, r = 0.999921)$		
2. cardanol- <i>p</i> -nitrophenyl azo	Y = -5.200000 e-05 + 1.794930 e-01 * x	Y = 3.320000 e-03 + 1.867790 e-01 * x		
	$(\lambda_{\max} = 537.5, r = 0.999968)$	$(\lambda_{max} = 539.0, r = 0.999930)$		
3. cardanol- <i>m</i> -nitrophenyl azo	Y = 4.200000 e-03 + 1.760640 e-01 * x	Y = -2.890000 e-03 + 1.827310 e-01 * x		
	$(\lambda_{max} = 470.3, r = 0.999901)$	$(\lambda_{\max} = 471.2, r = 0.999859)$		
4. cardanol-o-nitrophenyl azo	Y= -9.720000 e-04 + 1.550150 e-01 * x	Y = -6.280000 e - 03 + 1.579850 e - 01 * x		
	$(\lambda_{\max} = 479.1, r = 0.999936)$	$(\lambda_{\max} = 424.0, r = 0.999868)$		
5. cardanol- <i>p</i> -chlorophenyl azo	Y = 3.316000 e-03 + 5.782900 e-02 * x	Y = 8.458000 e-03 + 1.287205 e-01 * x		
	$(\lambda_{\max} = 418.3, r = 0.999891)$	$(\lambda_{\rm max} = 454.0, r = 0.999827)$		

Table 4-22: The calibration equations for the quantitative determinations of marker dyes in gasoline and diesel fuel.

110

1.1

Marker dye	Standard calibration equation				
	Gasoline	Diesel fuel			
6. cardanol-2-chloro-4-nitrophenyl azo	Y = -3.116000 e-03 + 2.389930 e-01 * x	Y = -6.436000 e-03 + 1.629490 e-01 * x			
	$(\lambda_{\max} = 567.7, r = 0.999917)$	$(\lambda_{max} = 569.8, r = 0.999800)$			
7. cardanol- <i>p</i> -methylphenyl azo	Y = 1.146216 e-03 + 3.380318 e-02 * x	Y = -4.181622 e-03 + 8.677993 e-02 * x			
	$(\lambda_{\max} = 407.3, r = 0.999891)$	$(\lambda_{\max} = 420.7, r = 0.999843)$			
8. cardanol-2-methoxy-4-nitrophenyl azo	Y = 4.974000 e-03 + 1.064645 e-01 * x	Y = 1.814000 e-03 + 1.077675 e-01 * x			
a	$(\lambda_{\rm max} = 546.3, r = 0.999914)$	$(\lambda_{\max} = 550.8, r = 0.999970)$			
9.cardanol-Fast Blue B azo	Y = 8.475472 e-04 + 3.210590 e-02 * x	Y = 1.351321 e-03 + 3.487759 e-02 * x			
	$(\lambda_{\max} = 507.0, r = 0.999964)$	$(\lambda_{\rm max} = 510.5, r = 0.999953)$			

Table 4-22 (cont.): The calibration equations for the quantitative determinations of marker dyes in gasoline and diesel fuel.

...

From Table 4-22, it was concluded that marker dyes in this research gave the precisely quantitative determinations since their correlation coefficients (r) in the standard equations were closed to 1. Therefore, the marker dyes in this research could be used as markers in gasoline and diesel fuel with precisely quantitative determinations.

4.7 Stability of marker dyes in dyed fuel oils

Stability of marker dyes in fuel oils was studied by monitoring the quantities of marker dyes in fuel oils for 3 months. using the UV/VIS spectroscopic technique. The marker dyes, cardanol-*p*-nitrophenyl azo (2 ppm), cardanol-2-chloro-4-nitrophenyl azo (2 ppm). and cardanol-2-methoxy-4-nitrophenyl azo (5 ppm) in gasoline and diesel fuel were used for this study. The results of the stability of marker dyes in fuel oils are in Tables 4-23 to 4-25.

Table 4-23: The stability of cardanol-*p*-nitrophenyl azo (2 ppm) in gasoline and diesel fuel in the period of 3 months.

Month	Concentrations in gasoline			Concentrations in diesel fuel		
	1	2	Ave	1	2	Ave
1	1.99	2.03	2.01	2.10	2.18	2.14
2	2.05	2.00	2.03	2.12	2.20	2.16
3	2.04	2.01	2.03	2.11	2.16	2.14

Month	Concentrations in gasoline			Concentrations in diesel fuel		
	1	2	Ave	1	2	Ave
1	2.02	2.04	2.03	2.05	2.00	2.03
2	2.05	2.09	2.07	2.08	2.05	2.07
3	2.05	2.08	2.07	2.07	2.11	2.09

Table 4-24: The stability of cardanol-2-chloro-4-nitrophenyl azo (2 ppm) in gasoline and diesel fuel in the period of 3 months.

Table 4-25: The stability of cardanol-2-methoxy-4-nitrophenyl azo (5 ppm) in gasoline and diesel fuel in the period of 3 months.

Month	Concentrations in gasoline			Concentrations in diesel fuel		
	1	2	Ave	1	2	Ave
1	4.99	5.02	5.01	5.02	5.05	5.04
2	5.01	5.03	5.02	5.10	5.07	5.09
3	5.00	5.05	5.03	5.10	5.14	5.12

From Tables 4-23 to 4-25, the concentrations of marker dyes in fuel oils were slightly different from the original concentrations, so it is concluded that these marker dyes are stable, at least 3 months in fuel oils. Generally, each batch of fuel oils is consumed within 3 months, after release to the market. It is concluded that these marker dyes could be applied as markers in commercial fuel oils.