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CHAPTER1I
INTRODUCTION

Let ¢ = (s1,$2,$3, ..., S») be a point in n—dimensional Euclidean space in R",

T(> 0) and m(> 1) be any real numbers, D be a bounded domain in R*, 9D be
a boundary of D, B be an n—dimensional ball, {c € R" : |¢ — b| < R}, centered
at a given point b with radius R, Bc D, 9B be the boundary of B, v(s) denote

the unit inward normal vector at ¢ € 9B, and

1fors € B,
Xp(<) = N\
0 for ¢ € D\B,

be the characteristic function. Without loss of generality, let b be the origin.
We would like to study the following multi-dimensional nonlinear parabolic

problem.

Uy — Aqu = aXaL;}(g)F(u(g,*y))Zm(fy) in D x (0, T],

where u(c,0) = () on D and u(s,y) = 0 for¢ € dD,0 < v < T are initial and
boundary condition, respectively. We note that A, = > | 9%/9<?, and Z(v) =

[ S(u(s,v))ds and F and S are given functions. This problem has a nonlinear
source which is a product of a local contribution (Oxs(s)/0v)F(u(s,7)) and a
global contribution Z™ ().

In order to study the behavior of the solution over a unit domain, we con-
sider the domain having the same shape [2]. If the shape is given, then a domain
can be uniquely determined by its size. For example, in one- dimensional space,
all intervals [a, b] have the same shape. In two-dimensional space, all circular
domains have the same shape. Let D be a bounded n—dimensional domain

having the same shape as D. Then, there is z, € D N D and a positive constant



A such that
D ={c:¢=z+4 A(x — x0) for z € D}.

Let the size |D| = [, dx = 1. Without lost of generality, we can let z be the

origin. We note that from the above transformation,

. N d i D o L
Ao s%zeofD _ [ ds _ (1Pl _ Dt
size of D [ dax |D|

Let v = A?t and ¢ = Axz. Then,

ou B Oou Ot =) ou 0% 1 0%u

ooy Aa e T man

Let B = {z € R" : |z| < R} with B be its boundary and R = R/A, and v denote
the inward normal at = € 9B. Let () be the infinitely differentiable function

with compact support and §(x) denote the usual Dirac delta function.



We can rewrite Oy 3(s)/0v by using the spherical coordinates [12] as follows
/ aXB(A[L‘) () d
R

/ / / / Ar— O(r, wi, oy Wyp )"

stm 1= sdwy .. .dw,, 1 dr

/ /_w/ / o= R)p (5w, ...,wnﬂ) (%)”—1

X Hsm ~widwy ... dw,, 1Ada

LG (5)

X Hsin”_ Cwidwy...dwn1

SLLL AR o) ()
_A ; ) / i A 2 A,wl,..., n—1 A

X H sin™ 1 w;dw ....dwy,_1dr
i=1

1 Oxg(z)

Al o (x)dx.

Hence,

Oxp(Az) 1 9xp(z)
ov A Ov

and

:/DS(u(g,y))dg:A"/Ds(u(x,t))dJ:,

where S(u( 7)) = s(u(z,t)). Let A = >"7" 0?/0x2, H = /0t — A, F(u(s,7)) =
flu(z,t)) = [, s(u(x,t))dz, T = T/A?,0D be the boundary of D, D be the



closure of D, and 2 = D x (0, T]. Then, the original problem becomes

Hu = |ﬁ|m+iaxaLV@f(u(x, U™ (t) in Q,

(1.1)
u(z,0) = ¢(xr) on D, u(x,t) =0forz € 9D,0 <t < T.

We assume that f(0), f/(0), s(0) and s'(0) are nonnegative while f(u), f'(u),
f"(u), s(u), s'(u) and s”(u) are positive for v > 0. We further assume for con-

struction later that

a0ta) + 101 22D g ([ swionas) =0 a2

The inequality (1.2) intuitively means that at the beginning, a temperature will
rise up.

This model describes a temperature « due to a nonlinear source having local
and nonlocal features subject to the initial condition (=) and zero temperature
on the lateral boundary. Instead of studying w(b,t) for any point b € B, we
would like to investigate a solution u(z, t) of (1.1) for (x,t) € Q. Since the term
Oxp(z)/0v intuitively means that we have Dirac delta functions on each point
of 0B, a solution of (1.1) that are we looking for is in distributional sense and at
most a continuous function on () satisfies (1.1).

A solution u of (1.1) is said to blow up at a point (z, ;) if there exists a se-
quence {u(z,,t,)} = oo as (z,, t,) = (z,1).

We also assume that €2 has the property that for any point P € 9D x (0,77,
there exists an (n + 1)— dimensional neighborhood ¥ such that ¥ N 9D x (0, 7]

can be represented, for some i = 1,2, ..., n in the form,
€T = ﬁ('rlu Loy ... Li—1, 'Ti+17 <Ly, t)7

where 3, D,3 and D3} are Holder continuous of exponent a@ € (0,1) while
D, D3 and D?f3 are continuous.

This type of problem in 1-dimension was studied by Chan and Tian [6].
They proved that there is a unique continuous solution before the blow-up oc-

curs and also giving a blow-up criterion. For n—dimensional problem, Chan



and Tian [5] studied a blow-up problem with nonlinear source of the form

Oxs(x)
U8 f (e, ),

They showed that the problem has a unique solution before the blow-up occurs
on the boundary of a ball.

Quenching and blow-up are closely related. As an illustration, and explosion
described by a quenching model occurs at a finite temperature [4] while if it
is described by a blow-up model, it occurs at an infinitely high temperature.
Boonklurb [2] studied an n—dimension quenching problem with having local

and nonlocal features,

axgy(x)f(u(fcat))(/DS(u(x,t))dx>m.

He showed that there is a unique solution before the quenching occurs and gave

quenching criterion. We modify and extend their study to n—dimensional blow-
up problem with having the same local and nonlocal features.

In chapter 2, some of preliminary theorems are listed for ease of reference.

In chapter 3, we show that the integral equation derived from (1.1) has a
unique continuous solution u, which is nondecreasing function of ¢. Then, we
prove that v is a unique solution of problem (1.1).

In chapter 4, we give sufficient conditions for blow-up to occur and the blow-

up set of (1.1).



CHAPTER II
PRELIMINARIES

The followings are some theorems that we frequently use thoughout this thesis.

Theorem 2.1. (Leibniz’s rule; [1], p. 201) Let f : R x X — R and X be a closed
interval in R satisfying
(¢) The function (x,t) — f(z,t) is continuous on R x X.
(1) The partial derivative (z,t) — fi(x,t) exists and is continuous on R x X.
(i73) The function u,v : X — R are differentiable on X.
Then, the function G : X — R, defined by
o(t)

G(t) = [z, t)de,
u(t)

exists and is differentiable on X. Moreover, its derivative is given by

v(t)
G'(t) = . felw, t)da = f(u(t), )u'(t) + f(o(t), )V (1)

Theorem 2.2. (Strong maximum principle; [8], p. 34) Let H be a heat operator, 0 /0t —
A and if u has a positive maximum in D which is attained at a point (xg,t,) then

u(z,t) = u(xo, to) for all a point (x,t) that path connected to (o, to).

Theorem 2.3. (Second Mean Value Theorem; [1], pp. 193-195) If f is an integrable

function and g is monotone on I := [a, b], then there exist £ € I such that

/abfg:g(a)/jﬁg(b)/;f-

Theorem 2.4. (Divergence theorem; [7], p. 627) Suppose that u € C*(U). Then

/uxida: :/ uv;dS, (1€41,2,3,....,n})
U oU



where v = (14, ..., 1) 1s outward pointing unit normal vector field.

Theorem 2.5. (Green's Formulas; [7], p. 628) Let u,v € C*(U). Then

/ Audr = @ds ,
ou O

(zz)/ Dv - Dudx = —/uAvda:—l—/ —udS

(m)/ ulAv — vAudz —/ u@ —v dS
U ov

where Du = (Uy,, ...., Uy, ) and A is the Laplace operator.

Theorem 2.6. (Monotone convergence theorem; [10], p. 21) Assume that the functions

{ fx}2., are measurable, with

Then

/ lim frdr = hm frdx.
R R"

n k—o00

Theorem 2.7. (Schwarz’s inequality; [10], p. 63) Let p and q be positive real numbers
such that % + é = 1. Let X be a measurable space with measure p. Let f and g be

measurable functions on X, with range in [0, co). Then

/fgda:< {/ fpdﬂ} {/ngd,u}é 2.1)

and

/X(f+g)dx§ {/Xfpdu};—i-{/xquu};. (2.2)

The inequality (2.1) is Holder’s; (2.2) is Minkowski’s. If p = q = 2, (2.1) is known as

the Schwarz inequality.

Theorem 2.8. (Fubini’s theorem; [9], p. 416) Let (X, 9, u) and (Y, N, v) be two

o —finite measurable spaces and f is nonnegative (; x v)—measurable function on X x



Y. If0 < f < oo, and if

o) = /Y Fudv, b(y) = /X o (reX,yey)

then ¢ is u— measurable, 1) is v— measurable, and

Jovdu= [ pagex vy = [ v,

where f, = [ fdpand f¥ = [, fdv.



CHAPTER III
EXISTENCE AND UNIQUENESS

In this chapter, we establish the existence and uniqueness result locally for the
integral equation corresponding to (1.1). The solution of this integral equation
is a continuous function and an increasing function of ¢. Next, we will prove
that the solution of this integral equation is a unique solution of (1.1).

Green’s function ([11], p. 198) G(x,t;&,7) corresponding to (1.1) is deter-
mined by

HG(z,t;&,7) = d(x — £)(t — 7) for z and £ in D, and ¢ and 7 in (—o00, ),
Gz, t;¢,7)=0forrand {in D, and ¢t < 7,

G(z,t;¢,7) =0forx € 9D and £ € D, and ¢ and 7 in (—o0, 0).

As we need this Green’s function to have some useful properties ([8], pp. 82-
83), we let (2 have the property that for every point P € S, there exists an (n +
1)—dimensional neighborhood such that N N S can be represented in the form
2; = 2(T1, .0y i1, Ti1, s Ty t), for some i € {1,2,3,...,n}. Here, z, D,z, Dz
and D,z are Holder’s continuous of exponent « € (0,1), while D, D,z and D}z
are continuous. For ease of reference, let us state those useful properties in

Lemma 3.1 as follow:

Lemma 3.1. ([8], pp. 82-83) (i) There exists a unique G(x,t; &, ) that continuous in
Qx (D x[0,T)),t > 7. Furthermore, D, G, D2G and D,G are continuous functions
of (z,t;&,7)in Q2 x (D x [0,T)),t > 7.

(ii) For each (§,7) € D x [0,T),G(z,t;&,7) = 00on 0D x (1,T] and G(x,t; €, T)
is positive in D x (1,T].

(iii) For any fixed (£,7) € D x [0,T) and any ¢ > 0, D,G, D2G and D,G are

uniformly continuous functions of (x,t) € Qwitht — 7 > e.
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Consider the eigenvalue problem of the form,
Ap+Ap=0in D, ¢ =0on0dD.

This problem has a sequence of positive eigenvalues, \; < Xy < A3 < ..., which
are listed in an increasing order with due regard to multiplicity. Their corre-
sponding eigenfunctions, ¢;,7 € N can be chosen to form a complete orthonor-
mal set with the fundamental eigenfunction ¢; > 0 in D. Thus, we have ([11],

pp- 213-214)
Gz, t;&,7) Zgb _’\i(t_T),

where ¢; denoted the complex conjugate of ¢;.
Let us consider the adjoint operator of //, which is given by H*u = —u; — Aw.
Using Theorem 2.4(iii), the Green’s Formulas, we obtain the integral equation

from (1.1) by first consider the equation

/0 / (G*(a, £ 6, 7) Hu(z, £) — u(w ) H" G (3, t: €, 7)) dadt

/ /( xt G*(z,t; €, )—l—G*(x,t;g,T)%u(x,t))dgc

0 0
+ G (x, ;6 7)=—u(x, t) — u(x, t)=—G" (2, t; ,T)de,
/M(m( ( é)ay( )~ () G, 1:,7)

where G*(z,t;¢,7) = G(§, 7;2,t). Using the fact that H*G*(x,t;¢,7) = d(z —
£)d(t — 1), we obtain

T
T) :/0 /DG (x,t; &, 7)Hu(x, t)dxdt

/"Z / (u(:zc t) =G (2, 46, 7) + G (2,15 € 7)—6u(x t)) "
o Jp Tot T UG, Lul®, d
— * () 9 § '
/a o (G (z,t; &, ) O u(w,t) — (x,t)—VG (aj’t,f’T))dS

Changing the roles between ¢ and = and between 7 and ¢, the above equation
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becomes

u(x,t):/T/ Gz, t;&, 7)Hu(E, 7)dxdt

//( xt xth)—f—G(xth);(,t))dI
/an(oT] ( (z.:€, T)aay (1) _U(%t)%G(x,t;S,r))ds

Since G and u are zero on the boundary of D x (0,7, we obtain

(1) :/T/ Gz, t: €, 7) Hu(€, 7)dédr

//( (@.t)5; “57>+G(M§7)at (z ,t))dgdr.

Using the fundamental theorem of calculus and the fact that G(z,t; ¢, 7) = 0, for

all = > t, we have

ulz, t) / / (z,; €, 7V Hu(€, 7)dedr
- [ Glee Ty 1y + | Glatié, 0ute, 00
:/0 /DG(x,t;f,T)Hu(f,T)dde—l—/DG(:E,t;f,O)w(f)df.

Now, taking 7" — ¢, we have

(e, 1) = /D G, 156,00 (€)de

L B
+ | Dt /0 /D Gla,t:€,7) X;V(@ Fule, 7)) U™ ()dédr.
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Using integration by parts and Theorem 2.3, the divergence theorem, we have

| Gt tien 22 fute, omryas

- /D Gl 1,6, 7) F (wl€, 7)) U™ (1) D(E) - Vs (€)]de

Finally, the integral representation of (1.1) becomes
t
wat) = [ Gt 0@+ 10 [ 6nenue mumds
D o JoB
(3.1)
Lemma 3.2. [5] On €, fot Jop G, t; &, T)dEdT is continuous.

Proof. Since

: (t=1)"" e sae—)
G(z,t;6,7) < We )

and [ e~ dg; = /2, it follows that

1
. < .
/83 Gl 568 < 5 ams — i

Let w, be the surface area of an n—dimensional unit sphere. Since Green’s func-
tion is continuous, given z,zy € R" and ¢,%y > 0 for ¢,y > 7. Given ¢ > 0. We

can choose 0 > 0 such that whenever |(z,t) — (zo,%)| < 6, we have

€

|G(2,;6,7) — G(20, t0; €, T)| < QunR ity
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If we choose § = min{J, 7e?/4}, then

‘ /ot /aB Glz, ;€ 7)dédr - /Oto /aB G(xo, to; €, T)dédT

/t/ G(a:,t;f,7)d§d7+/t/ G(x,t;€,7) — G(xo, to; €, T)dédT
to JoB o JoB

t to

< / / Gl ;€. 7)dédr | + / / G, t:€,7) — G, to: €, 7)dEdr
to JOB 0 OB

< 2/t — 1, N ew, R" 1ty

- Qﬁ QU}an_lt()

SO e

—2ym 2

<48

2 2
= €.
This completes the proof. O

We use the technique of proving theorem 3 of Chan and Tian [5] to prove the

theorems 3.3 and 3.4.

Theorem 3.3. There exists some 1, such that for 0 <t < t,, then the integral equation
(3.1) has a unique continuous solution w such that uw > (x), and u is a nondecreasing

function of t. If t,, is finite, then u is unbound in [0, t;).

Proof. First, construct a sequence {v;} in Q@ = D x (0,7T] by vy = ¢(z), and for
i€{0,1,2,...},
e = 1D 220 g0 () in

i1 (2,0) = (x) on D, u; 1 (z,t) = 0on 0D x (0, T).
From (3.1),

i (2,1) = /D G, t: €, 0)(€)de

D /0 /aBGcc,t;s,r)f(ui(g,ﬂ)U;”(ﬂd&dr. (3.2)
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Let 992 denote the parabolic boundary (D x {0}) U (0D x (0,T]) of Q. The con-
dition (1.2) implies

H(uy —ug) =Huy — Hug
=Hu; — Hy(x)
=Huy + AY(x)

2151 P2 o,y 0~ 1015 (0 [ st )

and u; — uy =0 on 9.

By Lemma 3.1(ii), G(x,t;£, 1) is positive in {(z,t;¢,7) : zand { arein D, T >
t > 7 > 0}. From (3.1), we consider the representation of the above parabolic

problem, we obtain that

Uy — Uy = / G(z,t; &, 7)h(x, t)dédr,
D

for some h(z,t) : Q2 — [0,00). Thus, we can conclude that u;(z,t) > uy(z) in Q.

Assume that for some positive j,

Since f and s are increasing functions, and u; > u;_;, we have

Hus1 = 1) = DI 22 fu,)U7(0) - S0 0) 2 0in

Uj1 — Uj = 0 on 0f).
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From (3.1), we have

t
wir = =D [ Gt
o JoB
X <f(u](x, U™ (t) — f(uja(z, t))UJml(t)>d§dT,
which is nonnegative. So, we have u;,; > u;. By the principle of mathematical

induction,

Y <uy <up <o <wupq <wyon (3.3)

for all positive integer i. Next, we show that each u, is a nondecreasing function
of t. Let us consider a sequence {w;} such that for i € {0,1,2,...}, w;(z,t) =

wi(z,t+ h) —u;(z,t), where 0 < h < T. Then, wy(x,t) = 0 and
Hw;=0in D x (0,T — hl.
By construction and (3.3),
wy(2,0) > 0on D, w;(x,t) =0on dD x (0,T].

By (3.1), wy > 0 for 0 < t <T — h. Next, assume that for some positive integer
Jywj > 0for0 <t <T —h.Then,in D x (0,7 — h],

Hug = DI P2 (a4 W)UP(E+) = e, DU 0))
1517 P (ot ) = s DU 0+ )

T Fluy( )UT (4 B) U;”(t)))

—\f)|m+iaXaLV<x) (f’(uj(x, t) U (t + h)wj(z, )

+m (o )0 1) [

D

(s(uj(z,t+ h)) — s(u;(z, t))da:>

for some t; and ¢, in (¢,t+ h). Hence, Hw;; > 0in D x (0,7 — h]. Since w;4; > 0
on D, and wj1(x,t) =00on 0D x (0, 7] forall 0 < ¢t < T — h. It follows from (3.1)
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that

Wit (z, 1) :/DG(x,t;g,O)ij({, 0)d¢
+[ ] canen (f’(uj@,mwﬂw By, (€, 7)
T mf (g€, 7)UP () /

D

(s(uy (6.7 + ) — s(uy (€. T)))di) dédr.

for some 7 and 7, in (7,7 + h). This give us, w;;; > 0forall0 <t < T — h. By
the principle of mathematical induction, w; > 0 for 0 < ¢ < T — h for all positive
integer i. Thus, each u; is a nondecreasing function of ¢.

Now, consider the problem

Hv=0in €,

v(z,0) =(z)on D,v = 0on dD x (0,T).

By Theorem 2.2, the strong maximum principle, v > 0 in (2, and v attains its

maximum max,¢p ¢ (z)(:= ko) somewhere in D x {0}. Since

S ) = /D G, €, 0pplEVde,

it follows that the first term in (3.1) has a maximum value in D x {0}. Thus, for
any given constant M > ky, it follows from (3.2) and u; being a nondecreasing
function of ¢ that there exists some ¢; such that v; < M for 0 < ¢t < t; and

i €{0,1,2,...}. This t; satisfies

/ G, 1:€, 0)0(E)de + |D|™ f(M)s™ (M) / [ Gl tie rydedr < M.
D 0 oB

Let u denote lim;_,, u;. From (3.2) and the monotone convergence theorem
([9], p- 83), we have (3.1) for 0 < ¢ < t;. To prove uniqueness, assume that the

integral equation (3.1) has two distinct solutions v and @ on the interval [0, #1].
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Let © = supp, () [u — @ . From (3.1),

u(z,t) — iz, t) =| D"t //BB (z,t;€,7)

x [f(u(€ U™ () = f(al&,7)) U™ (1)|dédr.

Since f, f’, s and s’ are increasing functions, it follows from the mean value

theorem that

(&)U () = fal&, ) U™ (7)| < (f(M)ms™ " (M)s' (M) + f'(M)s™(M))6.

Then,

Juliz, ) — (e, £)] =| D s / | /a 6ot

X [f(u(&r))U™(T) — f(a(z,t)U™(7))dédr
<|D["™F 5 (f(M)yms™ (M)s' (M) + f/(M)s™(M))O

x /Ot /83 Gla,t: €, 7)ddr.

Thus,

O <|D[™ 5 (f(M)ms™ L (M)s' (M) + f'(M)s™(M))©

X/O/BBG(a:,t;f,T)dng. (3.4)

By Lemma 3.2, there exists some t,(< t;) such that

t
DI g 0ns 00 + £ 00 0n)( [ [ 6t nasar) <1,
o JoB
(3.5)
for 0 <t < t,. This is a contradiction. Thus, we have uniqueness of a solution

fort € [0,t]. If t5 < t1, then

6 < |f9|m+i<f<M>msm-1<M>s'<M)+f'<M>sm<M>>( [/ BG(x,t;&T)dde)@,
i (3.6)

for t2 <t< tl.
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From the definition of G, G(z,t;¢,7) = G(x,t — 7;€,0), we have for
te [tg, min{2t2, tl}] that

DI (gm0 an + s anron)( [ [ ctese near) <1,

M (3.7)

which is a contradiction. Hence, we have uniqueness of the solution for 0 < ¢ <

min{2¢,, ¢, }. By proceeding in this way, the integral equation (3.1) has a unique
solution u for t € [0,t4].

Next, we prove that u is continuous on D x [0, ¢;]. Since

lim | G(x,t;&0)0(E)dé = (x) forz € D

t—0t D

and

0< /DG(J;,t;g,O)z/;(f)dg < e /Rn fn/zeflwfaz/z;%(g)dg

(z=8)/2t)* g\~ &)
(maxw(x)) oy /n € d 5

= mgxw(é*)

It follows from Lemma 3.1(i) that the first term on the right-hand side of (3.2)
is continuous. Since f(u;(§, 7)) is bounded by f(M) and U™ (7) is bounded by
s"™(M), the second term is continuous by Lemma 3.2. Thus, each u;,;(z,t) given

by (3.2) is continuous on D x [0, #]. From (3.2),

Wﬂ@w—m@ﬂ:A [ Gt
X [f(ui(w, ) U™ (1) — flui—i (&, 7))U" (7)]dEdT.

Using the Mean Value Theorem and f, f/, s and s’ are increasing functions, we

have

Flui(§ TIUM(T) = fluima (§ 1)U (1) S(F(M)ms™H(M)s' (M) + f'(M)s™(M))
X (ul<577—) - ui—l(€>7_))'
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Let S; = maxpyo4,)(u; — ui—1). As in derivation of (3.4), we obtain

Sivr <D™ (F(M)ms™ Y (M)s' (M) + f/(M)s™(M))

X </0t . G(x,t;{,r)dﬁdT)Si.

For 0 <t < t,, it follows from (3.5) that the sequence {u;(z,t)} converges uni-
formly to u(x,t) for 0 < t < ty. Therefore, u is continuous there. If ¢, < ¢;, then
fort € [ty, t1], we use u(€, t2) to replace ¢(£) in (3.2). As in the derivation of (3.6),

we obtain

Sig1 <D™ (F(MYms™ N (M)s' (M) + f'(M)s™ (M)

x (/tt /83 G(x,t;f,T)dde)Si.

For t € [ty, min{2t,,t,}], it follows form (3.7) that S;;; < S;. Hence, u is contin-
uous there. By proceeding in this way, the integral equation (3.1) has a unique
continuous solution u for 0 < ¢ < ¢;.

Let t;, be the supremum of the interval for which the integral equation (3.1)
has a unique continuous solution u. If ¢ is finite, and u(z, t) is bounded in [0, ¢;),
then we can replace an initial condition of (1.1) by any positive constant greater
than maxp u(z, t,) and repeat a proof similar to the above shows that there exists
an interval [¢,, t3] such that the integral equation (3.1) has a unique continuous
solution u. This contradicts the definition of ;. Hence, if t; is finite, then u
is unbounded in [0, ;). From (3.3), ¢/(z) < u(x,t). Since u; is a nondecreasing

function of ¢, u is a nondecreasing function of ¢. O

The following theorem is to prove that the solution of the integral equation

(3.1) is also the solution of the original problem (1.1).
Theorem 3.4. The problem (1.1) has a unique solution for 0 <t < t,.

Proof. Since [ [,, G(x,t;€,7) f(u(é, 7))U™(7)dédr is finite for # € D and ¢ in any
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compact subset of [0, t;), it follows that for any ¢5 € (0, 1),

//aB (z, &, 7) f(u(€, 7)) U™(7)dédr
zlim/ /83 (z, &, 7) f(u(€, 7)) U™(7)dédr

= lim a_c /C BBG(x,C;&T)f(u(é,f))Um(ﬂdédT)dC
+ lim n/ (x,t5;&,7) , 7)) U™ (T)dEdT.

Since G¢(x, (€, 7) f(u(&, 7)) U™ (1) = Ge(x, (—75€,0) f(w(&, 7)) U™(T), from lemma

3.1(iii) and the Leibniz’s rule, we have

2 ( / o [ G sins T>>UM<T>dsdr)
Lol e (e
-
; / / Gl G &) f(ule, ) U™ (r)dsdr

Since G(x,(; ¢, ¢ — 1/n) = G(z,1/n; &£, 0), which is independent of ¢, we have

/Ot/aBvath (u(&, 7)) U™(7)dédr
i [ [ o(ncec- 1) 20 s (u(ec- 1) Jom (e 1 Jasac

+ lim / /C Un/aBchcf, ul€, 7)U™ (7)dgdrdC

n—oo

n—o0

t—1/n
+ lim / (x,ts5; &, 1) f(w(&, 1)) U™ (T)dEdT
OB

_ / / 6:c—£aXB F(ul€, C)U™(C)dédc
¢—1/n
+hm// /aBG“”“’ ul€, 7)) U™ (7)dédrdC

n—oo

+ / Gz, ts; £, 7) f(u(€, 7))U™ (7)dedr
0 0B
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= [ 2D ptuge,

t pC—1/n
+ lim /t5/0 /BBGg(m,C;f,T)f(u(f,T))Um(T)dngdC

m—0o0

n /0 /a | Glatss &) (€ 1) U™ () (3.8)

Let

t—1/n
me= [ [ Gdesenrute o

Without loss of generality, let n > [, we have

¢—1/n

gn(2,C) — (@, €) = / Gela, G, €.7)F (u(€, 7)) U™ (7)dEdr.

¢—1/1 JoB

Since G¢(z,¢;&,7) € C(D x (7,7]) and f(u(&, 7))U™(7) is monotone function of
7, it follows from Theorem 2.3, the Second Mean Value Theorem for integral,

that there exists a real number v such that { — v € (( —1/I,{ — 1/n) and

C—
gu(@,C) = gi(x.¢) = /8 f (u (s,c = %))Um (c = %) /C el e mydre

1 . 1 ¢—1/n ‘
+/@Bf(u<€76—ﬁ)>U (C—ﬁ> /C—v Ge(x, (€, m)drdé.

From G¢(z,(;€,7) = —G-(z,(; €, 7), we have

gn(‘rv C) - gl(£7<)

1 m 1 ¢ '
e () [ e

1 " 1 (—1/n .
_/(9Bf(u<§7(—ﬁ>)U <<_ﬁ) /C_7 G, (x,(; ¢, T)drdE
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e
1)er(e=)

v r(u(ec-7))um(e-F)e(ecec- )
_/an(u(s,c—%))UmG—%) (x,g;g,g_ﬁ) g

We note that f(u) and s(u) are bounded on compact sets of (0, 00), G(z,(; €, ¢ —

I
[e5)
Kh
IS
A
~
|
| =
N———
\/\/
N——
S S
VRN 3
0 T N
| I
I | =
I |~ |
~ o)
Lo Q
/N
/_\ ks d
/‘\ Iy y
o
J\,
“'“3|H

€) = G(z,¢&,0), which converges uniformly with respect to ( as ¢ — 0. There-
fore {g,} is a Cauchy sequence, and hence, {g,} convergence uniformly with

respect to ¢ in any compact subset of (0, ;). We obtain

lim / t / . | GaaGié nstut.um (ndgarac

// /dBGwa, u(€, ) U™ (r)dédrdC.

From (3.8), we have

/ot /636*(55, t:&,7)f(w(&, 7)) U™(1)dédr

- [ 2 pugemum

5/t5/ /aB Ge(w, G &) f(ulg, 7)U™ (7)dEdrdC
/t5/83 (,t5: &, 7) f(u(€, 7)) U™ (T)dEdr.
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Thus,

o[ [ cetenstenummasir

= 2 o)+ [ [ Gttt ) s

0B

By using Lemma 3.1(iii), we have that

| atensensuenuncr

and

t—e
| [ Guatetign) fate U r)dgar
o Jom
exist. By using Theorem 2.1, Leibnitz rule, we have for any z in any compact

subset of D and t in any compact subset of (0, ¢;)

aii /0 _E/a Gl ;& 7) f(u(&, 7)U™ ()dEdT

= / R / Gy (v, &, 7) f(u(& 1) U™ (1)dédT
0 0B
and

8 t—e T
), /a G286, T)f (ulg, )U™ (r)dedr

N /0 : /33 Gaia, (2,6, 7) f (u(8, 1)) U™ (7)dEdr
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For any (21, ..., -1, T4, Tit1, ..., n) € D, we obtain

e—0

lim/0 /aB Gz, t;&,7)f(u(&, 1)) U™ (T)dldT

= (ax / @S T)f(U(&T))Um(T)dﬁdT)dm
+/O /83 G(-'Ifl, ...,fEiflyﬂéi,xi+1...,$n,t;f7T)f(u(§’7-))Um(7_)d€d7_

—im [ ] | Gutatinstuis.mun nders
+/ G(T1,y oy T 1, Ty Ty ooy T, 6 E,T) f(w(E, 7)) U™ (7)dEdT.  (3.9)
0o JoB

We would like to show that

lg%/: /Ot_e /83 Gy (z, 6 &, 7) f(u(&, 7)) U™ (7)dédTdx;

/ 113%/ /aB wi(@, 6.6 7) f(u(€, 7)) U™ (r)dEdrdi;. (3.10)

By Theorem 2.8, we have

lim/ / G, (e, t; &, 7) f(u(&, 7)) U™ (7)dédTdx;

e—0 i 9B
:11_{% /()B< w(&, 1)) U™ (T / Gy, (z,t; €, )dx)dfdr
i [ [ e )0

% Jo OB

X (G(x, 6,6, 7) — G(X1, ooy Ti_1, Tiy Tisg 1y -y Ty 5 €, T))dEAT,

which exists by Lemma 3.2, f is bounded on 9B x [0,¢] and U is bounded on
0,t]. Therefore,

/0 Fu& U™ ()G, t;6,7) — G(21, -0y Ty Ty Tig1s o T, 1€, T))dEAT

OB
-] [ G 6 (e, DU () dgdrd,
C; 0 0B
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and we have

aii/o /88G(x,t;f,T)f(u(g,T))Um(T)dng
:/0 ; Go,(z, &, 1) f(u(&, 7)) U™ (7)dEdr.

For any (I‘l, ey Ty Ty Tt 1y ey .CL’n) €D,
t—e
i [ [ Gulestsen) (e 1)U () dedr
€ 0
x; t—e
i [ 2 ( A e (w,t;S,T)f(U(é,T))Um(T)dédT) dz,
=0 Jz, 0z \ Jo oB
t—e

+ lim / Go(@1, oy Ti1, Ty Ty, ooy Ty 8 €, T) f(w(E, 7)) U™ (T)dEAT

e—0 0

0B
~Jim / ' /O a [ G tig ) flule U () dera,

e—0 o9

+/Ot/§B Gy (T1y ey Ty 1y Ty T 1y ooy Ty 6 €, ) f(w(&, 7)) U™ (T)dEdT.

(3.11)

We would like to show that

e—0 7

lim / / / G (@656, f (ul€, 7)) U™ (1) dédrd
i 0 OB
_ / "lim / Coonn (2, 1€, 7) f(u(€, 7)) U™ (r)dEdTdas. (3.12)
T 0B

% e—0 0

By theorem 2.1 and theorem 2.8, we obtain
Ty t—e
i [/ / G (0,156, 7) F (6, P)U™ () g,
€E— 9B
/ / (@, 66, 7) = Gy (1, o0y Timt, Tiy i1, ooy Tny 156, 7)) f (€, 7)) dEAT
oB

which exists. Therefore, by using theorem 2.8, we have

//6 B T) — G (T4, oo Ti1s s i1, oo s b € 7)) F (0, 7)) U™ (F)dE
B

- / /0 /aB G (2,6, 7) f(u(&, 7)) U™ (1)dEdT d;.
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From the above and (3.12), we have

o [ i
i [ | Galeenue s

- /0 oB Goiwi (@, 66, 7) f(u(&, 7))U™ (7)dédT.

It follows from (3.11) that for any z in any compact subset of D and any ¢ in any

compact subset of (0,%,), that

82 t
oz [ Gtien e nundsar
9zi Jo Jon
t
[ | Gunleti&nftulen)Um(r)dgar,
o JoB
By Theorem 2.1, the Leibnitz’s rule and Lemma 3.1(iii), we have for any z in
any compact subset of D and any ¢ in any compact subset of (0, ),

0

E/DG(x,t;g,O)w(ﬁ)df:/DGt<Iat§§70)¢(§)d§7

0
oz, /[,G<Iat;£,0>w<£>dé= /D G, (2,156, 0)(€) .
82

From the integral equation (3.1), we have for x € D and ¢ € (0, ;) that

Hu= /D HG(a,1:€,0)0()de + 151+ XL e iy

+/0 LB(HG(x,t;6,7))f(u(§77))Um(T)d€dT

=300 [ 3o - u@)de + DI 2L pute oo

L A R e
1 Ox ()
ov

- |f)|m+g

fula, ))U™(1).
From the integral equation (3.1), we also have

lim u(z,t) = lim [ G(x,t;&,0)00(E)dé = (x) forx € D.

t—0t t—0t D
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From Lemma 3.1(iii), we obtain u = 0 on 0D x (0,7T]. Thus, the continuous
solution u of the integral equation (3.1) is a solution of (1.1) which has a unique

solution before a blow-up occurs. O



CHAPTER IV
SUFFICIENT CONDITIONS FOR BLOW-UP AND BLOW-UP
SET

We modify the proof of theorem 4 of Chan [3] to prove the following result.

Lemma 4.1. If t;, is finite and w attains its maximum on 0B, then the solution of (1.1)

u blows up everywhere on OB only.

Proof. We rewrite the problem (1.1) as two initial-boundary value problems:

Hu = 0in B x (0,1),

u=g(x,t)ondB x (0,1,), (4.1)

and

Hu = 0in D\B x (0,t),
u(z,0) = ¥(x) on D\B, (4.2)
u(z,t) =0in 0D x (0,),u = g(x,t) on OB x (0,t).

First, we will show that u dose not have a relative maximum in B x (0, ;) and
D\B x (0,t).

We differentiate the partial differential equations in the (4.1) and (4.2) with
respect to t. We obtain that Hu; = 0in B x (0,t,) and D\ B x (0,,). Since u; > 0
and u is a nontrivial and applying the maximum principle, we have u; > 0 in
B x (0,t,) and D\B x (0,t,). Hence, Au = u; > 0in B x (0,t,) and D\B x
(0,t). This implies that © dose not have a relative maximum in B x (0,t,) and

in D\B x (0,1).
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Next, we will show that for any ¢ > 0,
u(x,t) > u(y,t) forallxz € 0B and y ¢ OB.

We assume that there exists a smallest positive number, say ¢;, and some z, ¢
0B such that u(xg,ty) = min,esp u(z,ty). We suppose that there is a point y,
in 0B such that u(yg,ty) > mingesp u(x,ty). Since u is continuous, there is a
point (y,tp) in a neighborhood of (yo,to) such that ' ¢ 0B and u(y,t,) >
mingcsp u(z,ty). Hence, ty is not the smallest number such that u(xg,ty) =
min,esp u(z,tp). This is a contradiction. We suppose that u attains its maximum
at a point (y,tp) for 0 < t < ty. If y € B, then u = u(y,ty) in B x (0,%] by
Theorem 2.5, the Strong Maximum Principle. Since u is continuous, we have
u = u(i, tp) in B x [0,t9]. Then u(z,t) is a constant in B x [0,t]. It contradicts
tou; > 0. If §y € D\B, then u = u(y,t) in D\B x (0,t]. Since u is continuous,
we have u = u(y, to) in D\B x [0, t]. It contradicts with u(x,t) = 0 for x € dD.

Thus, for any ¢ > 0,
u(z,t) > u(y,t) forallz € 0B and y ¢ 0B. (4.3)

Finally, we claim that for each ¢ > 0, u attains the same value for z € 9B. Sup-
pose that there is a point yy € 0B and ¢t > 0 such that u(yo,t) > mingepp u(z, ).
Since u is continuous, there is a point (y/,¢) in a neighbourhood of u(yo, t) such
that y ¢ OB and w(y',t) > mingegp u(z,t) for all ¢ > 0. This contradicts with
(4.3). O

Let |D| denote the volume of D, w denote the n—dimensional solid angle

and

u(t) = [ s(opulz, )ds,
D
where ¢ is the normalized fundamental eigenfunction of the problem,

Ap+Xp=0inD,¢p =00n oD,
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with A denoting its corresponding eigenvalue.
Finally, we can modify the technique of proving theorem 5 in [6] to obtain

sufficient conditions for (1.1) to blow-up in a finite time.

Theorem 4.2. Let sup,.pu(z,t) = M(t) and ¢ attains its maximum at every point

on 0B. Assume that

1
A (2m—1)
0 > -~ 1 _ Y
#(0) <|D|m+iR”—1w>

o(x) f(u(x,t)) > u™(x,t) forall x € OB and forall t > 0,

s(u(z,t)) > u(x,t) forall v € D and for all t > 0.

Then the solution wu of (1.1) blows up everywhere on 0B in a finite time.

Proof. Multiplying the normalized eigenvalue to (1.1) and integrating over D,

we obtain that

(t) + utt) = [ @)D (o, 0)U™ 0)d

= [ 1Dttt o) (ve) - Ixslo) Jds

—— [ 1D o) fule, U™ e
C / DI 0(o) Flule )0 ()

Since s(u(z,t)) > u(z,t) forall zin D forall ¢ > 0, using the supremum property,
we obtain that s(u(z,t)) > M(t) forall ¢t > 0 and

/Ds(u(x,t))da: > /DM(t)dx = M(t), forall ¢t > 0.

We use the conditions prescribed in the theorem and the above argument to



obtain that

L;|bvwﬂ¢wwf@mx¢»cwwwdxzz/"|inm+iw”uawcﬁwwdx

oB

= yD\m+iMm(t)Um(t)/ da
oB

= | D™t M™ (U™ ()R w
> ‘ﬁ|m+%M2m<t>Rn—1w7
where R"~'w is an n—dimensional surface area of a sphere. Thus,
(1) + Au(t) = |DI™ s M2 (1) R™ 'w, for all t > 0.

By Theorem 2.7, the Schwarz’s inequality,

lt) = /D o), )
< M(1) /D o(x)de

gM(t)(/Dda:>é</D¢(:c)2d:c)é.

Since [, ¢(z)*dx = 1and |D| = 1, we have
u(t) < M(t)|D|2 = M(t), forallt > 0.
Thus, (4.2) becomes

pe(t) + Au(t) > [D™F 5 R Lwop™(1).

That is,

1 N 1
———e(t) + ———=Au(t) > |D mtn R,
/L2m(t) t( ) ,UQm(t) ( ) ’ ’
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(4.2)
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Multiplying the above equation by (1 — 2m)e!=2™* and rewritting in the fol-

lowing form.

d(ul=2m(t d (1—2m)At R
p(1—2m)Xt (M - ()) + € - M1—2m(t) < 6(1—2m))\t(1 —2m)|D|m+%R”_1w.

That is

d(e(l—Zm)At)M(l—zm) (t)

- < (1 . 2m)6(1_2m))‘t|D|m+%RH_lw.

Integrating both sides from 0 to ¢, we have

A m4-L pn—1 Ay|mA-L pn—1
(1-2m) | D™ R w 1 aomym _ 1DI™T R
H (t) < b\ o(—2m)Xt (0) \ :

Finally,

)\e(l—2m)t

M(?m—l)(t) Z e — — 1 .
|D’ ne( m) t+ (Au(l 2m)<0) _ ‘D| » R w)

Hence, we can see that ;™1 (¢) tends to infinity whenever
|b|m+%e(1—2m))\t + ()\u(l_2m)(0) ks |D|m+%Rn—1w> 0.
Thus, we obtains that if

t—

1 . _)\N(172m)(0) + |D’m+%Rn71w
(1 —2m)\ | D[t ’

then 2™~ !(t) — co. From our assumption, we have ' ~2™(0) < | D™« R"'w/\.

Hence, 1 tends to infinity for some finite time ¢;,, where

A

ty

1 . _)\M(l—2m)(0) + |D’m+%Rn—1w
~ (1—-2m)A | D™+ '
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That is, u tends to infinity for some finite time ¢, on the boundary of the concen-
trated ball B.
O



CHAPTER V
CONCLIUSION AND DISCUSSION

We consider a mutidimensional nonlinear parabolic problem:

|D|m+laX§V( )f(u(x,t))(/Ds(u(a:,t))d:v>min Q,

u(z,0) = ¥(x) on D, u(x,t) =0forz € 0D,0 <t < T.

We can show that it has a unique continuous solution, which is an increasing
function of ¢t. We explore that the blow-up occurs everywhere on the boundary
of a ball, 0B, where the local source is situated. Finally, we also find sufficient

conditions for blow-up to occurs in a finite time which are

T -
/ ¢ :L’ 0 dx > ( A 1 ) Y
| D|mts Re=1w

o(x) f(u(z,t)) > u™(z,t) forall z € OB for all t > 0,

s(u(z,t)) > u(x,t) forallx € D and forall ¢ > 0,

where ¢(z) is the normalized eigenfunction of A¢p + A\¢ = 0in D, ¢ = 0 on 0D,
with A denoting its corresponding eigenvalue, m > 1 and R" 'w is the surface

area of an n—dimensional sphere.
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