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CHAPTER I

INTRODUCTION

Let ς = (ς1, ς2, ς3, ..., ςn) be a point in n−dimensional Euclidean space in Rn,

T̂ (> 0) and m(> 1) be any real numbers, D̂ be a bounded domain in Rn, ∂D̂ be

a boundary of D̂, B̂ be an n−dimensional ball, {ς ∈ Rn : |ς − b̂| < R̂}, centered

at a given point b̂ with radius R̂, ¯̂
B ⊂ D̂, ∂B̂ be the boundary of B̂, v(ς) denote

the unit inward normal vector at ς ∈ ∂B̂, and

χB̂(ς) =

1 for ς ∈ B̂,

0 for ς ∈ D̂\B̂,

be the characteristic function. Without loss of generality, let b̂ be the origin.

We would like to study the following multi-dimensional nonlinear parabolic

problem.

uγ −∆ςu =
∂χB̂(ς)

∂v
F (u(ς, γ))Zm(γ) in D̂ × (0, T̂ ],

where u(ς, 0) = ψ(ς) on ¯̂
D and u(ς, γ) = 0 for ς ∈ ∂D̂, 0 < γ ≤ T̂ are initial and

boundary condition, respectively. We note that ∆ς =
∑n

i=1 ∂
2/∂ς2

i , and Z(γ) =∫
D̂
S(u(ς, γ))dς and F and S are given functions. This problem has a nonlinear

source which is a product of a local contribution (∂χB(ς)/∂v)F (u(ς, γ)) and a

global contribution Zm(γ).

In order to study the behavior of the solution over a unit domain, we con-

sider the domain having the same shape [2]. If the shape is given, then a domain

can be uniquely determined by its size. For example, in one- dimensional space,

all intervals [a, b] have the same shape. In two-dimensional space, all circular

domains have the same shape. Let D be a bounded n−dimensional domain

having the same shape as D̂. Then, there is x0 ∈ D̂ ∩D and a positive constant
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A such that

D̂ = {ς : ς = x0 + A(x− x0) for x ∈ D}.

Let the size |D| =
∫
D
dx = 1. Without lost of generality, we can let x0 be the

origin. We note that from the above transformation,

A =

(
size of D̂
size of D

) 1
n

=

(∫
D̂
dς∫

D
dx

) 1
n

=

(
|D̂|
|D|

) 1
n

= |D̂|
1
n .

Let γ = A2t and ς = Ax. Then,

∂u

∂γ
=
∂u

∂t

∂t

∂γ
=

1

A2

∂u

∂t
and

∂2u

∂ς2
i

=
1

A2

∂2u

∂x2
i

.

LetB = {x ∈ Rn : |x| < R}with ∂B be its boundary andR = R̂/A, and ν denote

the inward normal at x ∈ ∂B. Let ϕ(x) be the infinitely differentiable function

with compact support and δ(x) denote the usual Dirac delta function.
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We can rewrite ∂χB̂(ς)/∂v by using the spherical coordinates [12] as follows

∫
Rn

∂χB̂(Ax)

∂v
ϕ(x)dx

=

∫ ∞
0

∫ π

−π

∫ π

0

...

∫ π

0

δ(Ar − R̂)ϕ(r, ω1, ..., ωn−1)rn−1

×
n−2∏
i=1

sinn−1−i ωidω1...dωn−1dr

=

∫ ∞
0

∫ π

−π

∫ π

0

...

∫ π

0

δ(σ − R̂)ϕ
( σ
A
, ω1, ..., ωn−1

)( σ
A

)n−1

×
n−2∏
i=1

sinn−1−i ωidω1...dωn−1
1

A
dσ

=
1

A

∫ π

−π

∫ π

0

...

∫ π

0

ϕ

(
R̂

A
, ω1, ..., ωn−1

)(
R̂

A

)n−1

×
n−2∏
i=1

sinn−1−i ωidω1...dωn−1

=
1

A

∫ ∞
0

∫ π

−π

∫ π

0

...

∫ π

0

δ

(
r − R̂

A

)
ϕ

(
R̂

A
, ω1, ..., ωn−1

)(
R̂

A

)n−1

×
n−2∏
i=1

sinn−1−i ωidω1...dωn−1dr

=
1

A

∫
Rn

∂χB(x)

∂ν
ϕ(x)dx.

Hence,

∂χB̂(Ax)

∂v
=

1

A

∂χB(x)

∂ν

and

Z(γ) =

∫
D̂

S(u(ς, γ))dς = An
∫
D

s(u(x, t))dx,

where S(u(ς, γ)) = s(u(x, t)). Let ∆ =
∑n

i=1 ∂
2/∂x2

i , H = ∂/∂t−∆, F (u(ς, γ)) =

f(u(x, t)), U(t) =
∫
D
s(u(x, t))dx, T = T̂ /A2, ∂D be the boundary of D, D̄ be the
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closure of D, and Ω = D × (0, T ]. Then, the original problem becomes

Hu = |D̂|m+ 1
n
∂χB(x)

∂ν
f(u(x, t))Um(t) in Ω,

u(x, 0) = ψ(x) on D̄, u(x, t) = 0 for x ∈ ∂D, 0 < t ≤ T.

 (1.1)

We assume that f(0), f ′(0), s(0) and s′(0) are nonnegative while f(u), f ′(u),

f ′′(u), s(u), s′(u) and s′′(u) are positive for u > 0. We further assume for con-

struction later that

∆ψ(x) + |D̂|m+ 1
n
∂χB(x)

∂ν
f(ψ(x))

(∫
D

s(ψ(x))dx

)m
≥ 0. (1.2)

The inequality (1.2) intuitively means that at the beginning, a temperature will

rise up.

This model describes a temperature u due to a nonlinear source having local

and nonlocal features subject to the initial condition ψ(x) and zero temperature

on the lateral boundary. Instead of studying u(b, t) for any point b ∈ B, we

would like to investigate a solution u(x, t) of (1.1) for (x, t) ∈ Ω. Since the term

∂χB(x)/∂ν intuitively means that we have Dirac delta functions on each point

of ∂B, a solution of (1.1) that are we looking for is in distributional sense and at

most a continuous function on Ω̄ satisfies (1.1).

A solution u of (1.1) is said to blow up at a point (x, tb) if there exists a se-

quence {u(xn, tn)} → ∞ as (xn, tn)→ (x, tb).

We also assume that Ω has the property that for any point P ∈ ∂D × (0, T ],

there exists an (n + 1)− dimensional neighborhood Σ such that Σ ∩ ∂D × (0, T ]

can be represented, for some i = 1, 2, ..., n in the form,

xi = β(x1, x2, ...xi−1, xi+1, ...xn, t),

where β,Dxβ and D2
1β are Hölder continuous of exponent α ∈ (0, 1) while

DxDtβ and D2
t β are continuous.

This type of problem in 1−dimension was studied by Chan and Tian [6].

They proved that there is a unique continuous solution before the blow-up oc-

curs and also giving a blow-up criterion. For n−dimensional problem, Chan
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and Tian [5] studied a blow-up problem with nonlinear source of the form

∂χB(x)

∂ν
f(u(x, t)).

They showed that the problem has a unique solution before the blow-up occurs

on the boundary of a ball.

Quenching and blow-up are closely related. As an illustration, and explosion

described by a quenching model occurs at a finite temperature [4] while if it

is described by a blow-up model, it occurs at an infinitely high temperature.

Boonklurb [2] studied an n−dimension quenching problem with having local

and nonlocal features,

∂χB(x)

∂ν
f(u(x, t))

(∫
D

s(u(x, t))dx

)m
.

He showed that there is a unique solution before the quenching occurs and gave

quenching criterion. We modify and extend their study to n−dimensional blow-

up problem with having the same local and nonlocal features.

In chapter 2, some of preliminary theorems are listed for ease of reference.

In chapter 3, we show that the integral equation derived from (1.1) has a

unique continuous solution u, which is nondecreasing function of t. Then, we

prove that u is a unique solution of problem (1.1).

In chapter 4, we give sufficient conditions for blow-up to occur and the blow-

up set of (1.1).



CHAPTER II

PRELIMINARIES

The followings are some theorems that we frequently use thoughout this thesis.

Theorem 2.1. (Leibniz’s rule; [1], p. 201) Let f : R × X → R and X be a closed

interval in R satisfying

(i) The function (x, t)→ f(x, t) is continuous on R×X.

(ii) The partial derivative (x, t)→ ft(x, t) exists and is continuous on R×X.

(iii) The function u, v : X → R are differentiable on X .

Then, the function G : X → R, defined by

G(t) =

∫ v(t)

u(t)

f(x, t)dx,

exists and is differentiable on X. Moreover, its derivative is given by

G′(t) =

∫ v(t)

u(t)

ft(x, t)dx− f(u(t), t)u′(t) + f(v(t), t)v′(t).

Theorem 2.2. (Strong maximum principle; [8], p. 34) LetH be a heat operator, ∂/∂t−

∆ and if u has a positive maximum in D which is attained at a point (x0, t0) then

u(x, t) = u(x0, t0) for all a point (x, t) that path connected to (x0, t0).

Theorem 2.3. (Second Mean Value Theorem; [1], pp. 193-195) If f is an integrable

function and g is monotone on I := [a, b], then there exist ξ ∈ I such that

∫ b

a

fg = g(a)

∫ ξ

a

f + g(b)

∫ b

ξ

f.

Theorem 2.4. (Divergence theorem; [7], p. 627) Suppose that u ∈ C1(Ū). Then

∫
U

uxidx =

∫
∂U

uνidS, (i ∈ {1, 2, 3, ..., n})
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where ν = (ν1, ..., νn) is outward pointing unit normal vector field.

Theorem 2.5. (Green’s Formulas; [7], p. 628) Let u, v ∈ C2(Ū). Then

(i)

∫
U

∆udx =

∫
∂U

∂u

∂ν
dS,

(ii)

∫
U

Dv ·Dudx = −
∫
U

u∆vdx+

∫
U

∂u

∂ν
udS,

(iii)

∫
U

u∆v − v∆udx =

∫
∂U

u
∂v

∂ν
− v∂u

∂ν
dS,

where Du = (ux1 , ...., uxn) and ∆ is the Laplace operator.

Theorem 2.6. (Monotone convergence theorem; [10], p. 21) Assume that the functions

{fk}∞k=1 are measurable, with

f1 ≤ f2 ≤ ... ≤ fk ≤ fk+1 ≤ ....

Then

∫
Rn

lim
k→∞

fkdx = lim
k→

∫
Rn

fkdx.

Theorem 2.7. (Schwarz’s inequality; [10], p. 63) Let p and q be positive real numbers

such that 1
p

+ 1
q

= 1. Let X be a measurable space with measure µ. Let f and g be

measurable functions on X, with range in [0,∞). Then

∫
X

fgdx ≤
{∫

X

fpdµ

} 1
p
{∫

X

gqdµ

} 1
q

(2.1)

and

∫
X

(f + g)dx ≤
{∫

X

fpdµ

} 1
p

+

{∫
X

gqdµ

} 1
q

. (2.2)

The inequality (2.1) is Hölder’s; (2.2) is Minkowski’s. If p = q = 2, (2.1) is known as

the Schwarz inequality.

Theorem 2.8. (Fubini’s theorem; [9], p. 416) Let (X,M, µ) and (Y,N, ν) be two

σ−finite measurable spaces and f is nonnegative (µ×ν)−measurable function on X×
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Y . If 0 ≤ f ≤ ∞, and if

φ(x) =

∫
Y

fxdν, ψ(y) =

∫
X

f ydµ, (x ∈ X, y ∈ Y )

then φ is µ− measurable, ψ is ν− measurable, and

∫
X

ψdµ =

∫
X×Y

fd(µ× ν) =

∫
Y

ψdν,

where fx =
∫
X
fdµ and f y =

∫
Y
fdν.



CHAPTER III

EXISTENCE AND UNIQUENESS

In this chapter, we establish the existence and uniqueness result locally for the

integral equation corresponding to (1.1). The solution of this integral equation

is a continuous function and an increasing function of t. Next, we will prove

that the solution of this integral equation is a unique solution of (1.1).

Green’s function ([11], p. 198) G(x, t; ξ, τ) corresponding to (1.1) is deter-

mined by

HG(x, t; ξ, τ) = δ(x− ξ)δ(t− τ) for x and ξ in D, and t and τ in (−∞,∞),

G(x, t; ξ, τ) = 0 for x and ξ in D, and t < τ,

G(x, t; ξ, τ) = 0 for x ∈ ∂D and ξ ∈ D, and t and τ in (−∞,∞).

As we need this Green’s function to have some useful properties ([8], pp. 82-

83), we let Ω have the property that for every point P ∈ S̄, there exists an (n +

1)−dimensional neighborhood such that N ∩ S̄ can be represented in the form

xi = z(x1, ..., xi−1, xi+1, ..., xn, t), for some i ∈ {1, 2, 3, ..., n}. Here, z,Dxz,D
2
xz

and Dtz are Hölder’s continuous of exponent α ∈ (0, 1), while DxDtz and D2
t z

are continuous. For ease of reference, let us state those useful properties in

Lemma 3.1 as follow:

Lemma 3.1. ([8], pp. 82-83) (i) There exists a unique G(x, t; ξ, τ) that continuous in

Ω̄ × (D × [0, T )), t > τ . Furthermore, DxG,D
2
xG and DtG are continuous functions

of (x, t; ξ, τ) in Ω× (D × [0, T )), t > τ.

(ii) For each (ξ, τ) ∈ D × [0, T ), G(x, t; ξ, τ) = 0 on ∂D × (τ, T ] and G(x, t; ξ, τ)

is positive in D × (τ, T ].

(iii) For any fixed (ξ, τ) ∈ D × [0, T ) and any ε > 0, DxG,D
2
xG and DtG are

uniformly continuous functions of (x, t) ∈ Ω with t− τ > ε.
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Consider the eigenvalue problem of the form,

∆φ+ λφ = 0 in D, φ = 0 on ∂D.

This problem has a sequence of positive eigenvalues, λ1 ≤ λ2 ≤ λ3 ≤ ..., which

are listed in an increasing order with due regard to multiplicity. Their corre-

sponding eigenfunctions, φi, i ∈ N can be chosen to form a complete orthonor-

mal set with the fundamental eigenfunction φ1 > 0 in D. Thus, we have ([11],

pp. 213-214)

G(x, t; ξ, τ) =
∞∑
i=1

φi(x)φ̄i(ξ)e
−λi(t−τ),

where φ̄i denoted the complex conjugate of φi.

Let us consider the adjoint operator ofH , which is given byH∗u = −ut−∆u.

Using Theorem 2.4(iii), the Green’s Formulas, we obtain the integral equation

from (1.1) by first consider the equation

∫ T

0

∫
D

(G∗(x, t; ξ, τ)Hu(x, t)− u(x, t)H∗G∗(x, t; ξ, τ))dxdt

=

∫ T

0

∫
D

(
u(x, t)

∂

∂t
G∗(x, t; ξ, τ) +G∗(x, t; ξ, τ)

∂

∂t
u(x, t)

)
dx

+

∫
∂D×(0,T ]

(
G∗(x, t; ξ, τ)

∂

∂ν
u(x, t)− u(x, t)

∂

∂ν
G∗(x, t; ξ, τ)

)
dSx,

where G∗(x, t; ξ, τ) = G(ξ, τ ;x, t). Using the fact that H∗G∗(x, t; ξ, τ) = δ(x −

ξ)δ(t− τ), we obtain

u(ξ, τ) =

∫ T

0

∫
D

G∗(x, t; ξ, τ)Hu(x, t)dxdt

−
∫ T

0

∫
D

(
u(x, t)

∂

∂t
G∗(x, t; ξ, τ) +G∗(x, t; ξ, τ)

∂

∂t
u(x, t)

)
dx

−
∫
∂D×(0,T ]

(
G∗(x, t; ξ, τ)

∂

∂ν
u(x, t)− u(x, t)

∂

∂ν
G∗(x, t; ξ, τ)

)
dSx.

Changing the roles between ξ and x and between τ and t, the above equation
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becomes

u(x, t) =

∫ T

0

∫
D

G(x, t; ξ, τ)Hu(ξ, τ)dxdt

−
∫ T

0

∫
D

(
u(x, t)

∂

∂t
G(x, t; ξ, τ) +G(x, t; ξ, τ)

∂

∂t
u(x, t)

)
dx

−
∫
∂D×(0,T ]

(
G(x, t; ξ, τ)

∂

∂ν
u(x, t)− u(x, t)

∂

∂ν
G(x, t; ξ, τ)

)
dSx.

Since G and u are zero on the boundary of D × (0, T ], we obtain

u(x, t) =

∫ T

0

∫
D

G(x, t; ξ, τ)Hu(ξ, τ)dξdτ

−
∫ T

0

∫
D

(
u(x, t)

∂

∂t
G(x, t; ξ, τ) +G(x, t; ξ, τ)

∂

∂t
u(x, t)

)
dξdτ.

Using the fundamental theorem of calculus and the fact that G(x, t; ξ, τ) = 0, for

all τ > t, we have

u(x, t) =

∫ T

0

∫
D

G(x, t; ξ, τ)Hu(ξ, τ)dξdτ

−
∫
D

G(x, t; ξ, T )u(ξ, T )dξ +

∫
D

G(x, t; ξ, 0)u(ξ, 0)dξ

=

∫ T

0

∫
D

G(x, t; ξ, τ)Hu(ξ, τ)dξdτ +

∫
D

G(x, t; ξ, 0)ψ(ξ)dξ.

Now, taking T → t, we have

u(x, t) =

∫
D

G(x, t; ξ, 0)ψ(ξ)dξ

+ |D̂|m+ 1
n

∫ t

0

∫
D

G(x, t; ξ, τ)
∂χB(ξ)

∂ν
f(u(ξ, τ))Um(τ)dξdτ.
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Using integration by parts and Theorem 2.3, the divergence theorem, we have

∫
D

G(x, t; ξ, τ)
∂χB(ξ)

∂ν
f(u(ξ, τ))Um(τ)dξ

=

∫
D

G(x, t; ξ, τ)f(u(ξ, τ))Um(τ)[ν(ξ) · ∇χB(ξ)]dξ

= −
∫
D

χB(ξ)
n∑
i=1

∂

∂ξi
(G(x, t; ξ, τ)f(u(ξ, τ))Um(τ)νi(ξ))dξ

= −
∫
B

∇ · (G(x, t; ξ, τ)f(u(ξ, τ))Um(τ)ν(ξ))dξ

=

∫
∂B

G(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξ.

Finally, the integral representation of (1.1) becomes

u(x, t) =

∫
D

G(x, t; ξ, 0)ψ(ξ)dξ + |D̂|m+ 1
n

∫ t

0

∫
∂B

G(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ.

(3.1)

Lemma 3.2. [5] On Ω̄,
∫ t

0

∫
∂B
G(x, t; ξ, τ)dξdτ is continuous.

Proof. Since

G(x, t; ξ, τ) ≤ (t− τ)−n/2

2nπn/2
e|x−ξ|

2/(4(t−τ)),

and
∫∞
−∞ e

−ξ2i dξi = π1/2, it follows that

∫
∂B

G(x, t; ξ, τ)dξ ≤ 1

2π1/2(t− τ)1/2
.

Let wn be the surface area of an n−dimensional unit sphere. Since Green’s func-

tion is continuous, given x, x0 ∈ Rn and t, t0 ≥ 0 for t, t0 ≥ τ . Given ε > 0. We

can choose δ > 0 such that whenever |(x, t)− (x0, t0)| < δ, we have

|G(x, t; ξ, τ)−G(x0, t0; ξ, τ)| < ε

2wNRn−1t0
.



13

If we choose δ̃ = min{δ, πε2/4}, then∣∣∣∣ ∫ t

0

∫
∂B

G(x, t; ξ, τ)dξdτ −
∫ t0

0

∫
∂B

G(x0, t0; ξ, τ)dξdτ

∣∣∣∣
=

∣∣∣∣ ∫ t

t0

∫
∂B

G(x, t; ξ, τ)dξdτ +

∫ t

0

∫
∂B

G(x, t; ξ, τ)−G(x0, t0; ξ, τ)dξdτ

∣∣∣∣
≤
∣∣∣∣ ∫ t

t0

∫
∂B

G(x, t; ξ, τ)dξdτ

∣∣∣∣+

∣∣∣∣ ∫ t0

0

∫
∂B

G(x, t; ξ, τ)−G(x0, t0; ξ, τ)dξdτ

∣∣∣∣
≤ 2
√
t− t0

2
√
π

+
εwnR

n−1t0
2wnRn−1t0

≤ 2
√
δ

2
√
π

+
ε

2

<
ε

2
+
ε

2

= ε.

This completes the proof.

We use the technique of proving theorem 3 of Chan and Tian [5] to prove the

theorems 3.3 and 3.4.

Theorem 3.3. There exists some tb such that for 0 ≤ t < tb, then the integral equation

(3.1) has a unique continuous solution u such that u ≥ ψ(x), and u is a nondecreasing

function of t. If tb is finite, then u is unbound in [0, tb).

Proof. First, construct a sequence {ui} in Ω = D × (0, T ] by u0 ≡ ψ(x), and for

i ∈ {0, 1, 2, ...},

Hui+1 = |D̂|m+ 1
n
∂χB(x)

∂ν
f(ui(x, t))U

m
i (t) in Ω,

ui+1(x, 0) = ψ(x) on D̄, ui+1(x, t) = 0 on ∂D × (0, T ].

From (3.1),

ui+1(x, t) =

∫
D

G(x, t; ξ, 0)ψ(ξ)dξ

+ |D̂|m+ 1
n

∫ t

0

∫
∂B

G(x, t; ξ, τ)f(ui(ξ, τ))Um
i (τ)dξdτ. (3.2)
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Let ∂Ω denote the parabolic boundary (D̄ × {0}) ∪ (∂D × (0, T ]) of Ω. The con-

dition (1.2) implies

H(u1 − u0) =Hu1 −Hu0

=Hu1 −Hψ(x)

=Hu1 + ∆ψ(x)

≥|D̂|m+ 1
n
∂χB(x)

∂ν
f(u0(x, t))Um

0 (t)− |D̂|m+ 1
nf(ψ(x))

(∫
D

s(ψ(x))dx

)m
=|D̂|m+ 1

n
∂χB(x)

∂ν

(
f(u0(x, t)Um

0 (t)− f(ψ(x))

(∫
D

s(ψ(x))dx

)m)
=|D̂|m+ 1

n
∂χB(x)

∂ν

(
f(ψ(x))

(∫
D

s(ψ(x))dx

)m
− f(ψ(x))

(∫
D

s(ψ(x))dx

)m)
=0

and u1 − u0 =0 on ∂Ω.

By Lemma 3.1(ii), G(x, t; ξ, τ) is positive in {(x, t; ξ, τ) : x and ξ are in D,T ≥

t > τ ≥ 0}. From (3.1), we consider the representation of the above parabolic

problem, we obtain that

u1 − u0 =

∫
D

G(x, t; ξ, τ)h(x, t)dξdτ,

for some h(x, t) : Ω → [0,∞). Thus, we can conclude that u1(x, t) ≥ u0(x) in Ω.

Assume that for some positive j,

ψ ≤ u1 ≤ ... ≤ uj−1 ≤ uj in Ω.

Since f and s are increasing functions, and uj ≥ uj−1, we have

H(uj+1 − uj) = |D̂|m+ 1
n
∂χB(x)

∂ν

(
f(uj)U

m
j (t)− f(uj−1)Um

j−1(t)

)
≥ 0 in Ω,

uj+1 − uj = 0 on ∂Ω.
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From (3.1), we have

uj+1 − uj =|D̂|m+1/n

∫ t

0

∫
∂B

G(x, t; ξ, τ)

×
(
f(uj(x, t))U

m
j (t)− f(uj−1(x, t))Um

j−1(t)

)
dξdτ,

which is nonnegative. So, we have uj+1 ≥ uj . By the principle of mathematical

induction,

ψ ≤ u1 ≤ u2 ≤ ... ≤ ui−1 ≤ ui on Ω̄, (3.3)

for all positive integer i. Next, we show that each ui is a nondecreasing function

of t. Let us consider a sequence {wi} such that for i ∈ {0, 1, 2, ...}, wi(x, t) =

ui(x, t+ h)− ui(x, t), where 0 < h < T. Then, w0(x, t) = 0 and

Hw1 = 0 in D × (0, T − h].

By construction and (3.3),

w1(x, 0) ≥ 0 on D̄, w1(x, t) = 0 on ∂D × (0, T ].

By (3.1), w1 ≥ 0 for 0 < t ≤ T − h. Next, assume that for some positive integer

j, wj ≥ 0 for 0 < t ≤ T − h. Then, in D × (0, T − h],

Hwj+1 = |D̂|m+ 1
n
∂χB(x)

∂ν

(
f(uj(x, t+ h))Um

j (t+ h)− f(uj(x, t))U
m
j (t)

)
=|D̂|m+ 1

n
∂χB(x)

∂ν

(
f(uj(x, t+ h))− f(uj(x, t))U

m
j (t+ h)

+ f(uj(x, t))(U
m
j (t+ h)− Um

j (t))

)
=|D̂|m+ 1

n
∂χB(x)

∂ν

(
f ′(uj(x, t1))Um

j (t+ h)wj(x, t)

+mf(uj(x, t))U
m−1
j (t2)

∫
D

(s(uj(x, t+ h))− s(uj(x, t))dx
)

for some t1 and t2 in (t, t+h). Hence, Hwj+1 ≥ 0 in D× (0, T −h]. Since wj+1 ≥ 0

on D̄, and wj+1(x, t) = 0 on ∂D× (0, T ] for all 0 < t ≤ T −h. It follows from (3.1)
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that

wj+1(x, t) =

∫
D

G(x, t; ξ, 0)wj+1(ξ, 0)dξ

+

∫ t

0

∫
∂B

G(x, t; ξ, τ)

(
f ′(uj(ξ, τ1))Um

j (τ + h)wj(ξ, τ)

+mf(uj(ξ, τ))Um−1
j (τ2)

∫
D

(s(uj(ξ, τ + h))− s(uj(ξ, τ)))dξ

)
dξdτ,

for some τ1 and τ2 in (τ, τ + h). This give us, wj+1 ≥ 0 for all 0 < t < T − h. By

the principle of mathematical induction, wi ≥ 0 for 0 < t ≤ T −h for all positive

integer i. Thus, each ui is a nondecreasing function of t.

Now, consider the problem

Hv = 0 in Ω,

v(x, 0) = ψ(x) on D̄, v = 0 on ∂D × (0, T ].

By Theorem 2.2, the strong maximum principle, v > 0 in Ω, and v attains its

maximum maxx∈D̄ ψ(x)(:= k0) somewhere in D × {0}. Since

v(x, t) =

∫
D

G(x, t; ξ, 0)ψ(ξ)dξ,

it follows that the first term in (3.1) has a maximum value in D × {0}. Thus, for

any given constant M > k0, it follows from (3.2) and ui being a nondecreasing

function of t that there exists some t1 such that ui ≤ M for 0 ≤ t ≤ t1 and

i ∈ {0, 1, 2, ...}. This t1 satisfies

∫
D

G(x, t; ξ, 0)ψ(ξ)dξ + |D̂|m+ 1
nf(M)sm(M)

∫ t1

0

∫
∂B

G(x, t; ξ, τ)dξdτ ≤M.

Let u denote limi→∞ ui. From (3.2) and the monotone convergence theorem

([9], p. 83), we have (3.1) for 0 ≤ t ≤ t1. To prove uniqueness, assume that the

integral equation (3.1) has two distinct solutions u and ũ on the interval [0, t1].
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Let Θ = supD̄×[0,t1] |u− ũ| . From (3.1),

u(x, t)− ũ(x, t) =|D̂|m+ 1
n

∫ t

0

∫
∂B

G(x, t; ξ, τ)

× [f(u(ξ, τ))Um(τ)− f(ũ(ξ, τ))Ũm(τ)]dξdτ.

Since f , f ′, s and s′ are increasing functions, it follows from the mean value

theorem that

|f(u(ξ, τ))Um(τ)− f(ũ(ξ, τ))Ũm(τ)| ≤ (f(M)msm−1(M)s′(M) + f ′(M)sm(M))Θ.

Then,

|u(x, t)− ũ(x, t)| =|D̂|m+ 1
n

∫ t

0

∫
∂B

G(x, t; ξ, τ)

× [f(u(ξ, τ))Um(τ)− f(ũ(x, t))Ũm(τ)]dξdτ

≤|D̂|m+ 1
n (f(M)msm−1(M)s′(M) + f ′(M)sm(M))Θ

×
∫ t

0

∫
∂B

G(x, t; ξ, τ)dξdτ.

Thus,

Θ ≤|D̂|m+ 1
n (f(M)msm−1(M)s′(M) + f ′(M)sm(M))Θ

×
∫ t

0

∫
∂B

G(x, t; ξ, τ)dξdτ. (3.4)

By Lemma 3.2, there exists some t2(≤ t1) such that

|D̂|m+ 1
n (f(M)msm−1(M)s′(M) + f ′(M)sm(M))

(∫ t

0

∫
∂B

G(x, t; ξ, τ)dξdτ

)
< 1,

(3.5)

for 0 ≤ t ≤ t2. This is a contradiction. Thus, we have uniqueness of a solution

for t ∈ [0, t2]. If t2 < t1, then

Θ ≤ |D̂|m+ 1
n (f(M)msm−1(M)s′(M)+f ′(M)sm(M))

(∫ t

t2

∫
∂B

G(x, t; ξ, τ)dξdτ

)
Θ,

(3.6)

for t2 ≤ t ≤ t1.
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From the definition of G, G(x, t; ξ, τ) = G(x, t− τ ; ξ, 0), we have for

t ∈ [t2,min{2t2, t1}] that

|D|m+ 1
n ((f(M)msm−1(M)s′(M) + sm(M)f ′(M))

(∫ t

t2

∫
∂B

G(x, t; ξ, τ)dξdτ

)
< 1,

(3.7)

which is a contradiction. Hence, we have uniqueness of the solution for 0 ≤ t ≤

min{2t2, t1}. By proceeding in this way, the integral equation (3.1) has a unique

solution u for t ∈ [0, t1].

Next, we prove that u is continuous on D̄ × [0, t1]. Since

lim
t→0+

∫
D

G(x, t; ξ, 0)ψ(ξ)dξ = ψ(x) for x ∈ D̄

and

0 <

∫
D

G(x, t; ξ, 0)ψ(ξ)dξ ≤ 1

2nπn/2

∫
Rn

t−n/2e−|x−ξ|
2/4tψ(ξ)dξ(

max
D̄

ψ(x)

)
1

πn/2

∫
Rn

e−((x−ξ)/2t)2d
(x− ξ)

2t

= max
D̄

ψ(ξ).

It follows from Lemma 3.1(i) that the first term on the right-hand side of (3.2)

is continuous. Since f(ui(ξ, τ)) is bounded by f(M) and Um(τ) is bounded by

sm(M), the second term is continuous by Lemma 3.2. Thus, each ui+1(x, t) given

by (3.2) is continuous on D̄ × [0, t1]. From (3.2),

ui+1(x, t)− ui(x, t) =

∫ t

0

∫
∂B

G(x, t; ξ, τ)

× [f(ui(x, t))U
m
i (τ)− f(ui−1(ξ, τ))Um

i−1(τ)]dξdτ.

Using the Mean Value Theorem and f , f ′, s and s′ are increasing functions, we

have

f(ui(ξ, τ))Um
i (τ)− f(ui−1(ξ, τ))Um

i−1(τ) ≤(f(M)msm−1(M)s′(M) + f ′(M)sm(M))

× (ui(ξ, τ)− ui−1(ξ, τ)).
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Let Si = maxD̄×[0,t1](ui − ui−1). As in derivation of (3.4), we obtain

Si+1 ≤|D̂|m+ 1
n (f(M)msm−1(M)s′(M) + f ′(M)sm(M))

×
(∫ t

0

∫
∂B

G(x, t; ξ, τ)dξdτ

)
Si.

For 0 ≤ t ≤ t2, it follows from (3.5) that the sequence {ui(x, t)} converges uni-

formly to u(x, t) for 0 ≤ t ≤ t2. Therefore, u is continuous there. If t2 < t1, then

for t ∈ [t2, t1], we use u(ξ, t2) to replace ψ(ξ) in (3.2). As in the derivation of (3.6),

we obtain

Si+1 ≤|D̂|m+ 1
n (f(M)msm−1(M)s′(M) + f ′(M)sm(M))

×
(∫ t

t2

∫
∂B

G(x, t; ξ, τ)dξdτ

)
Si.

For t ∈ [t2,min{2t2, t1}], it follows form (3.7) that Si+1 < Si. Hence, u is contin-

uous there. By proceeding in this way, the integral equation (3.1) has a unique

continuous solution u for 0 ≤ t ≤ t1.

Let tb be the supremum of the interval for which the integral equation (3.1)

has a unique continuous solution u. If tb is finite, and u(x, t) is bounded in [0, tb),

then we can replace an initial condition of (1.1) by any positive constant greater

than maxD̄ u(x, tb) and repeat a proof similar to the above shows that there exists

an interval [tb, t3] such that the integral equation (3.1) has a unique continuous

solution u. This contradicts the definition of tb. Hence, if tb is finite, then u

is unbounded in [0, tb). From (3.3), ψ(x) ≤ u(x, t). Since ui is a nondecreasing

function of t, u is a nondecreasing function of t.

The following theorem is to prove that the solution of the integral equation

(3.1) is also the solution of the original problem (1.1).

Theorem 3.4. The problem (1.1) has a unique solution for 0 ≤ t < tb.

Proof. Since
∫ t

0

∫
∂B
G(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ is finite for x ∈ D̄ and t in any
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compact subset of [0, tb), it follows that for any t5 ∈ (0, t),

∫ t

0

∫
∂B

G(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ

= lim
n→∞

∫ t− 1
n

0

∫
∂B

G(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ

= lim
n→∞

∫ t

t5

∂

∂ζ

(∫ ζ− 1
n

0

∫
∂B

G(x, ζ; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ

)
dζ

+ lim
n→∞

∫ t5− 1
n

0

∫
∂B

G(x, t5; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ.

SinceGζ(x, ζ; ξ, τ)f(u(ξ, τ))Um(τ) = Gζ(x, ζ−τ ; ξ, 0)f(u(ξ, τ))Um(τ), from lemma

3.1(iii) and the Leibniz’s rule, we have

∂

∂ζ

(∫ ζ−1/n

0

∫
∂B

G(x, ζ; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ

)
=

∫
∂B

G

(
x, ζ; b, ζ − 1

n

)
f

(
u

(
ξ, ζ − 1

n

))
Um

(
ζ − 1

n

)
dξ

+

∫ ζ− 1
n

0

∫
∂B

Gζ(x, ζ; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ.

Since G(x, ζ; ξ, ζ − 1/n) = G(x, 1/n; ξ, 0), which is independent of ζ, we have

∫ t

0

∫
∂B

G(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ

= lim
n→∞

∫ t

t5

∫
D

G

(
x, ζ; ξ, ζ − 1

n

)
∂χB(ξ)

∂ν
f

(
u

(
ξ, ζ − 1

n

))
Um

(
ζ − 1

n

)
dξdζ

+ lim
n→∞

∫ t

t5

∫ ζ−1/n

0

∫
∂B

Gζ(x, ζ; ξ, τ)f(u(ξ, τ))Um(τ)dξdτdζ

+ lim
n→∞

∫ t−1/n

0

∫
∂B

G(x, t5; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ

=

∫ t

t5

∫
D

δ(x− ξ)∂χB(ξ)

∂ν
f(u(ξ, ζ))Um(ζ)dξdζ

+ lim
n→∞

∫ t

t5

∫ ζ−1/n

0

∫
∂B

Gζ(x, ζ; ξ, τ)f(u(ξ, τ))Um(τ)dξdτdζ

+

∫ t5

0

∫
∂B

G(x, t5; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ
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=

∫ t

t5

∂χB(x)

∂ν
f(u(x, ζ))Um(ζ)dζ

+ lim
m→∞

∫ t

t5

∫ ζ−1/n

0

∫
∂B

Gζ(x, ζ; ξ, τ)f(u(ξ, τ))Um(τ)dξdτdζ

+

∫ t5

0

∫
∂B

G(x, t5; ξ, τ)f(u(ξ; τ))Um(τ)dξdτ. (3.8)

Let

gn(x, t) =

∫ t−1/n

0

∫
∂B

Gt(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ.

Without loss of generality, let n > l, we have

gn(x, ζ)− gl(x, ζ) =

∫ ζ−1/n

ζ−1/l

∫
∂B

Gζ(x, ζ; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ.

Since Gζ(x, ζ; ξ, τ) ∈ C(D̄ × (τ, T ]) and f(u(ξ, τ))Um(τ) is monotone function of

τ, it follows from Theorem 2.3, the Second Mean Value Theorem for integral,

that there exists a real number γ such that ζ − γ ∈ (ζ − 1/l, ζ − 1/n) and

gn(x, ζ)− gl(x, ζ) =

∫
∂B

f

(
u

(
ξ, ζ − 1

l

))
Um

(
ζ − 1

l

)∫ ζ−γ

ζ−1/l

Gζ(x, ζ; ξ, τ)dτdξ

+

∫
∂B

f

(
u

(
ξ, ζ − 1

n

))
Um

(
ζ − 1

n

)∫ ζ−1/n

ζ−γ
Gζ(x, ζ; ξ, τ)dτdξ.

From Gζ(x, ζ; ξ, τ) = −Gτ (x, ζ; ξ, τ), we have

gn(x, ζ)− gl(x, ζ)

= −
∫
∂B

f

(
u

(
ξ, ζ − 1

l

))
Um

(
ζ − 1

l

)∫ ζ−γ

ζ−1/l

Gτ (x, ζ; ξ, τ)dτdξ

−
∫
∂B

f

(
u

(
ξ, ζ − 1

n

))
Um

(
ζ − 1

n

)∫ ζ−1/n

ζ−γ
Gτ (x, ζ; ζ, τ)dτdξ
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=

∫
∂B

f

(
u

(
ξ, ζ − 1

l

))
Um

(
ζ − 1

l

)
G

(
x, ζ; ξ, ζ − 1

l

)
dξ

−
∫
∂B

f

(
u

(
ξ, ζ − 1

l

))
Um

(
ζ − 1

l

)
G(x, ζ; ξ, ζ − γ)dξ∫

∂B

f

(
u

(
ξ, ζ − 1

n

))
Um

(
ζ − 1

n

)
G(x, ζ; ξ, ζ − γ)dξ

−
∫
∂B

f

(
u

(
ξ, ζ − 1

n

))
Um

(
ζ − 1

n

)
G

(
x, ζ; ξ, ζ − 1

n

)
dξ

=

∫
∂B

[
f

(
u

(
ξ, ζ − 1

n

))
Um

(
ζ − 1

n

)
− f

(
u

(
ξ, ζ − 1

l

))
Um

(
ζ − 1

l

)]
×G(x, ζ; ξ, ζ − γ)dξ

+

∫
∂B

f

(
u

(
ξ, ζ − 1

l

))
Um

(
ζ − 1

l

)
G

(
x, ζ; ξ, ζ − 1

l

)
dξ

−
∫
∂B

f

(
u

(
ξ, ζ − 1

n

))
Um

(
ζ − 1

n

)
G

(
x, ζ; ξ, ζ − 1

n

)
dξ.

We note that f(u) and s(u) are bounded on compact sets of (0,∞), G(x, ζ; ξ, ζ −

ε) = G(x, ε; ξ, 0), which converges uniformly with respect to ζ as ε → 0. There-

fore {gn} is a Cauchy sequence, and hence, {gn} convergence uniformly with

respect to ζ in any compact subset of (0, tb). We obtain

lim
n→∞

∫ t

t5

∫ ζ−1/n

0

∫
∂B

Gζ(x, ζ; ξ, τ)f(u(ξ, τ))Um(τ)dξdτdζ

=

∫ t

t5

∫ ζ

0

∫
∂B

Gζ(x, ζ; ξ, τ)f(u(ξ, τ))Um(τ)dξdτdζ.

From (3.8), we have

∫ t

0

∫
∂B

G(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ

=

∫ t

t5

∂χB(x)

∂ν
f(u(ξ, τ))Um(τ)dζ

+

∫ t

t5

∫ ζ

0

∫
∂B

Gζ(x, ζ; ξ, τ)f(u(ξ, τ))Um(τ)dξdτdζ

+

∫ t5

0

∫
∂B

G(x, t5; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ.
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Thus,

∂

∂t

∫ t

0

∫
∂B

G(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ

=
∂χB(x)

∂ν
f(u(x, t))Um(t) +

∫ t

0

∫
∂B

Gt(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ.

By using Lemma 3.1(iii), we have that

∫ t−ε

0

∫
∂B

Gxi(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ

and

∫ t−ε

0

∫
∂B

Gxixi(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ

exist. By using Theorem 2.1, Leibnitz rule, we have for any x in any compact

subset of D and t in any compact subset of (0, tb)

∂

∂xi

∫ t−ε

0

∫
∂B

G(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ

=

∫ t−ε

0

∫
∂B

Gxi(x, t; ξ, τ)f(u(ξ, t))Um(τ)dξdτ

and

∂

∂xi

∫ t−ε

0

∫
∂B

Gxi(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ

=

∫ t−ε

0

∫
∂B

Gxixi(x, t; ξ, τ)f(u(ξ, t))Um(τ)dξdτ.
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For any (x1, ..., xi−1, x̃i, xi+1, ..., xn) ∈ D, we obtain

lim
ε→0

∫ t−ε

0

∫
∂B

G(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ

= lim
ε→0

∫ xi

x̃i

(
∂

∂xi

∫ t−ε

0

∫
∂B

G(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ

)
dxi

+

∫ t−ε

0

∫
∂B

G(x1, ..., xi−1, x̃i, xi+1..., xn, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ

= lim
ε→0

∫ xi

x̃i

∫ t−ε

0

∫
∂B

Gxi(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτdxi

+

∫ t

0

∫
∂B

G(x1, ..., xi−1, x̃i, xi+1, ..., xn, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ. (3.9)

We would like to show that

lim
ε→0

∫ xi

x̃i

∫ t−ε

0

∫
∂B

Gxi(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτdxi

=

∫ xi

x̃i

lim
ε→0

∫ t−ε

0

∫
∂B

Gxi(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτdxi. (3.10)

By Theorem 2.8, we have

lim
ε→0

∫ xi

x̃i

∫ t−ε

0

∫
∂B

Gxi(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτdxi

= lim
ε→0

∫ t−ε

0

∫
∂B

(
f(u(ξ, τ))Um(τ)

∫ xi

x̃i

Gxi(x, t; ξ, τ)dxi

)
dξdτ

= lim
ε→0

∫ t−ε

0

∫
∂B

f(u(ξ, τ))Um(τ)

× (G(x, t; ξ, τ)−G(x1, ..., xi−1, x̃i, xi+1, ..., xn, t; ξ, τ))dξdτ,

which exists by Lemma 3.2, f is bounded on ∂B × [0, t] and U is bounded on

[0, t]. Therefore,

∫ t

0

∫
∂B

f(u(ξ, τ))Um(τ)(G(x, t; ξ, τ)−G(x1, ..., xi−1, x̃i, xi+1, ..., xn, t; ξ, τ))dξdτ

=

∫ xi

x̃i

∫ t

0

∫
∂B

Gxi(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτdxi,
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and we have

∂

∂xi

∫ t

0

∫
∂B

G(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ

=

∫ t

0

∫
∂B

Gxi(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ.

For any (x1, ..., xi−1, x̃i, xi+1, ..., xn) ∈ D,

lim
ε→0

∫ t−ε

0

∫
∂B

Gxi(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ

= lim
ε→0

∫ xi

x̃i

∂

∂xi

(∫ t−ε

0

∫
∂B

Gxi(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ

)
dxi

+ lim
ε→0

∫ t−ε

0

∫
∂B

Gxi(x1, ..., xi−1, x̃i, xi+1, ..., xn, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ

= lim
ε→0

∫ x

x2

∫ t−ε

0

∫
∂B

Gxixi(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτdxi

+

∫ t

0

∫
∂B

Gxi(x1, ..., xi−1, x̃i, xi+1, ..., xn, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ.

(3.11)

We would like to show that

lim
ε→0

∫ xi

x̃i

∫ t−ε

0

∫
∂B

Gxixi(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτdxi

=

∫ xi

x̃i

lim
ε→0

∫ t−ε

0

∫
∂B

Gxixi(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτdxi. (3.12)

By theorem 2.1 and theorem 2.8, we obtain

lim
ε→0

∫ xi

x̃i

∫ t−ε

0

∫
∂B

Gxixi(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτdxi

=

∫ t

0

∫
∂B

(Gxi(x, t; ξ, τ)−Gxi(x1, ..., xi−1, x̃i, xi+1, ..., xn, t; ξ, τ))f(u(ξ, τ))dξdτ

which exists. Therefore, by using theorem 2.8, we have

∫ t

0

∫
∂B

(Gxi(x, t; ξ, τ)−Gxi(x1, ..., xi−1, x̃i, xi+1, ..., xn, t; ξ, τ))f(u(ξ, τ))Um(τ)dξdτ

=

∫ xi

x̃i

∫ t

0

∫
∂B

Gxixi(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτdxi.
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From the above and (3.12), we have

∂

∂xi

∫ t

0

∫
∂B

Gxi(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ

=

∫ t

0

∫
∂B

Gxixi(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ.

It follows from (3.11) that for any x in any compact subset of D and any t in any

compact subset of (0, tb), that

∂2

∂x2
i

∫ t

0

∫
∂B

G(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ

=

∫ t

0

∫
∂B

Gxixi(x, t; ξ, τ)f(u(ξ, τ))Um(τ)dξdτ.

By Theorem 2.1, the Leibnitz’s rule and Lemma 3.1(iii), we have for any x in

any compact subset of D and any t in any compact subset of (0, tb),

∂

∂t

∫
D

G(x, t; ξ, 0)ψ(ξ)dξ =

∫
D

Gt(x, t; ξ, 0)ψ(ξ)dξ,

∂

∂xi

∫
D

G(x, t; ξ, 0)ψ(ξ)dξ =

∫
D

Gxi(x, t; ξ, 0)ψ(ξ)dξ,

∂2

∂x2
i

∫
D

G(x, t; ξ, 0)ψ(ξ)dξ =

∫
D

Gxixi(x, t; ξ, 0)ψ(ξ)dξ.

From the integral equation (3.1), we have for x ∈ D and t ∈ (0, tb) that

Hu =

∫
D

HG(x, t; ξ, 0)ψ(ξ)dξ + |D̂|m+ 1
n
∂χB(x)

∂ν
f(u(x, t))Um(t)

+

∫ t

0

∫
∂B

(HG(x, t; ξ, τ))f(u(ξ, τ))Um(τ)dξdτ

= δ(t)

∫
D

δ(x− ξ)ψ(ξ)dξ + |D̂|m+ 1
n
∂χB(x)

∂ν
f(u(x, t))Um(t)

+ lim
ε→0
|D̂|m+ 1

n

∫ t−ε

0

∫
∂B

δ(x− ξ)δ(t− τ)f(u(ξ, τ))Um(τ)dξdτ

= |D̂|m+ 1
n
∂χB(x)

∂ν
f(u(x, t))Um(t).

From the integral equation (3.1), we also have

lim
t→0+

u(x, t) = lim
t→0+

∫
D

G(x, t; ξ, 0)ψ(ξ)dξ = ψ(x) for x ∈ D̄.
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From Lemma 3.1(iii), we obtain u = 0 on ∂D × (0, T ]. Thus, the continuous

solution u of the integral equation (3.1) is a solution of (1.1) which has a unique

solution before a blow-up occurs.



CHAPTER IV

SUFFICIENT CONDITIONS FOR BLOW-UP AND BLOW-UP

SET

We modify the proof of theorem 4 of Chan [3] to prove the following result.

Lemma 4.1. If tb is finite and u attains its maximum on ∂B, then the solution of (1.1)

u blows up everywhere on ∂B only.

Proof. We rewrite the problem (1.1) as two initial-boundary value problems:

Hu = 0 in B × (0, tb),

u = g(x, t) on ∂B × (0, tb),

u(x, 0) = ψ(x) in B̄,

 (4.1)

and

Hu = 0 in D\B̄ × (0, tb),

u(x, 0) = ψ(x) on D̄\B,

u(x, t) = 0 in ∂D × (0, tb), u = g(x, t) on ∂B × (0, tb).

 (4.2)

First, we will show that u dose not have a relative maximum in B × (0, tb) and

D\B̄ × (0, tb).

We differentiate the partial differential equations in the (4.1) and (4.2) with

respect to t. We obtain that Hut = 0 in B × (0, tb) and D\B̄ × (0, tb). Since ut ≥ 0

and u is a nontrivial and applying the maximum principle, we have ut > 0 in

B × (0, tb) and D\B̄ × (0, tb). Hence, ∆u = ut > 0 in B × (0, tb) and D\B̄ ×

(0, tb). This implies that u dose not have a relative maximum in B × (0, tb) and

in D\B̄ × (0, tb).
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Next, we will show that for any t > 0,

u(x, t) > u(y, t) for all x ∈ ∂B and y /∈ ∂B.

We assume that there exists a smallest positive number, say t0, and some x0 /∈

∂B such that u(x0, t0) = minx∈∂B u(x, t0). We suppose that there is a point y0

in ∂B such that u(y0, t0) > minx∈∂B u(x, t0). Since u is continuous, there is a

point (y′, t0) in a neighborhood of (y0, t0) such that y′ /∈ ∂B and u(y′, t0) >

minx∈∂B u(x, t0). Hence, t0 is not the smallest number such that u(x0, t0) =

minx∈∂B u(x, t0). This is a contradiction. We suppose that u attains its maximum

at a point (ȳ, t0) for 0 ≤ t ≤ t0. If ȳ ∈ B, then u ≡ u(ȳ, t0) in B × (0, t0] by

Theorem 2.5, the Strong Maximum Principle. Since u is continuous, we have

u ≡ u(ȳ, t0) in B̄ × [0, t0]. Then u(x, t) is a constant in B̄ × [0, t0]. It contradicts

to ut > 0. If ȳ ∈ D\B̄, then u ≡ u(ȳ, t0) in D\B̄ × (0, t0]. Since u is continuous,

we have u ≡ u(ȳ, t0) in D̄\B × [0, t0]. It contradicts with u(x, t) = 0 for x ∈ ∂D.

Thus, for any t > 0,

u(x, t) > u(y, t) for all x ∈ ∂B and y /∈ ∂B. (4.3)

Finally, we claim that for each t > 0, u attains the same value for x ∈ ∂B. Sup-

pose that there is a point y0 ∈ ∂B and t > 0 such that u(y0, t) > minx∈∂B u(x, t).

Since u is continuous, there is a point (y′, t) in a neighbourhood of u(y0, t) such

that y′ /∈ ∂B and u(y′, t) > minx∈∂B u(x, t) for all t > 0. This contradicts with

(4.3).

Let |D| denote the volume of D, ω denote the n−dimensional solid angle

and

µ(t) =

∫
D

φ(x)u(x, t)dx,

where φ is the normalized fundamental eigenfunction of the problem,

∆φ+ λφ = 0 in D,φ = 0 on ∂D,
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with λ denoting its corresponding eigenvalue.

Finally, we can modify the technique of proving theorem 5 in [6] to obtain

sufficient conditions for (1.1) to blow-up in a finite time.

Theorem 4.2. Let supx∈D̄ u(x, t) = M(t) and ψ attains its maximum at every point

on ∂B. Assume that

µ(0) >

(
λ

|D̂|m+ 1
nRn−1ω

) 1
(2m−1)

,

φ(x)f(u(x, t)) ≥ um(x, t) for all x ∈ ∂B and for all t > 0,

s(u(x, t)) ≥ u(x, t) for all x ∈ D and for all t > 0.

Then the solution u of (1.1) blows up everywhere on ∂B in a finite time.

Proof. Multiplying the normalized eigenvalue to (1.1) and integrating over D,

we obtain that

µt(t) + λµ(t) =

∫
D

φ(x)|D̂|m+ 1
n
∂χB
∂ν

f(u(x, t))Um(t)dx

=

∫
D

|D̂|m+ 1
nφ(x)f(u(x, t))Um(t)

(
ν(x) · ∇χB(x)

)
dx

= −
∫
B

n∑
i=1

|D̂|m+ 1
n
∂

∂νi
φ(x)f(u(x, t))Um(t)νidx

=

∫
∂B

|D̂|m+ 1
nφ(x)f(u(x, t))Um(t)dx.

Since s(u(x, t)) ≥ u(x, t) for all x inD,for all t > 0, using the supremum property,

we obtain that s(u(x, t)) ≥M(t) for all t > 0 and

∫
D

s(u(x, t))dx ≥
∫
D

M(t)dx = M(t), for all t > 0.

We use the conditions prescribed in the theorem and the above argument to
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obtain that

∫
∂B

|D̂|m+ 1
nφ(x)f(u(x, t))Um(t)dx ≥

∫
∂B

|D̂|m+ 1
num(x, t)Um(t)dx

= |D̂|m+ 1
nMm(t)Um(t)

∫
∂B

dx

= |D̂|m+ 1
nMm(t)Um(t)Rn−1ω

≥ |D̂|m+ 1
nM2m(t)Rn−1ω,

where Rn−1ω is an n−dimensional surface area of a sphere. Thus,

µt(t) + λµ(t) ≥ |D̂|m+ 1
nM2m(t)Rn−1ω, for all t > 0. (4.2)

By Theorem 2.7, the Schwarz’s inequality,

µ(t) =

∫
D

φ(x)u(x, t)dx

≤M(t)

∫
D

φ(x)dx

≤M(t)

(∫
D

dx

) 1
2
(∫

D

φ(x)2dx

) 1
2

.

Since
∫
D
φ(x)2dx = 1 and |D| = 1, we have

µ(t) ≤M(t)|D|
1
2 = M(t), for all t > 0.

Thus, (4.2) becomes

µt(t) + λµ(t) ≥ |D̂|m+ 1
nRn−1ωµ2m(t).

That is,

1

µ2m(t)
µt(t) +

1

µ2m(t)
λµ(t) ≥ |D̂|m+ 1

nRn−1ω.



32

Multiplying the above equation by (1 − 2m)e(1−2m)λt and rewritting in the fol-

lowing form.

e(1−2m)λtd(µ1−2m(t))

dt
+
de(1−2m)λt

dt
µ1−2m(t) ≤ e(1−2m)λt(1− 2m)|D̂|m+ 1

nRn−1ω.

That is

d(e(1−2m)λt)µ(1−2m)(t)

dt
≤ (1− 2m)e(1−2m)λt|D̂|m+ 1

nRn−1ω.

Integrating both sides from 0 to t, we have

µ(1−2m)(t) ≤ |D̂|
m+ 1

nRn−1ω

λ
+

1

e(1−2m)λt

(
µ(1−2m)(0)− |D̂|

m+ 1
nRn−1ω

λ

)
.

Finally,

µ(2m−1)(t) ≥ λe(1−2m)t

|D̂|m+ 1
n e(1−2m)λt + (λµ(1−2m)(0)− |D̂|m+ 1

nRn−1ω)
.

Hence, we can see that µ(2m−1)(t) tends to infinity whenever

|D̂|m+ 1
n e(1−2m)λt + (λµ(1−2m)(0)− |D̂|m+ 1

nRn−1ω)→ 0.

Thus, we obtains that if

t→ 1

(1− 2m)λ
ln

(
−λµ(1−2m)(0) + |D̂|m+ 1

nRn−1ω

|D̂|m+ 1
n

)
,

then µ2m−1(t)→∞. From our assumption, we have µ1−2m(0) < |D̂|m+ 1
nRn−1ω/λ.

Hence, µ tends to infinity for some finite time tb, where

tb ≤
1

(1− 2m)λ
ln

(
−λµ(1−2m)(0) + |D̂|m+ 1

nRn−1ω

|D̂|m+ 1
n

)
.
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That is, u tends to infinity for some finite time tb on the boundary of the concen-

trated ball B.



CHAPTER V

CONCLIUSION AND DISCUSSION

We consider a mutidimensional nonlinear parabolic problem:

Hu = |D̂|m+ 1
n
∂χB(x)

∂ν
f(u(x, t))

(∫
D

s(u(x, t))dx

)m
in Ω,

u(x, 0) = ψ(x) on D̄, u(x, t) = 0 for x ∈ ∂D, 0 < t ≤ T.


We can show that it has a unique continuous solution, which is an increasing

function of t. We explore that the blow-up occurs everywhere on the boundary

of a ball, ∂B, where the local source is situated. Finally, we also find sufficient

conditions for blow-up to occurs in a finite time which are

∫
D

φ(x)u(x, 0)dx >

(
λ

|D̂|m+ 1
nRn−1ω

) 1
2m−1

,

φ(x)f(u(x, t)) ≥ um(x, t) for all x ∈ ∂B for all t > 0,

s(u(x, t)) ≥ u(x, t) for all x ∈ D and for all t > 0,

where φ(x) is the normalized eigenfunction of ∆φ + λφ = 0 in D, φ = 0 on ∂D,

with λ denoting its corresponding eigenvalue, m > 1 and Rn−1ω is the surface

area of an n−dimensional sphere.
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