การใช้ซิลิกาจากแกลบข้าวเพื่อการสังเคราะห์เมโซพอรัสโมเลคิวลาร์ซีฟ เอ็ม ซี เอ็ม 41 สำหรับใช้เร่งปฏิกิริยา ไฮโครคิกลอริเนชันของสารประกอบอินทรีย์กลอรีนที่ระเหยได้

นางสาว สิริลักษณ์ เจียรากร

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรคุษฎีบัณฑิต สาขาวิชาการจัดการสิ่งแวคล้อม (สหสาขาวิชา) บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2546 ISBN 974-17-4175-8 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

UTILIZATION OF RICE HUSK SILICA FOR SYNTHESIS OF MESOPOROUS MOLECULAR SIEVE MCM-41 APPLIED FOR CATALYTIC HYDRODECHLORINATION OF CHLORINATED VOLATILE ORGANIC COMPOUNDS

Miss Siriluk Chiarakorn

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in Environmental Management (Inter-department)

Graduate School

Chulalongkorn University

Academic Year 2003

ISBN 974-17-4175-8

Copyright of Chulalongkorn University

Utilization of Rice Husk Silica for Synthesis of Mesoporous Molecular
Sieve MCM-41 Applied for Catalytic Hydrodechlorination of
Chlorinated Volatile Organic Compounds
Miss Siriluk Chiarakorn
Environmental Management
Associate Professor Nurak Grisdanurak
Professor Hiroshige Matsumoto

Accepted by the Graduate School, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Doctor's Degree

Suchada Hisuandanas

Dean of the Graduate School

(Professor Suchada Kiranandana, Ph.D.)

THESIS COMMITTEE

(Assistant Professor Sutha Khaodhiar, Ph.D.) Un's Le Thesis Advisor (Associate Professor Nurak Grisdanurak, Ph.D.) Thesis Co-advisor (Professor Hiroshige Matsumoto, Ph.D.) W- minjanagraf Member (Associate Professor Wanpen Wirojanagud, Ph.D.) Par- Red Member (Professor Piyasan Praserthdam, Ph.D.) Osallyph Member (Kemmarath Osathaphan, Ph.D.)

้สิริลักษณ์ เจียรากร : การใช้ซิลิกาจากแกลบข้าวเพื่อสังเคราะห์เบโซพอรัสโมเลคิวลาร์ สำหรับใช้เร่งปฏิกิริยาไฮโครคิคลอริเนชันของสารประกอบอินทรีย์ ซิฟเอ็มซีเอ็ม 41 กลอรีนที่ระเหยได้. (UTILIZATION OF RICE HUSK SILICA FOR SYNTHESIS OF MESOPOROUS MOLECULAR SIEVE MCM-41 CATALYTIC **HYDRODECHLORINATION** APPLIED FOR OF CHLORINATED VOLATILE ORGANIC COMPOUNDS) อ.ที่ปรึกษา : รศ. คร. นุรักษ์ กฤษคานุรักษ์, อ.ที่ปรึกษาร่วม : Prof. Dr. Hiroshige Matsumoto จำนวนหน้า 166 หน้า. ISBN 974-17-4175-8.

ซิลิกาจากแกลบข้าวสามารถนำมาใช้เป็นแหล่งซิลิกาสำหรับการสังเคราะห์เอ็มซีเอ็ม 41 การสกัคซิลิ ึกาทำได้โดยนำแกลบมาต้มกับกรดไฮโดรกลอริกที่อุณหภูมิ 80 องศาเซลเซียส เป็นเวลา 1 ชม. แล้วนำไปเผาที่ อุณหภูมิ 650 องศาเซลเซียส เป็นเวลา 4 ชม. ผลิตภัณฑ์ที่สกัดได้มีส่วนประกอบของซิลิกามากกว่า 99 เปอร์เซ็นต์. เอ็มซีเอ็ม 41 จากแกลบสังเคราะห์ได้จากสารละลายโซเดียมซิลิเกตที่ได้จากซิลิกาแกลบกับเฮกซะ เคคซิลไตรเมธิลแอมโมเนียมโบรไมค์ (ซีทีเอบี) ด้วยอัตราส่วนโคยโมลเป็น 1.0 ซิลิกา ต่อ 1.1 โซเคียมไฮครอก ใชด์ ต่อ 0.13 ซีทีเอบี ต่อ 0.12 น้ำ โครงสร้างรูพรุนจะก่อผลึกภายในเวลา 48 ชม. ที่พีเอช 10. เอ็มซีเอ็ม 41 จาก แกลบที่สังเคราะห์ได้มีโครงสร้างหกเหลี่ยมที่เป็นระเบียบ, มีพื้นที่ผิวประมาณ 800 ± 8 ตร.ม. ต่อ กรับ, มีเส้น ้ผ่าศูนย์กลางเฉลี่ย 29.5 อังสตรอม และมีการกระจายตัวของรูพรุนน้อย ต้นทุนการผลิตเอ็มซีเอ็ม 41 จากแกลบ ประมาณ 26,000 บาท ต่อ 1 กก. วัสคุที่สังเคราะห์ได้นี้นำไปใช้ในการศึกษาการดูคซับของสารอินทรีย์ระเหยที่มี ้ส่วนประกอบของคลอรีน เช่น ไตรคลอโรเอธิลีน, เตตระคลอโรเอธิลีน, คาร์บอนเตตระคลอไรด์ พบว่าการคูด ้ซับของไตรคลอโรเอธิลีนและเตตระคลอโรเอธิลีนเป็นแบบกายภาพ ขณะที่การคคซับของการ์บอนเตตระคลอ ไรด์มีความแข็งแรงมากกว่า จากการศึกษาไอโซเทอมด้วยตาชั่งที่มีความละเอียดระดับไมโครพบว่าไอโซเทอม ของการ์บอนเตตระกลอไรด์เป็นชนิดที่ 5 ขณะที่ไอโซเทอมของไนโตรเจนเป็นชนิดที่ 4ซี ขนาดของรูพรุนและ ้การกระจายตัวของรูพรุนที่ได้จากไอโซเทอมของในโตรเจนกำนวณด้วยสมการของบีเจเอชและนาโอโนพบว่า ฐพรุนมีขนาด 27 และ 29 อังสตรอม ตามลำคับ ขณะที่ขนาดของรูพรุนและการกระจายตัวของรูพรุนที่ได้จากไอ ์โซเทอมของการ์บอนเตตระกลอไรค์พบว่ารูพรุนมีขนาด 24 และ 28 อังสตรอม ตามลำคับ นอกจากนี้ เอ็มซีเอ็ม 41 จากแกลบถูกนำมาทคสอบเป็นวัสคุซับพอร์ตสำหรับแพลลาเดียมในปฏิกิริยาไฮโครคิคลอริเนชัน ของคลอโรฟอร์ม. ผลการทคสอบพบว่าเอ็มซีเอ็ม 41 จากแกลบมีประสิทธิภาพคีเยี่ยมในการเกิดผลิตภัณฑ์สูง 80-90 เปอร์เซ็นค์ ที่อุณหภูมิ 150-200 องศาเซลเซียส เมื่อเปรียบเทียบกับซิลิกาและซิลิกาอลูมินา

สาขาวิชา การจัดการสิ่งแวคล้อม	ลายมือชื่อนิสิต. พิรักาษณ์ (196
ปีการศึกษา 2546	ลายมือชื่ออาจารย์ที่ปรึกษา
	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

สาข

 \wedge

##4389679320 : MAJOR ENVIRONMENTAL MANAGEMENT KEY WORD: MCM-41 / RICE HUSK SILICA / HYDRODECHLORINATION / PALLADIUM / CVOCS

SIRILUK CHIARAKORN : UTILIZATION OF RICE HUSK SILICA FOR SYNTHESIS OF MESOPOROUS MOLECULAR SIEVE MCM-41 APPLIED FOR CATALYTIC **HYDRODECHLORINATION** OF CHLORINATED VOLATILE ORGANIC COMPOUNDS. THESIS ADVISOR : ASSOC. PROF. NURAK GRISDANURAK, Ph.D., THESIS COADVISOR : PROF. HIROSHIGE MATSUMOTO, Ph.D. 166 pp. ISBN 974-17-4175-8.

High silica containing in rice husk was utilized as silica source for MCM-41 synthesis. Rice husk was refluxed in 5 M hydrochloric acid at 80 °C for 1 h and then calcined at 650 °C for 4 h. This method provided more than 99% of silica content. RH-MCM-41 was synthesized using sodium silicate prepared from rice husk as silica source and hexadecyltrimethylammonium bromide (CTAB) as template. The molar composition was 1.0SiO₂: 1.1NaOH: 0.13CTAB: 0.12H₂O. The mesoporous structure was completely crystallized within 48 h aging at pH value of 10. The RH-MCM-41 possessed uniformly hexagonal structure. The BET surface area was around (800 ± 8) $m^2 g^{-1}$ with average pore diameter of 29.5 Å and narrow pore size distribution. The estimated cost of 1 kg RH-MCM-41 was approximately 26,000 Baht. This material was applied to the adsorption studies of some chlorinated volatile organic compounds (CVOCs) such as trichloroethylene (TCE), tetrachloethylene (PCE), and carbon tetrachloride (CT). The adsorption of TCE and PCE was proved to be physical, while the adsorption of CT was stronger. The adsorption capacity of RH-MCM-41 for CVOCs was higher than commercial mordenite and activated carbon. The adsorption isotherm of carbon tetrachloride (CT) at 25 °C on the RH-MCM-41 was determined by using a magnetically coupled microbalance. The CT isotherms were classified as reversible Type V and the nitrogen adsorption isotherm was Type IVc. Pore size distributions (PSD) of nitrogen isotherm for the RH-MCM-41 calculated by using the BJH and Naono methods showed quite narrow pore diameter distributions, centered around 27 and 29 Å, respectively. Similarly, the peak pore diameters calculated from CT isotherms using the BJH and Naono methods were 24 and 28 Å. The RH-MCM-41 was tested as a catalyst support of palladium for the hydrodechlorination of chloroform. The RH-MCM-41 supported palladium showed the best performance with the conversion enhanced up to 80-90 % at 150-200 °C compared to silica and silica-alumina.

Field of study Environmental Management

Academic year 2003

Student's signature Solule Chiel Advisor's signature Co-advisor's signature

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to the following people, who have offered me great support and encouragement during my Ph.D. study and research work. Firstly, I would like to thank Assoc. Prof. Nurak Grisdanurak for the opportunity to be his Ph.D. student and to work under his guidance. I have gained a great amount of knowledge in the areas of nanomaterial synthesis and heterogeneous catalysis in which I have interested. At the same time, he also gives me an example of how to be a great researcher. I believe that this Ph.D. experience with him would benefit me for the rest of my life. I also want to thank the members of my committee for taking the time out of their busy schedules to review my dissertation and participate my proposal and defense. Special thanks to Assoc. Prof. Wanpen Wirojanagud for her encouragement and financial support, and Assist. Prof. Jatuporn Wittayakun (Institute of Sciences, SUT) for his assistance in material characterizations and substantial comments. Besides, I want to express special thanks to Wichai Suriyakrai, Sirisak Somsri and Chayanand Khongcharoensuk for their valuable works and useful training that serve my own research.

Secondly, I would like to express special thanks to Professor Reid C. Miller and Dr. David Yonge, who provided me the great opportunity to carry out some parts of my research at Department of Chemical Engineering and Center for Multiphase Environmental Research, Washington State University, and also Dr. Brent Peyton and his graduate student, Oscar M. Flores for their training and great helps for my experiments.

Finally, I especially want to dedicate my dissertation to family members. My parents provided me this chance of studying Ph.D. and they have continued to give me help and encouragement unconditionally. Their love and understanding has allowed me to be the person I am today, and for that I will be eternally grateful. I also want to thank Thunyalux Ratpakdi for his helps and encouragement throughout my study.

CONTENTS

Pages

ABSTRACT (IN THAI)	iv
ABSTARCT (IN ENGLISH)	v
ACKNOWLEDEMENT	vi
CONTENTS	vii
LIST OF FIGURES	xiv
LIST OF TABLES	xix

CHAPTER I: INTRODUCTION

1.1 Statement of Purposes	1
1.2 Research Objectives	3
1.3 Scope and Limitation of the Study	3
1.4 Expected Outcomes	3

CHAPTER II: RICE HUSK SILICA EXTRACTION

2.1 Introduction	4
2.2 Objectives	5
2.3 Literature reviews	6
2.3.1 General Information on Silica	6
2.3.1.1 Crystalline Silica	6
2.3.1.2 Amorphous Silica	7
2.3.2 Rice Husk Silica	9
2.4 Experimental	16
2.4.1 Materials and Chemicals	16
2.4.2 Apparatus and Instruments	16

2.4.3 Methodology	16
2.4.4 Sample Characterizations	
2.4.4.1 X-Ray Diffraction (XRD)	17
2.4.4.2 Quantitative X-Ray Fluorescence Spectroscopic (XRF)	17
2.4.4.3 Fourier Transform Infrared Spectroscopic (FTIR)	17
2.4.5 Results and Discussions	18
2.4.5.1 X-Ray Diffraction Spectroscopy	18
2.4.5.2 X-Ray Fluorescence Spectroscopy	19
2.4.5.3 Fourier Transform Infrared Spectroscopy	20
2.5 Summary	21
CHAPTER III: PARENT MCM-41 SYNTHESIS AND CHARACTERIZATION	IS
3.1 Introduction	22
3.2 Objectives	23
3.3 Literature Review	24
3.3.1 Molecular Sieve Materials	24
3.3.1.1 Synthesis of Siliceous MCM-41 Molecular Sieve	29
3.3.1.1.1 Effect of Surfactants/Silicate Ratio	32
3.3.1.1.2 Effect of Synthesis pH	34
3.3.1.2 Formation and Mechanisms of MCM-41 Synthesis	34
3.3.2 Gas Phase Adsorption Theory	36
3.3.2.1 Classification of Isotherms and Hysteresis Types	37
3.3.2.2 A Model System for Adsorption Studies on	
Mesoporous Materials	40
3.4 Experimental	45

3.4.1 Materials and Chemicals	45
3.4.2 Apparatus and Instruments	45
3.4.3 Methodology	45
3.4.4 Sample Characterizations	46
3.4.4.1 X-Ray Diffraction (XRD)	46
3.4.4.2 Scanning Electron Microscope (SEM)	47
3.4.4.3 Transmission Electron Microscope (TEM)	47
3.4.4.4 Fourier Transform Infrared Spectrometry (FTIR)	47
3.4.4.5 Nitrogen Adsorption Isotherms and	
Brunauer, Emmett and Teller (BET) Analysis	47
3.4.5 Results and Discussions	48
3.4.5.1 XRD Characteristics	48
3.4.5.2 Nitrogen Isotherms and BET Analysis	49
3.4.5.3 SEM Morphology	51
3.4.5.4 TEM Morphology	53
3.4.5.5 Fourier Transform Infrared Spectrometry (FTIR)	53
3.4.5.6 Formation Mechanism of MCM-41	54
3.5 Summary	57
CHAPTER IV: SYNTHESIS OF MCM-41 FROM RICE HUSK SILICA	
4.1 Introduction	58
4.2 Objectives	59
4.3 Experimental	60
4.3.1 Methodology	60
4.3.2 Sample Characterizations	61
4.3.3 Results and discussion	61

Pages

4.3.3.1 XRD Characteristics	61
4.3.3.2 Nitrogen Adsorption Isotherm and BET Analysis	64
4.3.3.3 SEM and TEM Morphology	67
4.3.3.4 Fourier Transform Infrared spectrometry (FTIR)	68
4.4 Adsorption of CVOCs on RH-MCM-41	70
4.4.1 Experimental	70
4.4.2 Results and Discussion	70
4.5 Summary	77

CHAPTER V: GASEOUS PHASE ISOTHERMS OF CARBON TETRACHLORIDE AND NITROGEN GAS ON RH-MCM-41

5.1 Introduction	79
5.2 Experimental	81
5.2.1 Equipment and Particle Preparation	85
5.2.2 Carbon Tetrachloride Adsorption and Desorption Isotherms	
5.2.2.1 Procedures	85
5.2.2.2 Results and Discussion	86
5.2.3 Nitrogen Adsorption Isotherm	87
5.2.3.1 Procedures	87
5.2.3.2 Results and Discussion	87
5.3 Summary	89

CHAPTER VI: HYDRODECHLORINATION OF CHLOROFORM

6.1 Introduction	90
6.2 Objectives	92

6.3 Scope of the Study	92
6.4 Literature Review	93
6.4.1 Chloroform	93
6.4.4.1 General Properties	93
6.4.4.2 Sources and Environment Fate	95
6.4.4.3 Regulations, Analytical Methods and Treatment	
Technology	96
6.4.4.4 Health Effects	97
6.4.2 Background of Catalytic Reaction	98
6.4.2.1 Definition of Catalysis	98
6.4.2.1.1 Catalytic Activity	99
6.4.2.1.2 Selectivity of Catalysts	99
6.4.2.2 Classification of Catalytic Systems	100
6.4.2.3 Preparation of Catalysts for Heterogeneous Catalysis	101
6.4.2.3.1 Impregnation and incipient wetness method	101
6.4.2.3.2 Precipitation method	103
6.4.2.3.3 Ion-exchange method	104
6.4.2.4 Catalyst Deactivation	105
6.4.2.5 Anderson-Schulz-Flory Product Distributions	106
6.4.3 Catalytic Hydrodechlorination	107
6.4.3.1 Hydrodechlorination of Chloroform	108
6.4.3.2 Catalyst Supports and Metal Catalysts for	
Hydrodechlorination	109
6.5 Experimental	114
6.5.1 Material and chemicals	114
6.5.2 Methodology	114

Pages

143

6.5.2.1 Catalyst Preparation	114
6.5.2.2 Catalyst Characterizations	115
6.5.2.2.1 Powder X-ray Diffraction Spectroscopy	115
6.5.2.2.2 Hydrogen Chemisorption	116
6.5.2.2.3 X-Ray Fluorescence Spectroscopy	116
6.5.2.3 Hydrodechlorination of Chloroform	116
6.5.3 Results and Discussion	118
6.5.3.1 Catalyst Characterizations	118
6.5.3.1.1 XRD Results	118
6.5.3.1.2 XRF Results	120
6.5.3.1.3 Hydrogen Chemisorption Results	121
6.5.3.2 Conversions of CLF	122
6.5.3.3 Selectivity of CLF on Hydrodechlorination	124
6.5.3.4 Anderson-Schulz-Flory Product Distributions and	
Deactivation	129
6.5.3.5 Proposed Mechanism for Hydrodechlorination of CLF	134
6.6 Summary	135
CHAPTER VII: COST ANALYSIS OF RICE HUSK SILICA AND RH-MCM-4	1
7.1 Introduction	137
7.2 Analysis of Economic Cost for the MCM-41 Synthesis	137
7.3 Discussion	142

7.4 Summary.....

xiii

Pages

CHAPTER VIII: CONCLUSION AND RECOMMENDATIONS

8.1	Conclusion	144
8.2	Recommendations and Future Works	145

REFERENCES	147
APPENDICES	
APPENDIX A	159
APPENDIX B	161
APPENDIX C	163
BIOGRAPHY	166

LIST OF FIGURES

2-1	Transformations of crystalline silica at various temperatures	6
2-2	Ultimate particles in common forms of colloidal silica	8
2-3	Equilibrium of energy used for milling and electricity produced	
	on the basis of a 1 ton paddy	10
2-4	Combined Back Scattered Electron and X-ray images revealing	
	porous husk structure and silica concentration at the outer surface	12
2-5	X-Ray Diffraction pattern of amorphous silica produced	
	from rice husk ash	13
2-6	Fourier Transform Infrared spectra of amorphous silica produced from	
	rice husk ash	13
2-7	XRD spectrum of the extracted silica.	18
2-8	XRF pattern corresponding to silica element found in rice husk ash	20
2-9	FTIR spectrum of the extracted silica.	21
3-1	Phase formation of MCM family obtained from CTAB/SiO ₂ /water	
	Powder X-ray diffraction patterns of (a) disordered MCM-41,	
	(b) ordered MCM-41, (c) MCM-48, (d) MCM-50 and (e) Octamer	26
3-2	Powder X-ray diffraction patterns of (a) disordered MCM-41, (b) ordered	
÷.,	MCM-41, (c) MCM-48, (d) MCM-50 and (e) Octamer	27
3-3	FTIR spectra of MCM-41 molecular sieve and amorphous silica	28
3-4	High resolution TEM images of calcined MCM-41	31
3-5	Phase sequence of surfactant and water binary system	33
3-6	Possible mechanistic pathways for the formation of MCM-41	
	(1) liquid crystal phase, (2) silicate anion	35
3-7	Types of hysteresis	37
3-8	IUPAC classifications of adsorption isotherms	39
3-9	Sub-classifications of isotherms	39
3-10	Pore and core models for mesoporous adsorbent	43

X-ray powder diffraction patterns of the parent MCM-41	49
Adsorption and desorption isotherms of nitrogen at 77 K	
on the parent MCM-41	50
Pore size distributions of the parent MCM-41 calculated from nitrogen	
adsorption and desorption isotherms at 77 K by using BJH model	51
SEM images of the parent MCM-41 with the magnitude 10,000x (a)	
and the magnitude 15,000x (b)	52
TEM image of the parent MCM-41 with the magnitude of 150,000x	53
Transmittances FTIR spectra of the parent MCM-41	54
Proposed formation of MCM-41 synthesized from CTAB and TEOS	
cross-sectional pattern of cylindrical micelles of a silicate complex	56
X-ray powder diffraction patterns of RH-MCM-41 at various aging time	
from 24 to 60 h and pH value at 11	63
X-ray powder diffraction patterns of assynthesized and calcined	
RH-MCM-41 synthesized at 48 h aging time with various pH values	
from 9 to 11	64
Adsorption isotherm of nitrogen gas at 77 K for RH-MCM-41 with	
aging time of 48 h and pH value at10	65
Pore size distribution of RH-MCM-41 calculated from nitrogen adsorption	ı
isotherms at 77 K using the BJH method	66
SEM (a) and TEM (b) images of RH- MCM-41 with the aging time	
of 48 h and the pH value at 10	68
FTIR spectra of RH-MCM-41 with the aging time of 48 h and the pH value	ie
at 10	69
TPD profiles of TCE for the RH-MCM-41 at different	
heating rates	71
	X-ray powder diffraction patterns of the parent MCM-41 Adsorption and desorption isotherms of nitrogen at 77 K on the parent MCM-41 Pore size distributions of the parent MCM-41 calculated from nitrogen adsorption and desorption isotherms at 77 K by using BJH model SEM images of the parent MCM-41 with the magnitude 10,000x (a) and the magnitude 15,000x (b) TEM image of the parent MCM-41 with the magnitude of 150,000x Transmittances FTIR spectra of the parent MCM-41 Proposed formation of MCM-41 synthesized from CTAB and TEOS cross-sectional pattern of cylindrical micelles of a silicate complex X-ray powder diffraction patterns of RH-MCM-41 at various aging time from 24 to 60 h and pH value at 11 X-ray powder diffraction patterns of assynthesized and calcined RH-MCM-41synthesized at 48 h aging time with various pH values from 9 to 11 Adsorption isotherm of nitrogen gas at 77 K for RH-MCM-41 with aging time of 48 h and pH value at10 Pore size distribution of RH-MCM-41 calculated from nitrogen adsorption isotherms at 77 K using the BJH method SEM (a) and TEM (b) images of RH- MCM-41 with the aging time of 48 h and the pH value at 10 FTIR spectra of RH-MCM-41 with the aging time of 48 h and the pH value at 10 TPD profiles of TCE for the RH-MCM-41 at different heating rates

4-8	TPD profiles of PCE for the RH-MCM-41 at different	
	heating rates.	71
4-9	TPD profiles of CT for the RH-MCM-41 at different	
	heating rates.	72
4-10	Plot of $2\ln T_m$ -lnB as function of $1000/T_m$ over sample of	
	RH-MCM-41	73
4-11	TPD profiles of TCE, PCE, and CT over RH-MCM-41 with	
	heating rate of 5 °C min ⁻¹	74
4-12	TPD profiles of TCE over RH-MCM-41 with heating rate of 5 $^{\circ}$ C min ⁻¹	75
4-13	TPD profiles of PCE over RH-MCM-41 with heating rate of 5 °C min ⁻¹	76
4-14	TPD profiles of CT over RH-MCM-41 with heating rate of $5 ^{\circ}$ C min ⁻¹	76
5-1	Microbalance apparatus [Hudson, 2003]	81
5-2	Schematic and picture of sample holder [Hudson, 2003]	82
5-3	Schematic of sorption system.	84
5-4	Adsorption and desorption isotherm of carbon tetrachloride at 25 $^{\circ}$ C	
	and pore size distribution of MCM-41 particles calculated by the adsorption	n
	isotherm using the BJH method and the method suggested	
	by Naono (2001)	86
5-5	Adsorption isotherm of nitrogen gas at 77 K and pore size distribution	
	of MCM-41 particles calculated by using the BJH method and	
	the method suggested by Naono et al. (1997).	89
6-1	Two possible ways in which heterogeneous catalysis proceeds at a surface	,
	(a) the Langmuir-Hinshelwood mechanism, (b) the Eley-Rideal	
	mechanism [Thomas, 1997]	101
6-2	Schematic of steps in the preparation of supported catalysts by impregnati	on
	to incipient wetness [Farrauto, 1997].	103

6-3	Schematic of steps in the preparation of supported catalysts by precipitation
	from alkali solution [Farrauto, 1997] 104
6-4	Schematic of hydrodechlorination experiment
6-5	XRD pattern of Pd/RH-MCM-41 at low-angle region 119
6-6	High-angle XRD results for various loading of Pd/RH-MCM-41;
	(a) 0.5 wt%, (b) 1.0 wt%, (c) 3.0 wt% and (d) 0 wt% 120
6-7	Conversions of CLF for the prepared catalysts: 0.5 wt%, 1.0 wt% and
	3.0 wt% Pd/RH-MCM-41, 0.5 wt% Pd/SiO ₂ and 0.5 wt% Pd/SiO ₂ -Al ₂ O ₃
	at various reaction temperatures 124
6-8	Conversion of CLF and hydrocarbon selectivity over 0.5 wt%
	Pd/SiO ₂ catalyst
6-9	Conversion of CLF and hydrocarbon selectivity over 0.5wt%
	$Pd/SiO_2-Al_2O_3 \ catalyst. \qquad 126$
6-10	Conversion of CLF and hydrocarbon selectivity over 0.5wt%
	Pd/RH-MCM-41 catalyst 127
6-11	Conversion of CLF and hydrocarbon selectivity over 1.0wt%
	Pd/RH-MCM-41 catalyst 128
6-12	Conversion of CLF and hydrocarbon selectivity over 3.0wt%
	Pd/RH-MCM-41 catalyst 129
6-13	Schulz-Flory plots for hydrocarbons formed in the hydrodechlorination
	of CLF over 0.5 wt% Pd/SiO ₂ catalyst 130
6-14	Schulz-Flory plots for hydrocarbons formed in the hydrodechlorination
	of CLF over 0.5 wt% Pd/SiO ₂ -Al ₂ O ₃ catalyst
6-15	Schulz-Flory plots for hydrocarbons formed in the hydrodechlorination
	of CLF over 0.5 wt% Pd/RH-MCM-41catalyst 132
6-16	Probability of chain-growth of hydrocarbons produced from
	hydrodechlorination of CLF 133

6-17	Proposed mechanism of hydrodechlorination for chloroform (CHCl ₃) over	
	Pd/RH-MCM-41 surface	135
7-1	Materials used diagram for the synthesis of parent MCM-41 and	
	RH-MCM-41.	138

LIST OF TABLES

2-1	Compositions of rice husk ash (blackish form) before and after	
	burning out at 700 °C for 4 h, based on % by weight	11
2-2	Compositions of rice husk ash analyzed by using the X-ray Fluorescence	
	characterization (% by weight) obtained from different countries	11
2-3	Compositions of rice husk ash obtained from this work analyzed	
	by quantitative XRF (% by weight)	19
3-1	Pore size distribution of various molecular sieves	24
3-2	Criteria for distinguishing between chemisorption and physisorption	37
4-1	The comparisons of physical properties obtained from the BET analysis	
	between the synthesized MCM-41 and MCM-41 from references	66
4-2	Properties of commercial adsorbents and RH-MCM-41	75
5-1	Pore diameters for nitrogen and CT adsorption isotherms on	
	MCM-41 particles	88
6-1	Physico-chemical properties of chloroform [ATSDR, 1997]	94
6-2	Standards and Regulations for Chloroform [ATSDR, 1997]	97
6-3	Gas chromatography conditions for hydrodechlorination of CLF	117
6-4	Metal composition of the Pd/RH-MCM-41 catalysts at different	
	loading analyzed by XRF characterization	121
6-5	Dispersions of palladium over the silica, silica-alumina and	
	RH-MCM-41 supports measured by hydrogen chemisorption at	
	room temperature and their BET surface area	122
7-1	Estimated Cost of 1 g Rice Husk Silica Extracted from Rice Husk	138
7-2	Estimated Cost of 1 g Synthesized Parent MCM-41	139
7-3	Estimated Cost of 1 g RH-MCM-41.	140
7-4	Values of rice husk waste for the utilization of various purposes	141
7-5	Comparisons of cost effective of RH-MCM-41 and commercial porous	
	silica-based material; zeolite and SiO ₂ .	142