
C h a p t e r  I I

T h e o r y

The array o f data obtained from the caliper tool can be interpreted to identify 
locations o f casing damage and scale precipitation. As mentioned before, an algorithm 
currently used to process the data is the vector sum, and vve propose a new algorithm 
called the ellipse fit. This chapter discusses the theory involved in the two methods.

In general, the actual casing shape may take any form due to different forces 
acting upon the casing. In this study, we assume that the casing shape is either circular 
or oval.

2.1 The Vector Sum

In this method, each measurement o f distance (or radius) from the sensor o f the tool to 
the inner surface o f the casing is considered as a vector. As being rotated to measure 
the radii, the tool takes 72 measurements at each depth. These 72 radii are equivalent 
to 72 vectors (vector 1, vector 2, vector 3, ... , and vector 72). Each vector represents 
the distance from the sensor to the casing wall and the angle 6 o f such distance. It is 
inconvenient to illustrate 72 vectors in a figure, thus it is assumed that the tool 
measures only 5 points or radii as shown in Fig. 2.1.
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Figure 2.1: The original measurements o f radii.

The principles o f the vector sum are based on the fact that
1. The summation o f all vectors originating from the center o f a circle to its 
perimeter equates to zero, i.e., X vector = 0.
2. The casing is round; thus, the measured radii lie on a circle.
3. The tool measuring the radii may not be at the center o f a circle (and the center o f  
the circle is the center o f the casing).

As the tool is not at the center o f the casing, this effect causes an eccentricity. The 
vector sum plays a role to eliminate this eccentricity.

The method to find the reference point which is the center o f the circle or the 
casing can be described as follows:

1. To determine the center o f the circle, the tool is imaginarily moved to center o f the 
circle as shown in Fig. 2.2. The tool center is moved such that the sum o f all the 
vectors is zero. The radii and angles measured from the corrected center to the casing 
wall are changed to new values.
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2

Figure 2.2: The corrected center after applying the vector sum method.

2. From the measurement at position 1 (shown in Fig. 2.3), the summation o f vectors 
can be expressed as

or Vci + Va 1 = Vb \
V ci + V a i - V b i  = 0 (2.1)

where
Vbi is vector o f coordinate x-y from the original center to position 1.
Va I is vector o f coordinate x-y from the corrected center to position 1.
Vci is a correcting vector.
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Figure 2.3: The three vectors, Vbi, Vai and Vci at position 1.

3. For a measurement at location i,

Va +  V Ai -V bi

Va + VAi-VBt = 0 (2.2)
The summation o f all vectors for every position from position 1 to position 72 is 
shown in Fig. 2.4.

2

Figure 2.4: The three vectors, Vbi, Vu and Va at each position.
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All vectors are collected and equated to zero.

!  F c ,+  z  V a i - Ï  V b < = 0  (2.3)
where
72
z  Fc; is the summation o f the correcting vectors from positions 1 to 72.
72
z  F /I i is the summation o f  the corrected vectors from positions 1 to 72.
72
z  F b i is the summation o f the original vectors from positions 1 to 72.i=l

Then,

z  Fc,' + Z  V Ai  -  z  F b / 

The summation o f the corrected vectors is zero. Thus,

Z VAi = 0
Substituting Eq. 2.5 into Eq. 2.4

z  F c ,  + 0 = z  F b ,

Since Vc is the same vector for every position

I  F c, = 72 FCl.

Substituting Eq. 2.7 into Eq. 2.6, thus

72FC + 0 = |  Eb ,

72FC = 1  F b  i  

Z F B i

We can write Eq. 2.10 in term o f X and y components as
72
Z F  b.V( 

= 72

(2.4)

(2.5)

(2.6)

(2.7)

(2.8) 

(2.9)

(2.10)

(2.11)
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Ï v b y ,

where
Vex is the X  component o f the correcting vector.
Vcy is the y component the correcting vector.

7 2
L  V B X i  is the summation o f the X  component o f the original vectors.i=1
X V B Y  i  is tf*e summation o f the y component o f the original vectors.;=1

(2.12)

And

X v  BXi = XRiWsdi (2.13)

XVby, = 2 fts in 0 , (2.14)
where
Rj is the radius measurement at location i.
9i is the angle o f radius measurement at location i.

Substituting Eq. 2.13 into Eq. 2.11 and substituting Eq. 2.14 into Eq. 2.12, we get
X,/?, cos <91

V  = '=>

1 /  ะ=  ,=1V CY

72
Z/?jSm 91

72
Then, the angle o f the correcting vector Vc can be computed from

y  XV BY, X Ri sm djy r v  J=1 j=itan /6 =
y  XV  BY 1 Z /?jSm ^(
y CY 1=1 i=l

Fcv ~ X V bx , ~ X R , c o s 91

(2.15)

(2.16)

(2.17)

where J3 is the angle o f the correcting vector.
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Finally, we can calculate the corrected radii by

RCY1 = R1 COS0, -vcx (2.18)

R CY, =  R 1 ร 1,1 d > - V e r (2.19)

« 0  = l/(« a - ,) ! + M (2.20)
where
Rcy is the corrected radii in y axis.
Rex is the corrected radii in X axis.
Rc is the corrected radii.

To determine the corrected radii o f the casing, Eq. 2.15 and Eq. 2.16 are first 
calculated. Then, Eq. 2.20 is used to compute the new radii. We can use the new radii 
to find out the location o f the damage and scale precipitation as shown in Chapters 3 
and 4.

When data are missing or casing is elliptic, the vector sum algorithm is no longer 
valid (as discussed in details in Chapter 4). A new algorithm, which is the least 
squares fitting o f ellipses, is proposed to correct these problems. The least squares 
fitting o f ellipses is a mathematical method to find the best fitting ellipse for a given 
set o f points by minimizing the sum o f the squares o f the offsets o f the points from the 
curve.

For the least squares fitting o f ellipses, a general conic equation o f an implicit 
second order polynomial is expressed as:

2 .2  Ellipse Fit

F(x,y) = ax2 + bxy + cy2 + dx + ey + f=  0 (2.21)

where
a, b, c, d, e , f  are the coefficients o f the ellipse. 
(x, y) are coordinate system.



F(x,y) is called the “algebraic distance” o f the point (x,y) to 
the specified come.
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Eq. 2.21 can be expressed in a vector form as

F a(x) =  x . a  =  0  (2.22)
where
a  = [ a, b, c, d, e , j f  
x = [x2,xy,y2,x,y, 1]

In order to fit a conic, the algebraic distance over the set o f ท data points is minimized 
using the least squares approach:

min £ f (x,.,y tŸ  = min I ( F a(x,.))2 (2.23)
The elliptic coefficients a, b, c, d, e a n d /in  Eq. 2.22 can be determined by the 

least squares method with an ellipse-specific constraint which Pilu et.al.3'4 introduced. 
This is an equality constraint, 4ac - b2 = 1. With this constraint, Eq. 2.23 can be 
rewritten as

min E = พ D a  \ \2, subject to a TC a = 1 (2.24)
where
E is the sum o f the squares o f errors where each error is the difference 

between the coordinate (Xj, y j  o f  the data point and the coordinate of 
the ellipse fit.

D  is called “the design matrix” o f the size ท X 6 matrix and

*1 x jF j y) X1 yi

D  = x1 y, X? xi y>" 
ไ x„yn A xท yn
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c  is called  “the constrai nt m atrix” o f  the size 6 x 6  m atrix  and

'0 0 2 0 0 0"
0 - 1  0 0 0 0
2 0 0 0 0 0

c=  0 0 0 0 0 0  
0 0 0 0 0 0
0 0 0 0 0 0

From the definition o f matrix norm, Eq. 2.24 is rearranged as

1 Da ||2 = ^J(axj + bx,y 1 + cy] + dx 1 + ey 1 + f j  j  + .. .

(V  (ax,2 + bx,y, + cyf + dxi +eyi + f j  y  + .. .

(4  (axi + bx„y„ + cyi + dxn + eyn + f j  j

(2.25)

The derivative o f  1 Da 1 2 with respect to the coefficients a, b, c, d, 
written as

e and /  can be

-~ \  D a ( =lxl(F(x,y)\ + ... + 2xl{F(x,y)l (2.26)

“  D af = 2 1(F(x,y)\ + ...+ 2xny„(F(x,yj)n (2.27)

f-c \\ D a f =2yf(b-(x,y))] +...+2y2n(F(x,yj)n (2.28)

Y ^ \D a f = 2x, (f (x, _y>)1 + ...+ 2x„ (F(x, >-))„ (2.29)

=2>'1 (F(x, ฬ)1 +...+2>-n(F(x,ฬ)„ (2.30)

~ j \  D a f^ F (x ,y ) \  + ...+  2(F(x, ฬ). (2.31)



where
(F (x ,y ) \  = ax2 + bxxy  1 +cyf +dx 1 +ey 1 + f  

น ’'น , y))n = axî + bxny„ + cy2+dx 11 + ey,1 + f

Or presented in term o f

แ Da พ2 = 2 D T Da

where

a x 2 + bx 1 y  1 + c y 2 + d xx + ey 1 + f

Da = a x 2 + bx i y i +  c y 2 + dx 1+ ey 1+ f

a x 2 + bx 11 y  11 + cy I + dx n + ey 11 + f

(2.32)

*12 -  X 2 ... X2
*iTi — x ,y< -  x „ y
y\ . . .  y 12 y 2n
xx -  * 1 X ท
y \ . . .  y . -  y„
1 1 1

To determine the minimum, the partial derivative o f the sum o f squares o f errors, E, 
with respect to the coefficients o f ellipse, a, is set to equal to zero as:

J - E  = 0 (2.33)

Substituting Eq. 2.32 into Eq. 2.33



Applying the Lagrange multiplier, X, to the constraint a TC a  =  1 ,  we have
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z ( a T C a  - l ) =  0
But a TC a  =  1 is equivalent to 4 a c -b 2 =  1. Then,

/l(4a c - b 2 - l ) = 0
Differentiating Eq. 2.36 with respect to the coefficients a, b, and c, we obtain

A [ ;
d a L1(4 a c - b 1 - 1 )]=4 Ac

d b Ll(Aac - b 1 - 1 )]= -2Ab

- เd c Ll(4 a c -b 2 - 1 )]= 4 Aa

The derivatives can be written as:

_d_
d a

x(aJC a-1) ะ 2  A
2c 
-b  
2 a

0 2
-1  0
0 0
0 0
0 0
0 0

0 0 
0 0 
0 0 
0 0 
0 0 
0 0

a
b
c
d
e

=  2  A C a

Substituting Eq. 2.34 and Eq. 2.40 into Eq. 2.24, we have
2 i f  D a  - 2  A C a  =  0  

D T D a  =  A C a  

S a  = A C a

where
ร  =  D t D  , called “the scatter matrix” of the size 6 x 6  and

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)
(2.42)
(2.43)
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■ V V , ร  2 2 x  y V V v V

V v V / V
5  ?X V V ร  XV
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Eq. 2.43 is solved by a generalized eigensystem. Six pairs o f eigenvalues and 
eigenvectors are obtained. The eigenvector cik corresponding to the smallest positive 
eigenvaule is selected. Then, the solutions o f the minimization problem o f Eq. 2.24, 
which are the coefficients a, b, c, d, e and /  o f ellipse, are calculated. After the 
coefficients are obtained, the ellipse can be drawn.

2 .2 .1  The coefficients a, b , c, d ,  e  and/ o f ellipse

Since Eq. 2.43 is a generalized eigenvalue problem, there are many methods to solve 
for the eigenvalues and eigenvectors. Here is an example o f how to solve the 
eigensystem using Cholesky decomposition.

From Eq. 2.43,

Sa = ACa (2.43)
Using Cholesky decomposition, the matrix ร can be rewritten as

S = L L t (2.44)

where
L is a lower triangular matrix.
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L 1 is a transpose o f the lower triangular matrix.

Substituting Eq. 2.44 into Eq. 2.43, we obtain

L L 1 a = ACa (2.45)
Multiplying บ' both side o f Eq. 2.45, we get

L^a AL'Ca  (2.46)
Multiplying ( (บ'Ÿ  L 1 ) on the right side o f Eq. 2.46, it becomes

(L 1 a) = A บ'C( (บ')1 L1 )a (2.47)
Rearranging Eq. 2.47, we have

(L ' a) = A (LaC (บ')1 ) (L 1 a) (2.48)
or

V = A E V  (2.49)

where 
E = (LTa)
E= (บ'c (บ')1 )
For actual implementation, the method to evaluate the coefficients a, b, c, d5 e 

and/ o f ellipse is summarized below:

1. Calculate the matrix D  by transforming the radius measurements to (x, y) 
coordinates.

2. Calculate the scatter matrix ร.
3. Calculate the lower triangular matrix L.
4. Calculate the inverse matrix บ'.
5. Calculate the matrix E.
6. Calculate the eigenvalues (A) and eigenvectors (V) by Jacobi 

transformation o f the matrix E
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7. C alculate  the unnorm alized eigenvectors ( a )  by

a = (L'])t V (2.50)

8. Calculate the unit eigenvectors which have length o f 1. To obtain unit 
eigenvectors, each vector is divided by the square root o f the sum o f the 
squares o f their components.

9. Select the positive eigenvalue. Then, the eigenvector corresponding to the 
eigenvalue is obtained.

2 .2 .2  EUipticity

The change in ellipticity o f the casing can be used to indicate the change in casing 
shape as a result o f rock stress and strain. To calculate the semimajor and semiminor 
axes o f an ellipse, we must convert the general conic equation to the standard form of  
ellipse equation. The standard ellipse equation is expressed as

( x " / A ) 2 +  ( y / B ) 2 = 1 (2.51)
where
A is the sem im ajor axis.
B is the semiminor axis.

If we have an ellipse such as the one shown in Fig. 2.5, there is a need to (1) 
rotate the X and y axes such that these axes become horizontal and vertical, 
respectively, and (2) shift the horizontal and vertical axes such that the center o f the 
ellipse is at the origin.
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Figure 2.5: An ellipse o f  which orientation is not aligned with 
horizontal and vertical axes.

Since the x-y axes o f Eq. 2.21 takes an angle #w ith the x'-y' axes, we must 
rotate the x-y axes to x'-y' axes as shown in Fig. 2.6. Then, we need to shift the x'-y' 
axes to the x "-y" axes in order to move the center o f the ellipse to the origin as shown 
in Fig. 2.7. The semimajor and semiminor axes o f  the ellipse lie on the x''-y” axes o f  
the rectangular coordinate system.

Figure 2.6: Simplification o f equation by rotation o f axes.
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y"

Figure 2.7: Simplification o f  equation by translation o f axes.

The method to transform the general conic equation to the standard form o f  
ellipse equation is described in details as follows :

(1) Rotation from x-y axes to x'-y' axes by an angle 0
From Eq. 2.21, the general conic equation o f  an implicit second order polynomial is 
expressed as

ax2 + bxy + cy2 + dx + ey + f  = 0 (2.21)
The elliptic equation in the (x #-y') coordinate can be expressed as

a’ X 2 + c 'y ’2 + d' x ’ + e y  + / '  = 0 (2.52)
The ellipse coefficients in the (x -y') coordinate can be expressed as

a ' = a cos2 6 + b รพ 0 cos 6 + c sin2 6 (2.53)
b' = b cos29 + (c -a ) รพ26 (2.54)
c = a รพ26 - b sin6cos6+ c cos26 (2.55)
d' = d COS0 + e sinO (2.56)
e' = e COS0- dsind (2.57)

II (2.58)

V! อ ส น ุต ท ล า ง  ส ำ น ัก ง า น  r n  ย า ) ง ้พ ย า ท  Î  
จ ุพ า ล ง ก า ณ ์ม  v n  ว น ย  เล ย
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where
9 is angle from X axis to x' axis
a, b, c, d, e , f  are the coefficients o f  ellipse in coordinate (x, y)
a , b’, c , d ', e , f  are the coefficients o f ellipse in coordinate (x', y')

Since we rotate from x-y axes to x'-y' axes by an angle 0 5 b’ in Eq. 2.54 is equal to 
zero

b' = b COS29+ (c -  a) sin26 = 0

(a -c ) /b  = cot20 (2.59)
From Eq. 2.59, we can draw a right triangle o f angle 29 as shown in Fig. 2.8. From 
the law o f  Pythagoras, hypotenuse o f  the right angle 29 is equal to ( (a-c)2 + b2 ) I/2. 
Thus, the cos29 and sin20from the right triangle o f  angle 29 are calculated as

COS29 = (a - c ) /(  (a-c)2 + b2) m (2.60)
Sin29 =b /  ( (a-c)2 + b2 ) 1/2 (2.61)

Figure 2.8: A right triangle o f  29.
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Then, the cosO and sin 0 are

cosO = ( (1 + cos 2 0 ) /2 ) ,/2 (2.62)

sinO = ( (1 -  cos 20) / 2) I/2 (2.63)

Knowing sin 0, cos 0, sin20 and cos20 in term o f  the coefficients a, b, 
the x-y coordinate, the coefficients d , b', c , d , e , and/  ' in the X 

expressed in Eqs. 2.53 - 2.58 can be computed.

c, d, e, a n d /m  
'-y' coordinate

(2) Translation from x'-y' axes to x'-y" axes
The elliptic equation in the x"-y" coordinate can be expressed as

a x '2 + c'y"2 + f = 0 (2.64)

The ellipse coefficients in the (x"-y") coordinate can be computed as

a" = d (2.65)

b" = b' = 0 (2.66)

c" = c (2.67)

d' = 2 d h + b'k +d (2.68)

e” = b'h + 2c k + e' (2.69)

f "  = d h 2 + b'hk + c'ไ? + d h  + e'k + / ' (2.70)
where
a", b”, c", (f, e",f"  are the coefficients o f  ellipse in (x", y") coordinate

system.
h is horizontal shift o f  x' axis.
k is vertical shift o f  y' axis.

Since we translate from x'-y' axes to x'-y" axes, d' in Eq. 2.68 and e" in Eq. 2.69 are 
equal to zero as
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cf = 2a'h + b'k+d' = 0 (2.71)

e" = b'h + 2c k+ e = 0 (2.72)
We can calculate h and k by solving Eq. 2.71 and 2.72 as

h = (2c d' -  b'e') /  (b'2 -  4a c )  (2.73)

k = (2a e - b 'd ' ) / (b’2-4 a ’c )  (2.74)
Eq. 2.64 can be rearranged as

( x / ( - f / a ~ ) ) 2 + (  y =  ; (2.75)
Eq. 2.75 is the standard form o f  the ellipse equation that is obtained by rotation and 
translation o f axes o f  the general conic equation. The simplified equation can be used 
to find the semimajor axis (A) and the semiminor axis (B) o f  the ellipse as shown in 
Fig. 2.9. The ratio o f A/B is calculated to determine the ellipticity o f  the ellipse.

Figure 2.9: The semimajor axis (A) and the semiminor axis (B) o f  the ellipse.

Comparing Eq. 2.75 with Eq. 2.51, we obtain

A = - f  /  a (2.76)

B = - f / c "  (2.77)
Then,

A / B  =  ( - f  / a ”)  / ( - f / c ) (2 .7 8 )



25
A/B = c /  a (2.79)

By fitting the ellipse to the measurements, the coefficients o f  the ellipse are 
calculated. Then, the semimajor and semiminor axes are calculated. The ratio o f  the 
semimajor axis to semiminor axis tells US the ellipticity o f  the casing.
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