ความหลากหลายทางพันธุกรรมของไรผึ้ง *Tropilaelaps* spp. ที่ศึกษาโดยการหาลำดับเบสของบริเวณ ITS และโดยการวิเคราะห์ด้วย RAPD

นางสาว วริษา ตั้งจริงใจ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
หลักสูตรเทคโนโลยีทางชีวภาพ
บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2541
ISBN 974-639-716-8
ลิขสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

GENETIC VARIATION IN THE BEE MITE *Tropilaelaps* spp. REVEALED BY SEQUENCING THE ITS REGION AND BY RAPD ANALYSIS.

Miss Warisa Tangjingjai

A Thesis Submitted In Partial Fulfillment of the Requirements

for the Degree of Master of Science

Programme of Biotechnology

Graduate School

Chulalongkorn University

Academic Year 1998

ISBN 974-639-716-8

Thesis Title	Genetic variation in the Bee Mite, <i>Tropilaelaps</i> spp. Revealed by		
	sequencing the ITS Region and by RAPD analysis.		
Ву	Miss Warisa Tangjingjai		
Program	Biotechnology		
Thesis Advisor	Asst. Prof. Patchara Verakalasa, Ph.D.		
Thesis Co-advisor Assoc. Prof. Chariya Lekprayoon			
	Assoc. Prof. Siriporn Sittipraneed, Ph.D.		
Accepted	by the Graduate School, Chulalongkorn University in Partial		
Fulfillment of the	Requirement for The Master's Degree. Dean of Graduate School		
	(Prof. Supawat Chutivongse, M.D.)		
	Thesis Committee Lipepour Limpanen Chairman		
	(Asst. Prof. Tipaporn Limpaseni, Ph.D.)		
	Patchen Verbel Thesis Advisor		
	(Asst. Prof. Patchara Verakalasa, Ph.D.)		
	Chariga telprayoron. Thesis Co-advisor		
	(Assoc. Prof. Chariya Lekprayoon)		
	Siring Sillipraneed. Thesis Co-advisor		
	(Assoc. Prof. Siriporn Sittipraneed, Ph.D.) St. Member		

(Sirawut Klinbunga. Ph.D.)

The Marianes Charles are elections

วริษา ตั้งจริงใจ : ความหลากหลายทางพันธุกรรมของไรผึ้ง *Tropilaelaps* spp. ที่ศึกษาโดยการหา ลำดับเบสของบริเวณ ITS และโดยการวิเคราะห์ด้วย RAPD (GENETIC VARIATION IN THE BEE MITE *Tropilaelaps* spp. REVEALED BY SEQUENCING THE ITS REGION AND BY RAPD ANALYSIS.) อาจารย์ที่ปรึกษา: ผศ. ดร. พัชรา วีระกะลัส: อาจารย์ที่ปรึกษาร่วม รศ. จริยา เล็กประยูร, รศ. ดร. ศิริพร สิทธิประณีต 116 หน้า.

ISBN 974-639-716-8

ความหลากหลายทางสายพันธุ์ของไรผึ้งในจีนัส Tropilaelaps ซึ่งมี 2 สปีซีส์ คือ T. clareae และ T. koenigerum ในประเทศไทยได้ถูกตรวจสอบด้วยการหาลำดับเบสตรงบริเวณ อินเทอร์นอลทรานสไครบสเปเซอร์ (ITS) ของนิวเคลียร์ไรโบโซมัลดีเอ็นเอ (nrDNA) และการใช้เทคนิค PCR-RAPD จากการหาลำดับเบสของ ITS ที่ เพิ่มปริมาณโดย PCR ของตัวอย่างใรผึ้งทั้งสองสปีซีส์ซึ่งอยู่ตามภูมิภาคต่างๆ โดยในไร T. clareae ได้หาลำดับเบสของ ITS จากไร 20 ตัวอย่างซึ่งมีความยาวของสายนิวคลีโอไทด์เท่ากับ 519 เบส ส่วนในไร T. koenigerum ได้หา ลำดับเบสของ ITS จากไร 5 ตัวอย่างซึ่งมีความยาวของนิวคลีโอไทด์เท่ากับ 520 เบส พบว่าไรที่อยู่ในสปีซีส์เดียวกัน ไม่มีความแตกต่างของลำดับเบสดังกล่าว แต่เมื่อนำลำดับเบสของ ITS จากไร T. claerae มาเรียงเปรียบเทียบกับ ลำดับที่ได้จากไร T. koenigerum พบว่ามีความแตกต่างกันของลำดับเบส โดยมี point mutation เกิดขึ้น 19 ตำแหน่ง นอกจากนี้ยังมี gap อีก 7 ตำแหน่งที่เกิดจากการลดหรือการเพิ่ม และจากการใช้โปรแกรม Kimura's two parameter วิเคราะห์ข้อมูลของการเปรียบเทียบลำดับเบสระหว่างไรทั้งสองสปีซีส์ พบว่ามีความแตกต่างของลำดับ เบสเท่ากับ 3.79 % นอกจากนี้พบว่าลำดับเบสของ ITS ของไร T. koenigerum เท่านั้นที่มีนิวคลิโอไทด์จำนวน 5 เบสเพิ่มเข้ามา และในไร T. clareae มีบริเวณตัดจำเพาะของเอนไซม์ RsaI 2 ตำแหน่งในขณะที่ในไร T. koenigerum มีบริเวณตัดจำเพาะของเอนไซม์ RsaI เพียง 1 ตำแหน่ง จากข้อมูลนี้สามารถนำไปใช้เป็นวิธีแยกไร สองสปีซีส์ออกจากกันได้

จากการวิเคราะห์ด้วยเทคนิค PCR-RAPD ใน 16 กลุ่มตัวอย่าง ของไร *T. clareae* ซึ่งแบ่งเป็นไรปรสิต ในผึ้งหลวง (A. dorsata) 8 กลุ่ม และปรสิตในผึ้งพันธุ์ (A. mellifera) 8 กลุ่ม จากแหล่งต่าง ๆ และ 2 กลุ่มตัวอย่าง ของไร *T. koenigerum* จากสมุทรสาครและจันทบุรี โดยเลือกใช้ 3 primer คือ OPA07, OPA11 และ OPA12 ซึ่ง จะให้รูปแบบของแถบดีเอ็นเอจำนวน 60, 58 และ 35 รูปแบบตามลำดับ เมื่อคำนวณค่าเฉลี่ยของ genetic distance ที่ได้จาก 3 primer แล้วนำมาสร้างความสัมพันธ์เชิงวิวัฒนาการโดยวิธี UPGMA สามารถแยกไร 2 สปีซีส์ออกจากกัน ได้อย่างชัดเจน ในขณะเดียวกันสามารถแยกไร *T. clareae* ได้เป็น 2 กลุ่ม โดยแบ่งเป็นกลุ่มไรปรสิตในผึ้งพันธุ์ และ 2 ตัวอย่างที่เป็นปรสิตในผึ้งหลวง (E2D และ N2D) ส่วนอีกกลุ่มหนึ่งเป็นปรสิตในผึ้งหลวงทั้งหมด

ภาควิชา	(-)
สาขาวิชา	หลักสูตรเทคโนโลยีทางชีวภาพ
ปีการศึกษา	2541

ลายมือชื่ออาจารย์ที่ปรึกษา *พัก รักรร* ลายมือชื่ออาจารย์ที่ปรึกษาร่วม ระบที่เกียงทั่วเอกเกียกกับ กร้องกร้องเข้าเกรเลาเก็บร้างเข้า 🖼 🥫

C827322; MAJOR BIOTECHNOLOGY
KEY WORD: Tropilaelaps SDD., RAPD-PCR/GENETIC VARIATION/ ITS
SEQUENCING

WARISA TANGJINGJAI: GENETIC VARIATION IN THE BEE MITE *Tropilaelaps* spp. REVEALED BY SEQUENCING THE ITS REGION AND BY RAPD ANALYSIS. THESIS ADVISOR: ASST. PROF. PATCHARA VERAKALASA Ph.D. THESIS CO-ADVISOR: ASSOC. PROF. CHARIYA LEKPRAYOON ASSOC. PROF. SIRIPORN SITIPRANEED Ph.D. 116 pp. ISBN 974-639-716-8

Level of genetic variation of sibling mite species, *Tropilaelaps clareae* and *T. koenigerum* in Thailand was investigated by sequencing of PCR-amplified internal transcribed spacer (ITS) region of nuclear ribosomal DNA and RAPD-PCR analysis.

No sequence polymorphisms in the amplified ITS region were observed among twenty individuals of *T. clareae* and among five representatives of *T. koenigerum*. At an interspecific level, nineteen point mutations constituting of ten transitions and nine transversions were found. Moreover, seven gaps resulted from insertions/deletions were observed. The estimated sequence divergence between *T. clareae* and *T. koenigerum* was 3.79 %. A 5 bp insertion found in *T. clareae* could be used to dissociate this species from *T. koenigerum*. Nevertheless, restriction analysis of an amplified ITS region with *Rsa* I can also rapidly detected this interspecific variation.

RAPD analysis of one hundred and twenty-five of *T. clareae* (16 samples) and sixteen individuals of *T. koenigerum* (2 samples) using primers OPA07, OPA11 and OPA12 indicated high genetic polymorphisms in these two species. A total of 153 genotypes was found from all three RAPD primers (60, 58, and 35 patterns from OPA7, OPA11, and OPA12, respectively). The genetic distance among pairs of *T. clareae* samples was 0.081-0.2314 while that of *T. koenigerum* was 0.0289. Using RAPD analysis, the genetic distance between these species was estimated to be 0.8464. No evidences of interspecific hybridization were observed.

A UPGMA phylogeny indicated large distance between *T. clareae* and *T. koenigerum* and monophyletic status of both taxa. For *T. clareae*, all investigated samples could be allocated into two different groups, consisting of that contained all *T. clareae* from *A. mellifera* host and two samples from *A. dorsata* (E2D and N1D) and another group consisted of all remaining *T. clareae* from *A. dorsata* host.

ภาควิชา		ลายมือชื่อนิสิต		
สาขาวิชา	หลักสูตรเทคโนโลยีทางชีวภาพ	ลายมือชื่ออาจารย์ที่ปรึกษา	who Sinish	
ปีการศึกษา	2541	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม.	00 2112	

Acknowledgements

This thesis would not have been completed without a good gesture from many persons. I would like to express my very appreciation to my advisor Asst. Prof. Dr. Patchara Verakalasa and Co-advisor Assoc. Prof. Chariya Lekprayoon and Assoc. Prof. Dr. Siriporn Sittipraneed for their helpful guidance and care.

Together with this, I am very grateful to Dr. Sirawut Klinbunga who helps me very kindly with data analysis, suggestion and comments on the manuscript. I am also very thankful to Asst. Prof. Dr. Tipaporn Limpaseni for her recommendation, Prof. Dr. Siriwat Wongsiri for his guidance and his bee research facilities (Bee biology research unit). Thanks are also extended to Anartngam, Phasuk and Pechpom families and anonymous people in helping my collection of specimens and to members of the Biochemistry department and Biotechnology department especially in room 707,708 and 709. I would like to keep in mind for my best friends, Miss Chuanchom Muanprasitporn, Miss Dungporn Sihanuntavong, Miss Tanaporn Veerapraditsin and Miss Nattanan Pusri.

I am grateful to Research affairs, Chulalongkorn University (Bee Biology Research Unit), the National Science and Technology Development Agency of Thailand (NSTDA), Thailand Research Foundation under the program of Biodiversity Research and Training (BRT) and Graduate School Chulalongkorn University for financial support.

Finally, I would like to express my deepest gratitude to my mother, father, all members of my family and Mr. Surachai Leephitakrat for their unlimited love, care, understanding and encouragement extended throughout my study.

CONTENTS

		Page
THAI ABST	ΓRACT	iv
ENGLISH A	ABSTRACT	V
ACKNOWL	LEDGEMENTS	vi
CONTENTS	S	vii
LIST OF TA	ABLES	viii
LIST OF FI	GURES	ix
LIST Of AB	BBREVIATIONS	xii
CHAPTER		
I I	INTRODUCTIONS	ī
II 1	MATERIALS AND METHODS	24
III	RESULTS	41
IV	DISCUSSIONS	86
V	CONCLUSIONS	95
REFERENC	CES	96
APPENDIX		105
BIOGRAPH	IY	116

LIST OF TABLES

Tab	le	Page
1.1	Honey bee mites and host associations	2
2.1	Primer sequences used in PCR and sequencing of the amplified ITS	
	region of ribosomal DNA	. 29
2.2	The sequences of all random primers primarily used for screening of	
	informative primers for T. clareae and T. koenigerum	. 30
2.3	The number of specimens being sequenced and the geographic	
	origin of specimens used in this study	31
3.1	Number of amplified bands in RAPD analysis of T. clareae and	
	T. koenigerum	65
3.2	Total number of bands, percentage of polymorphic and	
	monomorphic bands found in T. clareae and T. koenigerum	66
3.3	The percentage of RAPD fragments (in base pairs) within each	
	colony (n=8 except C2D, n=7 and C1M, n=6) of T. clareae and	
	T. koenigerum	67
3.4	Genotype distribution frequencies of RAPD patterns of	
	T. clareae and T. koenigerum	70
3.5	Within colony similarity of sixteen and two of T. clareae and	
	T. konigerum	77
3.6	Similarity index with a correction of within-colony similarity	
	effect (upper diagonal) and genetic distance(below diagonal)	
	for each pairwise comparison of T. clareae and T. koenigerum	
	samples	78

LIST OF FIGURES

Figu	ure	Page
1.1	General morphology of gamasid mites (ventral view)	. 5
1.2	T. koenigerum:(1) female venter, (2) male venter, (5) male	
	gnathosoma and close-up of movable chela-spermatodactyl;	
	T. clareae: (3) female venter, (4) male venter, (6) male gnathosoma	
	showing movable chela-spermatodactyl	. 7
1.3	Life cycle of <i>T. clareae</i>	9
1.4	Worldwide distribution of Tropilaelaps	11
1.5	Large pre- rRNA genes and their spacer	16
3.1	Agarose gel electrophoresis showing the quality of DNA extracted	
	from Tropilaelaps mites.	42
3.2	Agarose gel electrophoresis showing the PCR-amplified ITS product	
	(600bp) using different amount of the DNA template at a constant	
	MgCl ₂ (3.5 mM) and primer concentration (0.10 μM)	43
3.3	Agarose gel electrophoresis showing the results from optimization	
	of MgCl ₂ concentration used for amplification of the ITS region	
	at a constant primer concentration of 0.2 µM	45
3.4	Agarose gel electrophoresis showing the results from optimization	
	of primer concentration used for amplification of the ITS	
	region at 1.5 mM MgCl ₂ concentration	46
3.5	The ITS DNA region amplified by PCR and electrophoresed	
	through a 1.5% agarose gel	48

Fige		Page
3.6	Five microliters of the PCR products from each individual of	
	T. clareae or T. koenigerum was electrophoretically size-	
	fractionated through a 1.5% agarose gel. The purified ITS DNA	
	was recovered using GeneCleanII Kit	49
3.7	An autoradiogram showing partial ITS sequences obtained	
	from using the primer inITS4	50
3.8	An autoradiogram illustrating interspecific polymorphisms	
	of an amplified ITS region of T. clareae (a) and T. koenigerum (b)	51
3.9	Sequence alignment for ITS from T. clareae and T. koenigerum	52
3.10	Ten microliters of each RAPD reaction was electrophoretically	
	separated through 1.8% Metaphor agarose gel	54
3.11	Optimization of MgCl ₂ concentration for RPAD assay using the prim	er
	OPA07 (at 0.4 μM primer concentration)	55
3.12	RAPD patterns of <i>T. clareae</i> generated from OPA07. Ten	
	microlititers of the PCR products was electrophoretically separated	
	through 1.8% Metaphor agarose gel.	59
3.13	Interspecific different RAPD banding patterns between T. clareae and	ıd
	T. koenigerum were observed. Ten microliters of RAPD-amplified	
	products using OPA07 was loaded into a 1.8% Metaphor agarose	
	gel and electrophoretically analyzed	60
3.14	RAPD patterns of <i>T. clareae</i> generated from OPA11. Ten microlitter	S
	of the resulting product were loaded into a 1.8 % Metaphor agarose	
	gel and electrophoretically analyzed	61

Figure Page

3.15	Interspecifically different RAPD banding patterns between T. clareae	•
	and T. koenigerum were observed. Ten microliters of RAPD-	
	amplified products using OPA11was loaded into a 1.8% Metaphor	
	agarose gel and electrophoretically analyzed	62
3.16	RAPD banding patterns of <i>T. clareae</i> generated from OPA12. Ten	
	microlitters of the resulting product were loaded into a 1.8 %	
	Metaphor agarose gel and electrophoretically analyzed	63
3.17	Interspecific different RAPD patterns between T. clareae and	
	T. koenigerum were observed. Ten microliters of RAPD-amplified	
	products using OPA12 was loaded into a 1.8% Metaphor agarose ge	1
	and electrophoretically analyzed	64
3.18	UPGMA dendrogram showing relationships among 16 groups of	
	T. clareae and 2 groups of T. koenigerum based on genetic distance	
	shown in Table 3.5 D.	83
3.19	UPGMA dendrogram showing relationships among 8 groups of	
	T. clareae having A. dorsata host.	84
3.20	UPGMA dendrogram showing relationships among 8 groups of	
	T. clareae having A. mellifera host	85

2.5

LIST OF ABBREVIATIONS

A, T, G, C = nucleotide containing the bases adenine, thymine, guanine,

and cytosine, respectively

bp = base pair

°C = degree Celsius

cm = centimetre

DNA = deoxyribonucleic acid

dNTPs = deoxyribonucleoside triphosphates (dATP,dTTP, dGTP, dCTP)

ddNTPs = dideoxyribonucleoside triphosphates (ddATP,ddTTP, ddGTP,

ddCTP)

EDTA = ethylenediamine tetra acetic acid

HC1 = hydrochloric acid

kb = kilobase

KC1 = potassium cholride

1rRNA = large subunit ribosoma1 RNA

MgCl₂ = magnesium chloride

ml = millilitre

mM = millimolar

mt DNA = mitochondrial DNA

ng = nanogram

PCR = polymerase chain reaction

RFLP = restriction fragment length polymorphism

SDS = sodium dodecyl sulfate

srRNA = small subunit ribosomal RNA

美士

TEMED = N, N, N', N'-tetramethylethylenediamine

Tris = tris(hydroxy methyl) aminomethane

 $\mu g = microgram$

 μl = microlitre

 μM = micromolar

UV = ultraviolet

V = volt

W = watt