
CHAPTER II
BACKGROUND AND LITERATURE SURVEY

2.1 Mathematical and Optimization Models

According to Floudas (1995), a mathematical model of a system is a set of 
mathematical relationships (e.g., equalities, inequalities, logical conditions) which 
represent an abstraction of the real world system under consideration.

There are four key elements for a system of mathematical model:
1. Variables

Variables can take different values and their specifications define different 
states of the system. They can be continuous, integer, or a mixed set of continuous 
and integer.

2. Parameters
Parameters are fixed to one or multiple specific values, and each fixation 

defines a different model.
3. Constraints

Constraints are fixed quantities by the model statement.
4. Mathematical relationships

Mathematical model relations can be grouped as equalities, inequalities, and 
logical conditions. The model equalities are generally formulated from mass 
balances, energy balances, equilibrium relations, physical property calculations, and 
engineering design relations which describe the physical phenomena of the system. 
The model inequalities often consist of allowable operating regimes, specifications 
on qualities, feasibility of heat and mass transfer, performance requirements, and 
bounds on availabilities and demands. The logical conditions provide the connection 
between the continuous and integer variables.

The mathematical relationships can be algebraic, differential, integro- 
differential, or a mixed set of algebraic and differential constraints, and can be linear 
or nonlinear.
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2.1.1 Optimization
Optimization is the use of specific methods to determine the most 

cost-effective and efficient solution to a problem or design for a process. This 
technique is one of the major quantitative tools in industrial decision making. A 
wide variety of problems in the design, construction, operation, and analysis of 
chemical plants (as well as many other industrial processes) can be resolved by 
optimization. A well-known approach to the principle of optimization was first 
scribbled centuries ago on the walls of an ancient Roman bathhouse in connection 
with a choice between two aspirants for emperor of Rome. It read “De doubus malis, 
minus est simper aligendum” -  of two evil, always choose the lesser (Edgar et al, 
2001).

An optimization problem is a mathematical model which in addition 
to the aforementioned elements contains one or multiple performance criteria. The 
performance criterion is denoted as objective function, and it can be the minimization 
of cost, the maximization of profit or yield of a process for instance. If we have 
multiple performance criteria then the problem is classified as multi-objective 
optimization problem. A well defined optimization problem features a number of 
variables greater than the number of equality constraints, which implies that there 
exist degrees of freedom upon which we optimize. If the number of variables equals 
the number of equality constraints, then the optimization problem reduces to a 
solution of nonlinear systems of equations with additional inequality constraints.

2.1.2 Structure of Optimization Models
The structure of optimization models takes the following form 

(Floudas, 1995):

min f ( x ,y )
s.t. h{x,y) = 0

g(x,y) < 0
X  É I c S R "
y e Y integer

(2.1)
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where a; is a vector of ท continuous variables, y  is a vector of integer variables, h(x,y) 
-  0 are m equality constraints, g(x,y) < 0 are p  inequality constraints, and f(x,y) is the 
objective function.

Equation (2.1) contains a number of classes of optimization problems, 
by appropriate consideration or elimination of its elements. If the set of integer 
variables is empty, and the objective function and constraints are linear, then 
Equation (2.1) becomes a linear programming (LP) problem. If the set of integer 
variables is empty, and there exist nonlinear terms in the objective function and/or 
constraints, then Equation (2.1) becomes a nonlinear programming (NLP) problem. 
If the set of integer variables is nonempty, the integer variables participate linearly 
and separably from the continuous, and the objective function and constraints are 
linear, then Equation (2.1) becomes a mixed-integer linear programming (MILP) 
problem. If the set of integer variables is nonempty, and there exist nonlinear terms 
in the objective function and constraints, then Equation (2.1) is a mixed-integer 
nonlinear programming (MINLP) problem.

2.1.3 Modeling Procedures
There are four phases for building the model that is (1) problem 

definition and formulation, (2) preliminary and detailed analysis, (3) evaluation, and 
(4) interpretation application. The modeling procedure is an iterative procedure 
(Edgar et a l, 2001). Figure 2.1 summarizes the activities to be performed.
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Figure 2.1 Major activities in model building prior to application (Edgar et al, 
2001).

• Problem definition and formulation phase
In this phase the problem is defined and the important elements that relate to 

the problem and its solution are identified. The degree of accuracy needed in the 
model and the model’s potential uses is determined.

• Design phase
The design phase includes specification of the information content, general 

description of the programming logic and algorithms necessary to develop and 
employ a useful model, formulation of the mathematical description of such a model, 
and simulation of the model.
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• Evaluation phase
This phase is intended as a final check of the model as a whole. Testing of 

individual model elements will be conducted during earlier phases. Evaluation of the 
model is carried out according to the evaluation criteria and test plan established in 
the problem definition phase. Next, carry out sensitivity testing of the model inputs 
and parameters, and determine if the apparent relationships are physically 
meaningful. This step is also referred to as diagnostic checking and may entail 
statistical analysis of the fitted parameters.

2.2 Mathematical Programming

Mathematical programming is the process of using mathematical models to 
help find good solutions to business problems. Its key feature is that the 
mathematical model is optimized. This finds better solutions than other techniques 
and leads to greater understanding of the problem by rigorously challenging the 
model’s assumptions (Simons, 1997).

2.2.1 Deterministic and Stochastic Programming
In deterministic mathematical programming the data (parameters) are 

known numbers (without risk). When some of the data incorporated into the 
objective or constraints is uncertain, the program is called stochastic programming. 
Uncertainty is usually characterized by a probability distribution on the parameters. 
Sensitivity analysis (SA) and Stochastic Programming (SP) formulations are the two 
major approaches used for dealing with uncertainty. SA is a post-optimality 
procedure with no power of influencing the solution. It is used to investigate the 
effects of the uncertainty on the model's recommendation. SP formulation, on the 
other hand, introduces probabilistic information about the problem data, though with 
the first moments (i.e. the expected values) of the distribution of the objective 
function with respect to the uncertainty (Arsham, 1996). SP is an attractive option 
for strategic planning because it allows the decision maker to analyze uncertainties 
and control risks explicitly (Lababidi et a l, 2004).
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2.2.2 Mathematical Programming in Refinery Planning
Mathematical programming has been extensively studied and 

implemented for both long-term and short-term plant-wide refinery planning. Some 
commercial software applied linear programming (LP) models, such as RPMS 
(Refinery and Petrochemical Modeling System) and PIMS (Process Industry 
Modeling System), have been developed for refinery production planning. Pelham 
and Pharris (1996) pointed out that this planning technology can be considered well 
developed, and startling further progress should not be expected. In this thesis, the 
mathematical model is implemented in the program called GAMS.

GAMS (General Algebraic Modeling System) is a software product 
of the GAMS Development Corporation which solves mathematical programs input 
in a way similar to how they are presented in books and research papers. It includes 
the capability to globally solve linear programs and integer linear programs, as well 
as to find local optima of nonlinear programs and integer nonlinear programs that 
have all nonlinearities in continuous variables. GAMS has an enormous number of 
features and options which allow it to support the most sophisticated mathematical 
programming and econometric applications. GAMS allows the formulation of 
models in many different problem classes, including linear (LP), mixed integer linear 
(MIP), nonlinear (NLP), mixed integer nonlinear (MINLP), mixed complementary 
(MCP), mathematical programs with equilibrium constraints (MPEC) and stochastic 
linear problems. GAMS can also handle constrained nonlinear systems (CNS). 
GAMS has been successfully used in both industry and academia since 1987 and has 
a user base of over 10,000 in 100 countries. More information can be found at 
www.gams.com.

2.3 Refinery Operations Planning and Scheduling

2.3.1 Planning and Scheduling
The goal of planning and scheduling is to maximize the profitability 

of the entire refinery by choosing the best feedstocks, operating conditions and 
schedules, while fulfilling product quantity and quality objectives consistent with

http://www.gams.com
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marketing commitments. Typically, savings from improvements in these areas 
exceed $20 million per year for a world-scale refinery (Swift, 2000).

Planning and scheduling in refineries takes place over a hierarchy of 
time horizons. At the top level there is enterprise planning: this is concerned with a 
company’s market position worldwide and allocating capital investment over a 
period of 5 years or more. Below this is operational planning over time horizons 
between 1 week and 6 months; this is concerned with deciding which crudes to buy, 
how to process them and which products to sell. At the bottom there is detailed 
scheduling within the refinery, which answers the question “What am I going to do 
next?” (Simons, 1997). The cascade of models used in operational planning and 
scheduling is shown in Figure 2.2.
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Detail

Figure 2.2 Planning and scheduling cascade in a refinery (Simons, 1997).

Linear and integer programming are heavily used in the longer-term 
planning models. With shorter time horizons the models have to be more detailed 
and accurate and this leads to the use of Successive Linear Programming. The 
greatest challenges lie with the transition from operational planning to detailed
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scheduling, where the assumptions implicit in LP-based models break down. These 
are that operations can be broken down into a series of time periods, during each of 
which it suffices to model activities as continuous (or average) flows.

Generally, planning and scheduling of oil refinery operations can be 
divided into three main parts. The first part involves the crude-oil unloading, mixing 
and inventory control. The second part consists of the production unit scheduling, 
which includes both fractionation and reaction processes. Lastly, the third part 
covers the finished product blending, and shipping to the customer (Jia et al, 2003). 
Figure 2.3 depicts the overall picture of oil refinery operations.

1 = )

Ship Products 
to Customers

Figure 2.3 Overview picture of the oil refinery operations.

The efficient modeling and solution of each of these problems will 
pave the way toward addressing the overall problem of scheduling of refinery 
operations, a task that is currently prohibitively expensive to solve. The lack of 
computational technology for production scheduling is the main obstacle for the 
integration of production objectives and process operations (Pinto et a l, 2000).

2.3.2 Blending
Crude oil consists of a vast range of hydrocarbon molecules. A crude 

distillation unit separates this mixture into components whose boiling points lie
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within certain ranges e.g. 0°C-78°C, 78°C-100°C, 100°C-145°C, etc. Other process 
units further refine these intermediate streams and chemically alter the hydrocarbon 
molecules, splitting them or removing sulfur, for instance. The resulting components 
have a wide range of physical properties: density, viscosity, octane, sulfur content, 
etc. On their own these components would not be suitable for commercial use, but 
blended together in various ways they form the products which we know as gasoline, 
diesel, heating oil, etc.

Blending is the combining of two or more materials to produce a new 
material. Since the final product of blending must meet certain specifications, it 
becomes necessary to be able to estimate priori certain properties of a proposed 
blend. Otherwise, a trial-and-error procedure could prove costly in time and 
materials. Also, because of the complexity of the problem, there may be an infinite 
number of blends that will meet a particular required specification. Usually there are 
several specifications to be met. Thus the problem becomes even more complicated. 
As a result, many refiners resort to a linear program to optimize their blends, 
particularly in the case of gasoline (Maples, 2000).

Since the blending operations offer such an enormous number of 
options, most refiners use LP models to aid them in their blending decisions. The 
blending operations may be modeled by on of two methods. The simplest method is 
to develop a number of recipes or blends which will meet the product specifications 
and then allow the LP model to select any combination of these blends to meet 
product demands. This method is most often used for modeling existing refineries 
where data on a number of feasible blends are available. Unfortunately, it has the 
disadvantage that a large number of blends may be required to adequately represent 
the flexibility of the blending operations and a completely new set of blends is 
required each time a specification value is changed, a new blend component is added, 
or the properties of the blend components change.

In the second method, the blend stock qualities and product 
specifications are used directly in the model which is allowed to select the optimum 
blend composition within the limits of these specifications. Although more flexible 
than the recipe technique, this method is more complex and requires more skill in 
preparing the property data and structuring the model. One of the major tasks is to
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put the property data into a form which can be blended linearly. In most models, 
blending is done to a quality specification (Simons, 1995).

Estimating a property becomes a problem when the particular 
property is not additive, which is usually the case. A property is considered additive 
if the property of a blend is the average of that same property of each of the 
components in the blend (averaged on a weight-, volume-, or mol-fraction basis). In 
other words, the property of a 50-50 blend would be the average of that property for 
the two components of the blend.

The properties that are additive include:
• Boiling point based on values from a TBP distillation
• Vapor pressure on a mol percent basis
• Aniline point
• Sulfur content

The properties that are not additive on a volume basis include:
• Octane number
• Viscosity
• Flash temperature
• Pour point
• Reid vapor pressure (RVP)
• Smoke point

A property that is additive must be satisfied one of the following equations:

ท = £  Wfi (2.2)

ท = I  y,p, (2.3)
ท = x  X  1?, (2.4)

where:
p b = property of total blend 
Pi = property of component i 
พ 1 = weight fraction of component i 
V, = volume fraction of component i
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X, = mole fraction of component i

When a property does not blend linearly (is not additive), one 
technique used is to substitute a blending number or blending index that does blend 
linearly. These functions, which are referred to as blending numbers, blending 
indices, or blending factors, must satisfy the following equations:

4 = 1 1 4 4 (2.5)
4  = 1  V f 1 (2.6)
4  = I  X f (2.7)

where:
h  = blending index for total blend 
/, = blending index for component i

Note that the qualities blended in an LP model must be based on the 
same units, which is, weight, volume, moi-fraction. For instance, vapor pressures 
can be blended on a mol-fraction basis with good accuracy. In a model or in 
blending calculations based on volume flows, however, the vapor pressures must be 
converted to volume blending indices since the vapor pressures do not blend linearly 
on a volume basis. In the USA, most refinery LP models and blending calculations 
are based on volume units since these are the common units for the domestic 
petroleum business. However, in Europe and elsewhere, weight units are most often 
used.

Today most refineries use computer-controlled in-line blending for 
blending gasolines and other high-volume products. Inventories of blending stocks, 
together with cost and physical property data are maintained in the computer. The 
computer uses linear programming models to optimize the blending operations to 
select the blending components to produce the required volume of the specified 
product at the lowest cost. Moreover, with much improved continuous analyzers for 
octane and volatility coupled with computers, refiners can confidently blend directly
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to tankers and pipelines at considerable savings over batch blending due to reduced 
material in inventory, and closer approach to specifications (less quality give-away).

2.3.3 Uncertainties in Refinery Planning
Since the refinery industry is a tremendous business that has to deal 

with many sections from crude oil purchasing and processing to product distributing 
and selling, the refinery planning may contain a lot of uncertainties. The 
uncertainties can arise from crude cost, product price and demand etc. The effect of 
these uncertainties, for example, demand uncertainty, can result in over- or under
production, with resultant excess inventories or an inability to meet customer needs, 
respectively. Excess inventory incurs unnecessary holding costs, while the inability 
to meet the customer needs results in both losses of profits and potentially, the loss of 
customers. This trade-off between maximization of the profit and minimization the 
cost of risk from safety stock leads to the formulation of a stochastic optimization 
problem.

2.4 Two-Stage Stochastic Programming

This kind of problems is characterized by two essential features: the 
uncertainty in the problem data and the sequence of decisions (Barbara and 
Bagajewicz, 2003). Some model parameters are accounted as random variables with 
a certain probability distribution. In turn, some of these decisions must be made with 
incomplete information about the future. Then, as some of the uncertainties are 
revealed, the remaining decisions will be made. A number of decisions that have to 
be made before the experiment are called first-stage decisions, and the period when 
these decisions are made is called the first stage. On the other hand, the decisions 
made after uncertainty is unveiled are called second-stage decisions and the 
corresponding period is called the second stage. Among the two-stage stochastic 
models, the expected value of the cost (or profit) resulting from optimally adapting 
the plan according to the realizations of uncertain parameters is referred to as the 
recourse function. A problem is said to have complete recourse if the recourse cost
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(or profit) for every possible uncertainty realization remains finite, independently of 
the nature of the first-stage decisions.

Optimization this kind of model involves maximization or minimization of 
expected profits or expected cost, respectively, where the term “expected” refers to 
multiplying profits or costs associated with each scenario by its probability of 
occurrence (Lababidi et al, 2004).

The general form of a two-stage linear stochastic problem with fixed 
recourse and a finite number of scenarios can be defined as (Birge and Louveaux,
1997):

Max จ.[Profit] = Y jP A
s e S

s.t. Ax -  b
Tsx + Wys = h 5 s e S (2.8)

X  >  0 x e X
ys -  0 \ / s e S

In the above equation, first-stage decisions are represented by variable X  and 
second-stage decisions are represented by variable ys, which has probability ps. The 
objective function contains a deterministic term, CTX, and the expectation of the 
second-stage objective, qsJys, taken over all realizations of the random event 5. For a 
given realization of the random events, ร e ร, the second-stage problem data qs, hs, 
and Ts become known, and then the second-stage decisions, >'1.(x), must be made. In 
this thesis, the study was restricted to the cases where พ, the recourse matrix, is 
fixed.

2.5 Financial Risk Management

According to Barbaro and Bagajewicz (2003), financial risk related with a 
planning project can be defined as the probability of not meeting a certain target 
profit (maximization) or cost (minimization) level.
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2.5.1 Value at Risk and Upside Potential
Value at Risk (VaR) is defined as the expected loss for a certain 

confidence level usually set at 5% (Linsmeier and Pearson, 2000). A more general 
definition of VaR is given by the difference between the mean value of the profit and 
the profit value corresponding to the / 1-quantile (value at p  risk). VaR has been used 
as a point measure very similar to the variance. VaR measures the deviation of the 
profit at 5% risk from the expected value.

However, VaR can only be used as a measure of robustness, but not 
risk. To relieve these difficulties, Aseeri and Bagajewicz (2003) proposed that VaR 
be compared to a similar measure, the Upside Potential (UP) or Opportunity Value 
(OV), defined in a similar way to VaR but at the other end of the risk curve with a 
quantile of (1-/0 as the difference between the value corresponding to a risk of (1-/0 
and the expected value. They discussed the need of the Upside Potential for a good 
evaluation of the project.

2.5.2 Risk Area Ratio
VaR and UP are point measures and do not represent the behavior of 

the entire curve (Aseeri and Bagajewicz, 2003). The use of a method that compares 
the areas between two curves was proposed. The proposed ratio, the Risk Area Ratio 
(RAR), can be calculated as the ratio of the Opportunity Area (0_Area), enclosed by 
the two curves above their intersection, to the Risk Area (R Area), enclosed by the 
two curves below their intersection (Equation (2.9) and Figure 2.4).

M R  = ° - A™  (2.9)R_Area

Note that this is only true if the second curve is minimizing risk in the
downside region. If risk on the upside is to be minimized, then the relation is
reversed (i.e. 0_Area is below the intersection and R Area is above it).
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Risk

Figure 2.4 Risk Area Ratio (Aseeri and Bagajewicz, 2003).

2.5.3 Use of the Sampling Algorithm to Obtain Optimal Solution
In this method, a relatively small number of scenarios are generated 

and used to run the stochastic model. After these series of designs are obtained, the 
first stage variables of each one is used as fixed numbers in a new stochastic model 
containing a much larger number of scenarios. The result tends asymptotically to 
such optimum which was proven by Aseeri and Bagajewicz (2003). In addition, 
using proper values in the sampling algorithm, one can capture the stochastic 
solution.

2.5.4 Upper Risk Curve Bounds
The upper bound risk curve is defined to be the curve constructed by 

plotting the set of net present values (NPV) for the best design under each scenario, 
that is by using all “wait and see” solutions. Figure 2.5 shows the upper bound risk 
curve and curves corresponding to possible and impossible solutions. The risk curve 
for any feasible design is positioned entirely above (to the left of) the upper bound 
risk curve (Aseeri and Bagajewicz, 2003).
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Figure 2.5 Upper bound risk curve (Aseeri and Bagajewicz, 2003).

2.6 Literature Survey

2.6.1 Refinery Operations Planning and Scheduling
In the last 20 years, a number of models have been developed to 

perform short term scheduling and longer term planning of batch plant production to 
maximize economic objectives (Shah, 1998). The application of formal, 
mathematical programming techniques to the problem of scheduling the crude oil 
supply to a refinery was considered by Shah (1996). The consideration includes the 
allocation of crude oils to refinery and portside tanks, the connection of refinery 
tanks to crude distillation units (CDUs), the sequence and amounts of crude pumped 
from the ports to the refineries, and the details related to discharging of tankers at the 
portside. The mathematical programming model is based on a discretisation of the 
time horizon into intervals of equal duration. The problem was decomposed into two 
smaller ones: a downstream problem and an upstream problem. The downstream 
problem was solved first and the upstream problem was solved subsequently.

On the scheduling of crude oil unloading, Lee et al. (1996) addressed 
the problem of inventory management of a refinery that imports several types of 
crude oil which are delivered by different vessels. The problem is formulated as a
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mixed-integer linear program (MILP) that involves bilinear equations due to mixing 
operations. Nevertheless, the linearity is maintained by replacing bilinear terms with 
individual component flows. The LP based branch and bound method is applied to 
solve the model with several techniques to reduce the computation time.

Zhang et al. (2001) proposed a method for overall refinery 
optimization through integration of the hydrogen network and the utility system with 
the material processing system. This method considers the optimization of refinery 
liquid flows, hydrogen flows, and steam and power flows simultaneously. They also 
presented the approach on debottlenecking in refinery operation. The aim of the 
debottlenecking is to shift bottlenecks from an expensive process to a cheaper 
process by modifying networks such as the hydrogen network and the utility system. 
Other bottlenecks which cannot be tackled by the network changes are retrofitted by 
using detailed process models to achieve the required extra capacity.

Wenkai et al. (2002) presented a solution algorithm and mathematical 
formulations for short term scheduling of crude oil unloading, storage, and 
processing with multiple oil types, multiple berths, and multiple processing units. 
They suggest solving mixed-integer nonlinear programming (MINLP) model by 
iteratively solving two MILP models and a nonlinear programming (NLP) model.

Gôthe-Lundgren et al. (2002) described a production planning and 
scheduling problem in an oil refinery company. In the production planning, the 
focus is on the production cost of changing mode and holding inventory. The model 
is formulated as a MILP.

Jia et al. (2003) addressed the problem of crude oil short term 
scheduling. The scheduling involves the optimal operation of crude oil unloading 
from vessels, its transfer to storage tanks, and the charging schedule for each crude 
oil mixture to the distillation units. The model is developed based on a continuous 
time representation and results in a MILP problem.

Moro et al. (1998) developed a nonlinear planning model for diesel 
production. The resulting optimization model is solved with the generalized reduced 
gradient method. Pinto and Moro (2000); Pinto et al. (2000) and Joly et al. (2002) 
focused on the refinery productions. The models are composed of a representation of 
the refinery processing units and their interconnections and involve equations to
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represent the performance of such units as well as to represent the mixing of process 
streams. The work also addressed scheduling problems in oil refineries that are 
formulated as mixed integer optimization models and rely on both continuous and 
discrete time representations. The problems involve the optimal operation of crude 
oil unloading from pipelines, transfer to storage tanks and the charging schedule for 
each crude oil distillation unit. Moreover, they discussed the development and 
solution of optimization models for short term scheduling of a set of operation that 
includes product receiving from processing units, storage, and inventory 
management in intermediate tanks, blending in order to attend oil specifications and 
demands, and transport sequencing in oil pipelines. In their work, mathematical 
programming models are based on mixed integer optimization algorithms. They 
showed that these problems could be formulated as large-scale MIP optimization 
models. Continuous time models were found to avoid the difficulty originated by the 
relevant differences in processing time of the several operations involved while 
optimal results were obtained in reasonable time through discretization of scheduling 
horizon. The LP based branch and bound method is used to solve MILP models 
whereas NLP is solved by generalized reduced gradient method. The solution of the 
MINLP non-convex model presented for the fuel oil production problem can in 
principle be accomplished with the augmented penalty version of the outer- 
approximation method implemented in DICOPT++. However, it is computationally 
infeasible to obtain global optimal solutions due to the highly combinatorial features 
of the MIP formulations. These numerical problems of the model need to address.

On the blending process, Glismann and Gruhn (2001) developed an 
integrated approach to coordinate short term scheduling of multi-product blending 
facilities with nonlinear recipe optimization. The recipe optimization problem is 
treated as a NLP and its results are forwarded to the scheduling problem. The 
scheduling problem is formulated as a MILP based on a resource-task network 
(RTN) representation.

Jia and Ierapetritou (2003) introduced a MILP model based on 
continuous representation of the time domain for gasoline blending and distribution 
scheduling. The problem involves the optimal operation of gasoline blending, the
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transfer to product stock tanks, and the delivering schedule to satisfy all of the 
orders.

A decomposition technique that is applied to overall refinery 
optimization was presented by Zhang and Zhu (2000). They decomposed the overall 
plant model into two levels, namely a site level (master model), and a process level 
(submodels). The master model determines common issues among processes such as 
allocation of raw materials and utilities. With these common issues determined, 
submodels then optimize individual processes. The results from submodel 
optimization are fed back to the master model for further optimization.

Moro and Pinto (2004) addressed the problem of crude oil inventory 
management of a refinery that receives several types of oil delivered through a 
pipeline. The short-term scheduling in this problem is modeled as mixed-integer 
programming models based on a continuous-time formulation.

2.6.2 Planning of Petroleum Supply Chain under Uncertainty
Bopp et al. (1996) described the problem of managing natural gas 

purchases under conditions of uncertain demand and frequent price change. In their 
paper, they presented a stochastic optimization model to solve this problem. Unlike 
other models, this model explicitly considers deliverability, the rate at which gas can 
be added to and withdrawn from a storage facility, as a variable, and considers its 
role in ensuring a secure supply of gas. Similarly, Guldmann and Wang (1999) 
presented a large MILP and a much smaller NLP approximation of the MILP, 
involving simulation and response surface estimation via regression analysis to solve 
the problem of the optimal selection of natural gas supply contracts by local gas 
distribution utilities. The model minimizes the total cost of gas supply and market 
curtailment, and thus determines the size of the interruptible market. The demand for 
various gas market segments is driven by using weather variability as the basic 
stochastic factor.

Liu and Sahinidis (1996) developed a two-stage stochastic 
programming approach for process planning under uncertainty. They extended a 
deterministic MILP formulation to account for the presence of discrete random 
parameters. A decomposition algorithm for the solution of the stochastic model was
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also introduced. A method was proposed to compare the stochastic and fuzzy 
programming approaches. The problems were solved using a combination of Bender 
decomposition with Monte Carlo sampling.

The optimization of a multiperiod Supply, Transformation, and 
Distribution (STD) can be found in literatures. Escudero et al. (1999) proposed a 
modeling framework for STD optimization of an oil company that accounts for 
uncertainty on the product demand, spot supply cost, and spot selling price. They 
used a two-stage scenario analysis based on a partial recourse approach. Tsiakis et 
al. (2001) introduced the design of multiproduct, multi-echelon supply chain 
networks. The networks include a number of manufacturing sites at fixed locations, 
a number of warehouses, and distribution centers of unknown locations which would 
be selected from a set of potential locations, and lastly a number of customer zones at 
fixed locations. Neiro and Pinto (2003) extended the single refinery model of Pinto 
et al. (2000) to a corporate planning model that contains multiple refineries. The 
model is optimized along a planning horizon resulting in a large scale MINLP that 
non-linearity arises from blending equations and physical properties. They also 
examined for different types of crude oil and product demand scenarios.

Using the fuzzy theory, Liu and Sahinidis (1997) presented an 
application of fuzzy programming to process planning of petrochemical complex. A 
global optimization algorithm is developed for the solution of nonlinear case.

Hsieh and Chiang (2001) developed a manufacturing-to-sale planning 
system to deal with uncertain manufacturing factors. The problem of the uncertain 
nature faced by the Chinese Petroleum Corporation (CPC) is the major objective of 
this study. A linear programming was suggested for developing the optimal strategy 
for use in production plans. Fuzzy theory was used to deal with demand and cost 
uncertainties.

The optimization model for the supply chain of a petrochemical 
company operating under uncertain operating and economic conditions was 
developed by Lababidi et al. (2004). In this work, a deterministic model was 
developed first and then uncertainties in key parameters were introduced. The model 
was tested on a typical petrochemical company, manufacturing different grades of
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polymer products. Uncertainties were introduced in demands, market prices, raw 
material costs, and production yields.

2.6.3 Financial Risk Management
Barbara and Bagajewicz (2003) presented a methodology to include 

financial risk management in the framework of two-stage stochastic programming 
for planning under uncertainty. A known probabilistic definition of financial risk is 
adapted to be used in the framework of two-stage stochastic programming and its 
relation to downside risk is analyzed. Their method is compared with the methods 
that intend to manage risk by controlling the second-stage variability. One of the 
major contributions of their work to the field of planning under uncertainty is the 
formal definition of financial risk as applied to these problems. Based on this 
definition, several theoretical expressions were developed, providing new insights on 
the trade-offs between risk and profitability. Thus, the cumulative risk curves were 
constructed to be very appropriate to visualize the risk behavior of different 
alternatives. Moreover, they examined the concept of downside risk and a close 
relationship with financial risk was discovered. Consequently, they suggested that 
downside risk be used to measure financial risk, considering that in that way there is 
no need to introduce new binary variables that increase the computational burden.

New measures and procedures to manage financial risk were 
introduced by Aseeri and Bagajewicz (2003). The concept of Value at Risk and 
Upside Potential as means to weigh opportunity loss versus risk reduction as well as 
an area ratio are introduced and discussed, upper and lower bounds for risk curves 
corresponding to the optimal stochastic solutions were developed, the application of 
the sampling average algorithm, was analyzed, and the relation between two-stage 
stochastic models that manage risk and the use of chance constraints was discussed. 
These concepts are applied to the commercialization of gas in Asia.
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