

REFERENCES

- Albano, C., and Freitas, D.E. (1998). Thermogravimetric evaluation of the kinetics of decomposition of polyolefin blends. <u>Polymer Degradation and Stability</u>, 61, 289-295.
- Albano, C., Trujillo, J., Caballero, A., and Brito, O. (2001). Application of different kinetic models for determining thermal stability of PA6/HDPE blends. <u>Polymer Bulletin</u>, 45, 531-538.
- Anttila, U., Hakala, K., Löfgren, B., Seppälä, J. (1999). Compatibilization of Polyethylene/Polyamide 6 Blends with Functionalized Polyethylenes prepared with Metallocene Catalyst. Journal of Polymer Science. Part A. Polymer Chemistry, 37, 3099-3109.
- Armat, R., and Moet, A. (1993). Morphological origin of toughness in polyethylene-nylon-6 blends. <u>Polymer</u>, 34(5), 977-985.
- Bikiaris, D., Prinos, J., Perrier, C., and Panayiotou, C. (1997). Thermoanalytical study of the effect of EAA and starch on the thermo-oxidative degradation of LDPE. <u>Polymer Degradation and Stability</u>, 57, 313-324.
- Chiono, V., Filippi, S., Yordanov, H., Minkova, L., and magagnini, P. (2003). Reaction compatibilizer precursors for LDPE/PA6 blends. III: ethyleneglycidylmethacrylate copolymer. <u>Polymer</u>, 44, 2423-2432.
- Degée, Ph., Vankan, R., Teyssié, Ph., and Jérôme, R. (1997). Design of polymer blend rheology: 4. Effect of polymethacrylic ionomers on the melt viscosity of polyamide m × D,6. <u>Polymer</u>, 38(15), 3861-3867.
- Fairley, G., and Prudhomme, R.E. (1987). A contribution to the understanding of polyethylene/iomoner/polyamide-6 blends. <u>Polymer engineering and</u> <u>Science</u>, 27(2), 1495-1503.
- Farrel, K.V., and Grady, B.P. (2001). EXAFS Spectroscopy Studies of cation Local Environment in Sodium-Neutralized Ethylene Copolymer Ionomers. <u>Macromolecule</u>, 34, 7108-7112Grady, B.P. (2000). Relative size of ionic aggregates determined by X-ray absorption spectroscopy. <u>Polymer</u>, 41, 2325-2328.

- Feng, Y., Schmidt, A., and Weiss, R.A. (1996). Compatibilization of Polymer Blends by Complexation. 1. Spectroscopic Characterization of Ion-amide Interactions in Ionomer/Polyamide blends. <u>Macromolecule</u>, 29, 3909-3917.
- Halldén, Å, Deriss, M.J., and Wesslén, B. (2001). Morphology of LDPE/PA-6 blends compatibilised with poly(ethylene-graft-ethylene oxide)s. <u>Polymer</u>, 42, 8743-8751.
- Halldén, Å., Ohlsson, B., and Wesslén, B. (2000). Poly(ethylene-graft-ethylene oxide) (PE-PEO) and Poly(ethylene-co-acrylic acid) (PEAA) as compatibilizers in Blends of LDPE and Polyamide-6. Journal of Applied Polymer Science, 78, 2416-2424.
- Han, D.C., and Chuang, H. (1985). Blends of Nylon6 with an Ethylene-based Multifunctional Polymer. Rheology-Structure Relationships. <u>Journal of</u> <u>Applied Polymer Science</u>, 30, 2431-2455.
- Jana, R.N., Mukunda, P.G., and Nando, G.B. (2003). Thermogravimetric analysis of compatibilized blends of low density polyethylene and poly(dimethyl siloxane) rubber. <u>Polymer Degradation and Stability</u>, 80, 75-82.
- Jiang, C., Filippi, S., and Magagnini, P. (2003). Reaction compatibilizer precursors for LDPE/PA6 blends. II: maleic anhydide grafted polyethylenes. <u>Polymer</u>, 44, 2411-2422.
- Kalfoglou, N.K., and Skafidas, D.S. (1994). Compatibility of Blends of Poly(ethylene terepthalate) with the Ionomer of Ethylene-Methacrylic acid Copolymer. <u>European Polymer Journal</u>, 30(8), 933-939.
- Koulouri, E.G., Georgaki, A.X., and Kallitsis, J.K. (1997). Reactive compatibilization of aliphatic polyamides with functionalized polyethylenes. Polymer, 38(16), 4185-4192.
- Kudva, R.A., Keskkula, H., and Paul, D.R. (1999). Morphology and mechanical properties of compatibilized nylon 6/polyethylene blends. <u>Polymer</u>, 40, 6003-6021.
- Lamas, L., Mandes, G.A., Müller, A.J., and Pracella, M. (1998). Thermal stability of blends of nylon 6 with polyolefins that contain acrylic acid. <u>European</u> <u>Polymer Journal</u>, 34(12), 1865-1870.

- Leewajanakul, P., Pattanaolarn, R., Ellis, J.W., Nithitanakul, M., Grady, B.P. (2003). Use of Zinc-neutralized ethylene/methacrylic acid copolymer ionomers as blend compatibilizers for nylon6 and low-density polyethylene. Journal of Applied Polymer Science, 89, 620-629.
- Ma, X., Sauer, J.A., and Hara, M. (1995). Poly(methyl methacrylate) Based Ionomers. 1. Dynamic Mechanical Properties and Morphology. <u>Macromolecule</u>, 28, 3953-3962.
- Macknight, W.J., and Lenz, R.W. (1985). Binary alloys of nylon 6 and ethylenemethacrylic acid copolymer: morphological, thermal and mechanical analysis. <u>Polymer Engineering and Science</u>, 25(18), 1124-1133.
- Mascia, L., and Hashim, K. (1998). Compatibilization of Poly(vinylidene fluoride)/Nylon 6 blends by carboxylic acid functionalization and metal salts fomation. <u>Polymer</u>, 39, 369-378.
- Minkova, L., Yordanov, Hr., and Filippi, S. (2000). Characterization of blends of LDPE and PA6 with functionalized polyethylenes. <u>Polymer</u>, 43(23), 6195-6204.
- Papadopoulou, C.P., and Kalfoglou, N.K. (1998). Polyurethane/olefinic ionomer blends. 1: Compatibility characterization. <u>Polymer</u>, 39(26), 7015-7021.
- Psarski, M., Pracella, M., and Galeski, A. (2000). Crystal phase and crystallinity of polyamide 6/functionalized polyolefin blends. <u>Polymer</u>, 41(13), 4923-4932.
- Samios, C.K., and Kalfoglou, N.K. (1999). Compatibilization of poly(ethylene terephthalate/polyamide-6 alloys : Mechanical, Thermal and Morphological Characterization. <u>Polymer</u>, 40, 4811-4819.
- Sánchez, A., Rosales, C., Laredo, E., Müller, J.A., and Pracella, M. (2001). Compatibility Studies in Binary Blends of PA6 and ULDPE-graft-DEM. <u>Macromolecules Chemistry Physics</u>, 202, 2461-2478.
- Scaffaro, R., La Mantia, P.F., Canfora, L., Polacco, G., Filippi, S., Magagnini, P. (2003). Reactive compatibilization of PA6/LDPE blends with an ethyleneacrylic acid copolymer and a low molar mass bis-oxazoline. <u>Polymer</u>, 44, 6951-6957.
- Sheng, J., Ma, H., Yuan, X.B., Yuan, X.Y., Shen, N.X., and Bian, D.C. (2000). Relation of chain constitution with phase structure in blends: compatibility

of two phases in blends of polyamide with low-density polyethylene and its ionomer. Journal of Applied Polymer Science, 76, 488-494.

- Siat, C., Bourbigot, S., and bras, L.M. (1997). Thermal behavior of polyamide-6based intumescent formulations- a kinetic study. <u>Polymer Degradation and</u> <u>Stability</u>, 58, 303-313.
- Silva, E.F., and Soares, B.G. (1996). Polyethylene/Polyamide-6 Blends Containing Mercapto-Modified EVA. Journal of Applied Polymer Science, 60, 1687-1694.
- Valenza, A., Geuskens, G., and Spadaro, G. (1997). Blends of polyamide 6 and linear low density polyethylene functionalized with methacrylic acid derivatives. <u>European Polymer Journal</u>, 33(6), 957-962.
- Valenza, A., Visco, A.M., and Acierno, D. (2002). Characterization of blends with polyamide 6 and ethylene acrylic acid copolymers at different acrylic acid content. <u>Polymer Testing</u>, 21, 101-109.
- Willis, J.M., and Favis, B.D. (1988). Processing-morphology relationships of compatibilized polyolefin/polyamide blends. Part I: The effect of an ionomer compatibilizer on blend morphology. <u>Polymer engineering and</u> Science, 28, 1416-1426.
- Willis, J.M., Favis, B.D., and Lavallee, C. (1993). The influence of interfacial interactions on the morphology and thermal properties of binary polymer blends. Journal of Materials Science, 28, 1749-1757.
- Yeh, J.T., Fan-Chiang, C.C., and Cho, M.F. (1995). Effects of compatibilizer precursors on the barrier properties and morphology of polyethylene/polyamide blends. <u>Polymer bulletin</u>, 35, 371-378.

APPENDICES

Appendix A Scanning Electron Microscopy Analysis

Table A1 Number average particle size (d_n) of dispersed phase of uncompatibilized Ny6/LDPE blends.

Ny6/LDPE blends ratio	20/80	40/60	50/50	60/40	80/20
(%wt) without Na-EMAA	20/00	10/00		00,10	00/20
Mean	15.7955	26.1030	24.7646	13.0115	17.3175
Std. Error of Mean	1.4675	1.6261	1.4585	1.3981	0.7409
Std. Deviation	13.1254	14.5444	13.0448	12.5050	6.6268
Range	10.05	66.95	64.11	60.32	31.02
Minimum	3.15	3.85	2.59	1.88	2.08
Maximum	13.20	70.80	66.70	62.20	33.10

Table A2 Number average particle size (d_n) of dispersed phase of Ny6/LDPE blends with 0.5 phr of Na-EMAA compatibilized.

Ny6/LDPE blends ratio	20/80	40/60	50/50	60/40	80/20
(%wt) with 0.5 phr Na-EMAA	20/80	40/00	50/50	00/40	80/20
Mean	2.6239	3.8926	5.9578	2.1433	2.4968
Std. Error of Mean	0.1437	0.3671	0.4217	0.1161	0.0644
Std. Deviation	1.2849	3.2837	3.7717	1.0385	0.5757
Range	6.02	22.64	16.43	5.39	2.47
Minimum	0.61	0.66	1.07	0.77	1.26
Maximum	6.63	23.30	17.50	6.16	3.73

Ny6/LDPE blends ratio	20/80	40/60	50/50	60/40	80/20
(%wt) with 1.5 phr Na-EMAA	20/80	40/00	50/50	00/40	80/20
Mean	1.7338	2.4757	2.6549	2.2737	1.7484
Std. Error of Mean	0.1263	0.1326	0.1295	0.1822	0.1144
Std. Deviation	1.1300	1.1863	1.1580	1.6298	1.0235
Range	5.83	6.14	5.19	7.87	4.08
Minimum	0.28	0.70	0.78	0.69	0.37
Maximum	6.10	6.84	5.97	8.56	4.45

Table A3 Number average particle size (d_n) of dispersed phase of Ny6/LDPE blends with 1.5 phr of Na-EMAA compatibilized.

Table A4 Number average particle size (d_n) of dispersed phase of Ny6/LDPE blends with 5.0 phr of Na-EMAA compatibilized.

Ny6/LDPE blends ratio	20/80	10/60	50/50	60/40	80/20
(%wt) with 5.0 phr Na-EMAA	20/80	40/00	50/50	00/40	80/20
Mean	2.5866	1.9814	2.7639	1.4239	1.6760
Std. Error of Mean	0.1248	0.1259	0.1376	0.1307	0.0877
Std. Deviation	1.1159	1.1258	1.2306	1.1688	0.7844
Range	5.30	5.20	5.81	9.98	3.45
Minimum	0.64	0.57	1.05	0.33	0.46
Maximum	5.94	5.77	6.86	10.30	3.90

Ny6/Na-EMAA blends ratio (%wt)	20/80	40/60	50/50	60/40	80/20
Mean	1.5626	2.2032	1.9264	1.8691	0.8384
Std. Error of Mean	0.0555	0.1630	0.2071	0.1113	0.0348
Std. Deviation	0.4960	1.4582	1.8520	0.9957	0.3115
Range	2.14	9.04	10.22	4.70	1.81
Minimum	0.52	0.46	0.18	0.40	0.21
Maximum	2.66	9.50	10.40	5.10	2.01

Table A5 Number average particle size (d_n) of dispersed phase of Ny6/Na-EMAA blends.

Appendix B Thermogravimetric Analysis

Pure con	nponent	Ny6	LDPE	Na-EMAA
Heating	10	390.4	318.1	361.2
rate	20	398.3	339.4	393.5
(°C/min)	40	418.8	352.2	406.6
Temperature a	t 0.1 (°C)	380.2	311.8	354.6
E_a (kJ/mol)		175.7	122.0	102.5
$\ln A (\min^{-1})$		34.3	27.1	21.7
r ²		0.9424	0.9749	0.9373
1		1		1

Table B1 Degradation temperature (at 10%weight loss), pre-exponential factor (lnA), and activation energy (E_a) at 0.1 conversion of pure components.

Table B2 Degradation temperature (at 10% weight loss), pre-exponential factor (lnA), and activation energy (E_a) at 0.1 conversion of uncompatibilized Ny6/LDPE blends.

Ny6/LDPE	blend ratio	20/80	40/60	50/50	60/40	80/20
Heating	10	284.5	313.2	315.6	359.1	368.2
rate	20	339.1	330.0	340.6	367.2	393.6
(°C/min)	40	365.2	370.9	368.0	379.9	410.6
Temperature a	at 0.1 (°C)	271.5	292.7	301.9	318.9	359.7
$E_a(kJ/mol)$		48.1	71.9	83.0	70.1	117.1
$\ln A (\min^{-1})$		12.6	17.2	19.3	16.2	24.2
r ²		0.9467	0.9544	1.0000	0.7973	0.9820

Table B3 Degradation temperature (at 10% weight loss), pre-exponential factor (lnA), and activation energy (E_a) at 0.1 conversion of Ny6/LDPE blends with 0.5 phr of Na-EMAA.

Ny6/LDPE b	lend ratio	20/80	40/60	50/50	60/40	80/20
Heating	10	345.0	357.4	364.3	365.7	400.2
rate	20	361.8	369.1	367.4	368.2	418.6
(°C/min)	40	367.4	372.1	376.3	383.5	427.5
Temperature at	0.1 (°C)	342.2	355.9	359.9	358.1	395.7
E _a (kJ/mol)		186.8	285.4	370.3	232.0	190.6
ln A (min ⁻¹)		38.6	56.7	72.3	46.2	36.3
r ²		0.9182	0.8945	0.9306	0.8559	0.9585

Table B4 Degradation temperature (at 10% weight loss), pre-exponential factor (lnA), and activation energy (E_a) at 0.1 conversion of Ny6/LDPE blends with 1.5 phr of Na-EMAA.

Ny6/LDPE b	lend ratio	20/80	40/60	50/50	60/40	80/20
Heating	10	342.7	386.9	381.7	366.2	397.3
rate	20	363.7	393.6	387.0	373.9	419.3
(°C/min)	40	375.2	397.3	392.8	375.8	426.9
Temperature at	0.1 (°C)	336.9	385.0	378.7	365.3	393.5
E _a (kJ/mol)		136.9	476.0	451.1	444.4	168.1
ln A (min ⁻¹)		29.0	89.0	85.2	85.9	32.4
r ²		0.9680	0.9710	0.9995	0.8921	0.9213

Table B5 Degradation temperature (at 10% weight loss), pre-exponential factor (lnA), and activation energy (E_a) at 0.1 conversion of Ny6/LDPE blends with 5.0 phr of Na-EMAA.

Ny6/LDPE b	lend ratio	20/80	40/60	50/50	60/40	80/20
Heating	10	357.4	353.0	366.3	360.5	397.1
rate	20	364.4	359.6	373.4	365.4	424.1
(°C/min)	40	368.1	367.3	386.0	378.2	427.4
Temperature at	0.1 (°C)	355.6	349.2	360.0	354.1	395.5
E _a (kJ/mol)		420.0	322.5	241.0	252.2	148.1
In A (min ⁻¹)		82.4	64.3	47.7	50.3	28.8
r ²		0.9648	0.9987	0.9766	0.9399	0.8290

Table B6 Degradation temperature (at 10% weight loss), pre-exponential factor (lnA), and activation energy (E_a) at 0.1 conversion of Ny6/Na-EMAA blends.

Ny6/Na-EMAA	blend ratio	20/80	40/60	50/50	60/40	80/20
Heating	10	398.7	395.9	394.6	395.0	395.0
rate	20	412.2	416.8	419.2	423.4	419.5
(°C/min)	40	430.5	434.7	425.4	436.1	432.5
Temperature at	Temperature at 0.1 (°C)		386.9	391.5	388.6	388.5
$E_a(kJ/mol)$		170.2	139.8	155.0	125.9	139.4
$\ln A (\min^{-1})$		32.8	27.4	30.2	24.9	27.4
r ²		0.9942	0.9964	0.8874	0.9479	0.9647

LDPE/Na-EN	AA blend ratio	20/80	40/60	50/50	60/40	80/20
Heating	10	372.9	363.7	356.4	348.2	342.0
rate	20	395.2	375.7	367.6	362.0	353.2
(°C/min)	40	403.0	381.8	375.5	367.0	365.9
Temperature a	at 0.1 (°C)	369.0	360.6	352.5	345.7	335.7
E _a (kJ/mol)		154.4	255.0	243.5	226.8	189.8
ln A (min ⁻¹)		31.0	50.4	48.8	46.2	39.4
r ²		0.9229	0.9634	0.9878	0.9295	0.9994

Table B7 Degradation temperature (at 10% weight loss), pre-exponential factor(lnA), and activation energy (E_a) at 0.1 conversion of LDPE/Na-EMAA blends.

Appendix C Fourier Transform Infrared Spectrometry

Figure C1 FTIR spectra of Ny6/Na-EMAA binary blends: (a) pure Na-EMAA, (b) 20/80, (c) 50/50, (d) 60/40, (e) 80/20, (f) pure Ny6.

Wavenumber (cm ⁻¹)	Characteristic group
3300	N-H stretching
2940	Asymmetric and symmetric stretching of CH ₂
2850	Symmetric stretching of CH ₂
1695	Hydrogen bond carbonyl stretching
1550	Antisymmetric stretching mode of the carboxylate groups
	present in the ion cluster
1540	N-H bending
720	CH ₂ bending

Appendix D X-ray Diffraction Analysis

Figure D1 WAXS patterns of 20/80 Ny6/LDPE blends: (a) LDPE, (b) 5.0 phr, (c) 1.5 phr, (d) 0.5 phr, (e) 0 phr of Na-EMAA, (f) Ny6.

Figure D2 WAXS patterns of 40/60 Ny6/LDPE blends: (a) LDPE, (b) 5.0 phr, (c) 1.5 phr, (d) 0.5 phr, (e) 0 phr of Na-EMAA, (f) Ny6.

Figure D3 WAXS patterns of 50/50 Ny6/LDPE blends: (a) LDPE, (b) 5.0 phr, (c) 1.5 phr, (d) 0.5 phr, (e) 0 phr of Na-EMAA, (f) Ny6.

Figure D4 WAXS patterns of 60/40 Ny6/LDPE blends: (a) LDPE, (b) 5.0 phr, (c) 1.5 phr, (d) 0.5 phr, (e) 0 phr of Na-EMAA, (f) Ny6.

Figure D5 WAXS patterns of 80/20 Ny6/LDPE blends: (a) LDPE, (b) 5.0 phr, (c) 1.5 phr, (d) 0.5 phr, (e) 0 phr of Na-EMAA, (f) Ny6.

Appendix E Differential Scanning Calorimetric Analysis

Figure E1 DSC thermograms of 20/80 Ny6/LDPE blends: (a) LDPE, (b) 5.0 phr, (c) 1.5 phr, (d) 0.5 phr, (e) 0 phr of Na-EMAA, (f) Ny6.

Figure E2 DSC thermograms of 40/60 Ny6/LDPE blends: (a) LDPE, (b) 5.0 phr, (c) 1.5 phr, (d) 0.5 phr, (e) 0 phr of Na-EMAA, (f) Ny6.

Figure E3 DSC thermograms of 50/50 Ny6/LDPE blends: (a) LDPE, (b) 5.0 phr, (c) 1.5 phr, (d) 0.5 phr, (e) 0 phr of Na-EMAA, (f) Ny6.

Figure E4 DSC thermograms of 60/40 Ny6/LDPE blends: (a) LDPE, (b) 5.0 phr, (c) 1.5 phr, (d) 0.5 phr, (e) 0 phr of Na-EMAA, (f) Ny6.

Figure E5 DSC thermograms of 80/20 Ny6/LDPE blends: (a) LDPE, (b) 5.0 phr, (c) 1.5 phr, (d) 0.5 phr, (e) 0 phr of Na-EMAA, (f) Ny6.

CURRICULUM VITAE

Name: Ms. Atchara Lahor

Date of Birth: June 20, 1980

Nationality: Thai

University Education:

1998-2002 Bachelor of Engineering Degree, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakorn Pathom, Thailand.

