REMOVAL OF SULFUR COMPOUNDS FROM TRANSPORTATION FUELS BY ADSORPTON

Mr. Jittapong Chansa

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

Case Western Reserve University, The University of Michigan,
The University of Oklahoma, and Institut Français du Pétrole

2004

ISBN 974-9651-07-3

Thesis Title:

Removal of Sulfur Compounds from Transportation Fuels by

Adsorption

By:

Mr. Jittapong Chansa

Program:

Petroleum Technology

Thesis Advisors:

Asst. Prof. Pomthong Malakul

Prof. Pramote Chaiyavech

Dr. Sophie Jullian

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyahist. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

(Asst. Prof. Pomthong Malakul)

Sophie Jullian)

(Prof. Pramote Chaiyavech)

(Assoc, Prof. Sumaeth Chavadei)

ABSTRACT

4573004063: PETROLEUM TECHNOLOGY PROGRAM

Jittapong Chansa: Removal of Sulfur Compounds from

Transportation by Adsorption.

Thesis Advisors: Asst. Prof. Pomthong Malakul, Prof. Pramote

Chaiyavech, and Dr. Sophie Jullian, 46 pp. ISBN 974-9651-07-3

Keywords: Sulfur/ Adsorption/ Zeolite/ Isotherm/ Temperature

As the conventional hydrodesulfurization process (HDS) is considered no longer practical or economical for the production of ultra low sulfur fuels, adsorption on solid adsorbent has gained increasing interest from researchers and refinery operators throughout the world. In this regard, the batch liquid adsorption of three thiophenic sulfur compounds, 3-methylthiophene (3MT), benzothiophene (BT) and dibenzothiophene (DBT), on NaX and NaY zeolites was the main focus of this study. Decane and isooctane were used as model transportation fuels, representing diesel and gasoline, respectively. The effects of temperature and fuel to adsorbent weight ratio on sulfur adsorption were also examined. In a comparison between the two zeolite adsorbents studied, NaX exhibited slightly better ability to adsorb 3MT and BT than did NaY. For DBT, the adsorption of this sulfur compound on both zeolites was shown to be quite similar. It was also observed that BT and DBT, having a benzo functional group in their structure, were better adsorbed on both zeolites than 3MT, especially at low concentration. The results also revealed that the adsorption of all thiophenic compounds on both adsorbents decreased with increasing temperature. Moreover, increasing fuel to adsorbent weight ratio in the reactor resulted in an increase in the adsorption of thiophenic compounds.

บทคัดย่อ

จิตตพงษ์ ชันษา : การกำจัดกำมะถันออกจากน้ำมันเชื้อเพลิงสำหรับเครื่องยนต์โดย วิธีการดูดซับ (Removal of Sulfur Compounds from Transportation Fuels by Adsorption) อ. ที่ ปรึกษา : ผศ. คร. ปมทอง มาลากุล ณ อยุธยา ศ. คร. ปราโมทย์ ใชยเวช และ คร. โซเฟีย จูเลียน 46 หน้า ISBN 974-9651-07-3

ในปัจจุบันกระบวนการกำจัดกำมะถันโดยวิธีใฮโดรดีซัลเฟอร์ไรเซชั่นที่ใช้ในโรงกลั่น น้ำมันต่างๆนั้นอาจไม่เหมาะสมในการผลิตน้ำมันเชื้อเพลิงที่มีปริมาณกำมะถันต่ำเป็นพิเศษ เนื่องจากเหตุผลเชิงเทคนิคและเชิงเศรษฐศาตร์ คังนั้นวิธีการดูคซับสารประกอบกำมะถันบนตัวดูค ซับจึงได้รับความสนใจจากนักวิจัยและบุคคลที่เกี่ยวข้องกับอุตสาหกรรมการกลั่นน้ำมันเพิ่มมาก ขึ้น ด้วยเหตุดังกล่าววัตถุประสงค์หลักของงานวิจัยนี้คือ การศึกษาการดูคซับสารประกอบกำมะถัน ในน้ำมันเชื้อเพลิงค้วยตัวคูคซับในระบบแบบกะ สารประกอบกำมะถันที่ใช้ในงานวิจัยนี้มี 3 ชนิค คือ 3- เมทิลไทโอฟีน เบนโซไทโอฟีน และ ไคเบนโซไทโอฟีน ส่วนตัวคูคซับที่ใช้ในการศึกษา ครั้งนี้ คือ โซเคียมเอ็กส์ซีโอไลท์ และโซเคียมวายซีโอไลท์ งานวิจัยนี้ได้ใช้เค็คเคน และไอโซออก เทน เป็นแบบจำลองของน้ำมันเชื้อเพลิงคีเซลและแก๊สโซลีนตามลำคับ นอกจากนี้งานวิจัยยังได้ ศึกษาอิทธิพลของอุณหภูมิและอัตราส่วนของน้ำมันเชื้อเพลิงต่อตัวดูคซับที่มีผลต่อการดูคซับของ สารประกอบกำมะถั่นด้วย จากผลการทคลองพบว่าโซเดียมเอ็กส์ซีโอไลท์มีความสามารถในการ คูคซับ 3-เมทิลไทโอฟีน และ เบนโซไทโอฟีนได้ดีกว่าโซเคียมวายซีโอไลท์เล็กน้อย อย่างไรก็ตาม ตัวดูคซับทั้ง 2 ชนิด มีความสามารถในการดูคซับไดเบนโซไทโอฟีนได้ดีพอๆกัน เมื่อพิจารณา เปรียบเทียบการดูคซับของสารประกอบกำมะถันทั้ง 3 ชนิคนี้พบว่าเบนโซไทโอฟีนและไคเบนโซ ไทโอฟืนถูกคูคซับบนตัวคูคซับทั้งสองชนิดได้ดีกว่า3-เมทิลไทโอฟืนโดยเฉพาะอย่างยิ่งที่ความ เข้มข้นต่ำๆ จากการศึกษาอิทธิพลของอุณหภูมิต่อการดูคซับสารประกอบกำมะถันพบว่า เมื่อ อุณหภูมิเพิ่มขึ้น การดูคซับของตัวดูคซับต่อสารประกอบกำมะถันทั้ง 3 ชนิค จะลดลง นอกจากนั้น ผลการทคลองยังบ่งชี้ว่าเมื่อเพิ่มอัตราส่วนระหว่างน้ำมันเชื้อเพลิงต่อตัวดูคซับจะทำให้การดูคซับ สารประกอบมะถันทั้ง 3 ชนิคคีขึ้น

ACKNOWLEDGEMENTS

This work would not have been possible, if the following people were not present. First of all, I would like to express my deepest gratitude to Asst. Prof. Pomthong Malakul. Without him, this thesis might not be occurred. His suggestion, comments, guidance, encouragement, enthusiasm, and patience throughout the course of this research are very crucial to this thesis. The others that could not be forgotten in this work are Prof. Pramote Chaiyavech and Dr. Sophie Jullian. I would like give special thanks to them for valuable suggestions and comments on this research.

I would like to extent special thanks to Dr. Germain Martino of Institut Institut Français du Pétrole, France, for helping in this thesis.

I would like to thank Assoc. Prof. Sumaeth Chavadej and Dr. Kitipat Siemanon who kindly served as the thesis committee.

I am grateful for the partial scholarship and partial funding of the thesis work provided by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium).

Two years in The Petroleum and Petrochemica: College, Chulalongkorn University will be meaningless to me, if there will not be my friends and PPC staffs who support, encourage and welcome me all the time. Thank you very much to have all of you in this college.

Finally, I would like to express my whole-hearted gratitude to my parents and family for their forever love, endless encouragement, and measureless support.

TABLE OF CONTENTS

			PAGE
		Title Page	i
		Abstract (in English)	iii
		Abstract (in Thai)	iv
		Acknowledgements	v
		Table of Contents	vi
		List of Table	ix
		List of Figures	X
CH	IAPTE	CR	
	I	INTRODUCTION	1
	II	BACKGROUND AND LITERATURE SURVEY	2
		2.1 Sulfur Compounds in Petroleum Refining	2
		2.2 Treatment Technologies for Sulfur Compounds	4
		2.3 Removal of Sulfur Compounds by Adsorption	7
	III	EXPERIMENTAL	10
		3.1 Materials	10
		3.2 Experimental	10
		3.2.1 Adsorbent Characterization	10
		3.2.1.1 Surface Area Analysis	10
		3.2.1.2 Thermo Gravimetric Analysis	10
		3.2.2 Adsorption of Sulfur Compounds from Simulated	
		Transportation Fuels	11
		3.2.2.1 Preparation of Simulated Transportation Fuels	11
		3.2.2.2 Equilibrium Adsorption	11
		3.2.2.3 Sulfur Compounds Analysis	12
		3.2.2.4 Adsorption Isotherm of Sulfur Compounds	12

CHAPTER PA		PAGE
	3.2.2.5 Model of Adsorption Isotherm on both Zeolites	13
	3.2.2.6 Effect of Temperature on Sulfur Compounds	
	Adsorption	13
	3.2.2.7 Effect of Fuel to Adsorbent Weight Ratio on	
	Sulfur Compounds Adsorption	13
IV	RESULTS AND DISCUSSION	14
	4.1 Adsorbents Characterization	14
	4.1.1 BET Surface Areas	14
	4.1.2 Thermo Gravimetric Analysis	14
	4.2 Adsorption of Sulfur Compounds from Simulated	
	Transportation Fuels	15
	4.2.1 Adsorption of 3-Methylthiophene in Isooctane on	
	NaX and NaY Zeolites	15
	4.2.2 Adsorption of Benzothiophene in Isooctane on	
	NaX and NaY Zeolites	16
	4.2.3 Adsorption of Dibenzothiophene in Decane on	
	NaX and NaY Zeolites	18
	4.2.4 Comparison between the Adsorption of	
	3- Methylthiophene, Benzothiophene and	
	Dibenzothiophene on NaX and NaY Zeolites	19
	1.3 Effect of Temperature on Sulfur Compounds Adsorption	22
	4.4 Effect of Fuel to Adsorbent Weight Ratio on Sulfur	
	Compounds Adsorption	24
V	CONCLUSIONS AND RECOMMENDATIONS	27
	5.1 Conclusions	27
	5.2 Recommendations	28

CHAPTER		PAGE
REFERENCE	CS .	29
APPENDICE	S	31
Appendix A	Calibration of sulfur compounds and	
	sample of calculation	31
Appendix B	Experimental data	33
CURRICULU	JM VITAE	46

LIST OF TABLE

TABLE		
2.1	Some characteristics of crude oils	2

LIST OF FIGURES

FIGURE		PAGE
2.1	General relationship of sulfur content to API gravity	3
2.2	Nomenclature and types of organic sulfur	3
3.1	The experimental set-up for equilibrium adsorption experiments	12
4.1	TGA results of NaX and NaY zeolites	14
4.2	Adsorption isotherms of 3-methylthiophene in isooctane on	
	NaX and NaY zeolites at 25 degree centigrade and fuel to adsorbent	
	weight ratio of 85	16
4.3	Adsorption isotherms of benzothiophene in isooctane on NaX and	
	NaY zeolites at 25 degree centigrade and fuel to adsorbent weight	
	ratio of 85	18
4.4	Adsorption isotherms of dibenzothiophene in decane on NaX and	
	NaY zeolites at 25 degree centigrade and fuel to adsorbent weight	
	ratio of 85	19
4.5	Adsorption isotherms of 3-methylthiophene and benzothiophene in	
	isooctane and dibenzothiophene in decane on NaX zeolite at 25	
	degree centigrade and fuel to adsorbent weight ratio of 85	21
4.6	Adsorption isotherms of 3-methylthiophene and benzothiophene in	
	isooctane and dibenzothiophene in decane on NaY zeolite at 25	
	degree centigrade and fuel to adsorbent weight ratio of 85	21
4.7	Effect of temperature on 3-methylthiophene adsorption over NaX	
	and NaY zeolites at fuel to adsorbent weight ratio 85 with initial	
	concentration at 3000 ppm	23
4.8	Effect of temperature on benzothiophene adsorption over NaX and	
	NaY zeolites at fuel to adsorbent weight ratio 85 with initial	
	concentration at 3000 ppm	23

FIGURE PAGE

4.9	Effect of temperature on dibenzothiophene adsorption over NaX and	
	NaY zeolites at fuel to adsorbent weight ratio 85 with initial	
	concentration at 3000 ppm	24
4.10	Effect of fuel to adsorbent weight ratio on 3-methylthiophene	
	adsorption over NaX and NaY zeolites at 25 degree centigrade with	
	initial concentration at 3000 ppm	25
4.11	Effect of fuel to adsorbent weight ratio on benzothiophene	
	adsorption over NaX and NaY zeolites at 25 degree centigrade	
	with initial concentration at 3000 ppm	26
4.12	Effect of fuel to adsorbent weight ratio on dibenzothiophene	
	adsorption over NaX and NaY zeolites at 25 degree centigrade	
	with initial concentration 3000 ppm	26