
CHAPTERIV 
MATHEMATICAL MODEL AND SOLVING METHOD

In order to obtain the theoretical breakthrough curves for adsorption of 
moisture from natural gas in a multi-layer adsorber, the mass balance equation was 
set and solved by using the numerical methods. The mathematical model was based 
on an axial dispersion plug flow and Linear Driving Force (LDF) model. The 
method of lines (MOLs) with central finite difference approximation and fourth- 
order Runge-Kutta method were employed to solve the partial differential equations. 
After that, FORTRAN language was utilized in numerically solving.

4.1 Mass Balance in Packed Bed

The differential mass balance of the adsorption column was given by:
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where i represents the index for the parameters of each adsorbent, which depends on 
step size number of axial direction.

In order to determine the variation of water concentration in gas phase with 
time, Equation (4.1) could be rearranged as:
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The parameters and the equilibrium adsorption isotherm constructed for 
each adsorbent were utilized in Equation (4.2). In contrast to the previous work 
(Chaikasetpaiboon et a l, 2002), the parameters and the equilibrium adsorption 
isotherm used in the model were treated as the effective values for the entire bed.

d t (4.2)
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The parameters used in this model comparing with the previous work are 
shown in Table 4.1.

Table 4.1 Parameters applied in mathematical model

Parameter
This work

Previous work 
(Chaikasetpaiboon 

et al, 2002)
Silica gel

4A
MolSiv

1/8"
MolSiv
1/16"

Effective value

Bed void fraction, ร 0.37* 0.35* 0.34* 0.52058
Axial dispersion coefficient, 
Dl 0.02824t 0.02773* 0.02717* 0.13002
Bulk density of adsorbent 0.74323* 0.65673* 0.65673* 0.74523
Packing range (cm) 0-0.4 0.4-5.9 5.9-8.8 -
Step size number, i 1-5 6-60 61-88 -
* Appendix A
* Appendix B
* UOP’s adsorbent information

In this model, the mass transfer rate could be described by linear driving 
force model. This model is based on the assumption that the uptake rate of moisture 
by the adsorbent pellet is linearly proportional to a driving force. This driving force 
is defined as the difference between the equilibrium water concentration and the 
actual uptake on the particle. The model expression could be written as:

—1- i j  = k{qi J - q i 7 ) (4.3)
where

i = step size number of axial direction, z; and 
j = step size number of time, t.
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k is the overall mass transfer coefficient and q* represents the equilibrium adsorbed 
phase concentration. The term dq / dt represents the overall rate of mass transfer for 
adsorbed component average over a particle. A general equilibrium relation can be 
expressed as:

The dynamic response of the column is given by the solution [c(z,t), 
q(z,/)] to Equations (4.2) and (4.3) subject to the initial and boundary conditions 
imposed on the column. The response to a perturbation in the feed composition 
involves a mass transfer zone or concentration front which propagates through the 
column with a characteristic velocity determined by the equilibrium isotherm. The 
location of the front at any time may be found simply from an overall mass balance, 
but in order to determine the form of the concentration front, Equations (4.2) and
(4.3) must be solved simultaneously.

In addition, the following assumptions were applied to the mathematical 
model to obtain the theoretical breakthrough curves:

■ negligence of competitive adsorption by other components,
■ negligence of concentration profile in r and 9 directions,
■ axial dispersion plug flow,
■ no pressure drop along the bed,
■ not constant fluid velocity, and
■ isothermal system.

For the assumption of inconstant fluid velocity, the overall mass balance for 
the bulk gas must be involved:

q = /(c ) (4.4)

-D

where the total concentration, c  = ZP/RT, with z  being the compressibility factor of
the gas mixture.
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If the pressure drop is assumed to change along the bed, Ergun’s law is 
applied in the mathematical model to locally estimate the bed pressure drop:

- เ ^  = 150.0 j— ^ - v + 1.75^ ~ 3 ^ ^ - v2 (4.6)

where p is the gas mixture viscosity, p is the gas density, and dp is the paricle 
diameter.

For the assumption of no pressure drop along the bed, the total 
concentration in fluid phase (C) remains constant. Thus, Equation (4.5) can be 
rewritten as:
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e C A ( l - e ) A  =  o
Sz St

Sv
d z

1-8
~ÊC

Sq
St

(4.7)

(4.8)

where, total concentration, c  = ZP/RT.

4.2 Numerical Method

The method of lines (MOL) was applied to convert a second order 
derivative and a first order derivative PDE presented in Equation (4.2) into a set of 
ordinary differential equations by using the central finite difference method. Then, 
the 4th order Runge-Kutta method was applied to solve ODE in order to predict the 
water concentration in the gas phase leaving from the adsorber with time. 
FORTRAN language was programmed to solve the set of ODE equations.
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4.2.1 Method of Lines
For 1st order derivative, — in terms of central finite differences withdz

error of order h2 can be expressed in terms of their respective definitions:

น - , - , M M  (4.9)

For 2nd order derivative term, — r in terms of central finitedz2
differences with the error of order h2 can be expressed in terms of their respective 
definitions:

ว โ น ร ่^ - _ 2 ^ (4.10)
where

i = step size number of axial direction, z ; and 
j = step size number of time, t.

4.2.2 Fourth-order Runge-Kutta Method
The most widely used methods of integration for ordinary differential 

equations are the series of methods called Runge-Kutta second, third, and fourth 
order, plus a number of other techniques that are variations on the Runge-Kutta 
theme. This method is the technique used to solve ODE in order to predict the 
breakthrough time. The explicit 4th order Runge-Kutta formula for integrating the 
differential equations can be written as the following:

c , . , . , - e u + f [ K l u +2xK 2u + 2x K3, ; + K 4,,] (4.11)

where each of the trajectories Kj are evaluated by:
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Finally, FORTRAN language was programmed to solve the set of ODE 
equations. The programming details were reported in Appendix D.
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