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APPENDIX



Advection Method

The advection settings are used to select the numerical method used to solve
the advective part of the transport equation and to customize the settings for the
selected method. Modifying the default advection parameters require some
understanding of the techniques used to solve the advection component of mass
transport. The Advection Method dialog for the MT3DMS transport engine is shown
in the following figure;

The available Advection Methods (MIXELM) is;
1 Method of Characteristics (MOC)

The MOC method is available in all versions of MT3D. The MOC method
uses a conventional particle tracking technique based on a mixed Eulerian-Lagrangian
method for solving the advection term. The dispersion, sink/source mixing and
chemical reaction terms are solved with the finite difference method. The MOC
technique tracks a large number of moving particles forward in time and keeps track
of the concentration and position of each particle. The main advantage of the MOC
technique is that it is virtually free of numerical dispersion. However, the drawback of
the MOC technique is that it can be slow and can require a large amount of computer
memory.



2. Modified Method of Characteristics (MMOC)

The MMOC method is available in all versions of MT3D. The MMOC was
developed to improve computational efficiency of the MOC technique. Unlike the
MOC technique, which tracks the position and concentration of a large number of
moving particles, the MMOC technique places a particle at the mid-point of each cell
at each new time level. The particle is tracked backward to find its position at the old
time level and the concentration associated with the old time level is used to
approximate the concentration at the new time level. The MMOC technique is both
faster and requires less computer memory than the MOC technique. However, with
the lower-order interpolation scheme available with MT3D the MMOC technique
introduces some numerical dispersion.

3. Hybrid Method of Characteristics (HMOC)

The HMOC method is available in all versions of MT3D. The HMOC
technique combines the strengths of the MOC and the MMOC techniques by using an
automatic adaptive scheme that uses the MOC technique at sharp concentration fronts
and the MMOC technique away from the fronts. By selecting an appropriate criterion
for controlling the switch between the MOC and MMOC techniques, the HMOC
scheme can provide accurate solutions for both sharp and non-sharp front problems.

4. Upstream Finite Difference Method

The Upstream Finite Difference method is available in all MT3D versions.
Since, the finite-difference method does not involve particle tracking or concentration
interpolations, it is normally more computationally efficient than the Method of
Characteristics (MOC).  addition, the finite difference method normally has very
small mass balance errors because it is based on the principle of mass conservation.
However, the Upstream Finite-Difference method can lead to significant numerical
dispersion for problems having sharp concentration fronts.



5. Central Finite Difference Method

The Central Finite Difference method is only available in MT3DMS, MT3D99
and RT3Dv.2.5. The central finite difference method does not exhibit the numerical
dispersion problems like the Upstream Finite Difference method, but is susceptible to
excessive artificial oscillations in advection dominated problems.

6. TVD Method

The TVD method is available only with MT3DMS, MT3D99 and RT3DV.2.5.
The third-order total-variation-diminishing (TVD) scheme, which is mass
conservative, solves the advection term based on ULTIMATE algorithm (Universal
Limiter for Transient Interpolation Modeling of the Advective Transport Equations).
As in the particle-hased methods, the TVD scheme solves the advection component
independent of the other terms in the transport equation. Results from the third-order
TVD scheme may exhibit minor numerical dispersion and minor oscillations in
problems having sharp concentration fronts. Since the algorithm is explicit there is a
stability constraint on the step size. The maximum allowed value for the time step is
the minimum time step calculated for every active cell.



Dispersion equation

Dispersion is a mechanical process that tends to ‘disperse’, or spread, the
contaminant mass in the X, Y and Z directions along the advective path of the plume
and acts to reduce the mass concentration. Dispersion is caused by the tortuosity of
the flowpaths of the groundwater as it travels through the interconnected pores of the
soil. Dispersion is calculated using the equation;

D=ga, * +a *ﬁ+a.*5‘i+D
W T

Where; D is the Dispersion
a, is the longitudinal dispersivity (units ofl/length)
Vi is the longitudinal velocity of flow along the plume migration
pathway

aH s the horizontal dispersivity (units of Ulength)

Vil s the horizontal velocity of flow along the plume migration
pathway

av s the vertical dispersivity (units of Ulength)

Vv isthe vertical velocity of flow along the plume migration

pathway
D* s the diffusion coefficient (no units)

MT3D calculates the Dispersion tensor for the mass transport model using the
following parameters:
* Longitudinal Dispersivity for each transport grid cell
* Ratio of Horizontal to Longitudinal Dispersivity for each layer
* Ratio of Vertical to Longitudinal Dispersivity for each layer
* Molecular Diffusion Coefficient for each layer
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