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APPENDIX



Advection Method

The advection settings are used to select the numerical m ethod used to so lve  
the advective part o f  the transport equation and to custom ize the settings for the 
selected  method. M odifying the default advection parameters require som e 
understanding o f  the techniques used to so lve  the advection com ponent o f  mass 
transport. The A dvection M ethod dialog for the M T 3D M S transport engine is shown  
in the fo llow ing  figure;

The available A dvection  M ethods (M IXELM ) is;

1. Method of Characteristics (MOC)

The M OC m ethod is available in all versions o f  M T3D. The M OC method 
uses a conventional particle tracking technique based on a m ixed  Eulerian-Lagrangian  
m ethod for solv ing the advection term. The dispersion, sink/source m ixing and 
chem ical reaction terms are so lved  with the finite difference m ethod. The MOC  
technique tracks a large number o f  m oving particles forward in tim e and keeps track 
o f  the concentration and position o f  each particle. The m ain advantage o f  the MOC  
technique is that it is  virtually free o f  numerical dispersion. H ow ever, the drawback o f  
the M OC technique is that it can be slow  and can require a large amount o f  computer
memory.



2. Modified Method of Characteristics (MMOC)

T he M M O C  m ethod is availab le in all version s o f  M T 3D . T he M M O C  w as  
d eve lo p ed  to im prove com putational e ff ic ie n c y  o f  the M OC tech niq ue. U n lik e  the  
M O C tech niq ue, w h ich  tracks the position  and concentration o f  a large num ber o f  
m o v in g  particles, the M M O C  tech niq ue p laces a particle at the m id-p oin t o f  each cell 
at each  n ew  tim e leve l. T he particle is tracked backward to  find its position  at the old  
tim e lev e l and the concentration  associa ted  w ith the old  tim e lev e l is used to  
approxim ate the concentration at the n ew  tim e level. T he M M O C  tech n iq u e is both  
faster and requires less com puter m em ory than the M O C  tech niq ue. H ow ever , w ith  
the low er-order interpolation sch em e availab le w ith M T 3D  the M M O C  tech niq ue  
in troduces so m e num erical d ispersion .

3. Hybrid Method of Characteristics (HMOC)

T he H M O C  m ethod is availab le in all version s o f  M T 3D . T he H M O C  
tech n iq u e co m b in es the strengths o f  the M O C  and the M M O C  tech n iq u es by using an 
autom atic adaptive sch em e that u ses the M O C  tech niq ue at sharp concentration  fronts 
and the M M O C  technique aw ay from  the fronts. B y se lectin g  an appropriate criterion  
for con tro llin g  the sw itch  betw een  the M O C and M M O C  tech n iq u es, the H M O C  
sch em e can provide accurate so lu tion s for both sharp and non-sharp front prob lem s.

4. Upstream Finite Difference Method

T he Upstream  Finite D ifferen ce m ethod is availab le in all M T 3D  version s. 
S in ce , the fin ite-d ifferen ce m ethod d o es not in v o lv e  particle tracking or concentration  
interpolations, it is norm ally m ore com pu tation ally  e ffic ien t than the M ethod o f  
C haracteristics (M O C ). เท addition , the fin ite  d ifference m ethod norm ally  has very  
sm all m ass balance errors b ecause it is based on the principle o f  m ass conservation . 
H ow ever , the Upstream  F in ite-D ifferen ce m ethod can lead to sign ifican t num erical 
d ispersion  for prob lem s having sharp concentration fronts.



5. Central Finite Difference Method

T he Central F inite D ifferen ce  m ethod is on ly  availab le in M T 3D M S , M T 3D 99  
and R T 3 D v .2 .5 . T he central fin ite d ifferen ce m ethod d oes not exh ib it the num erical 
d ispersion  problem s like the U pstream  Finite D ifferen ce m ethod, but is su scep tib le  to  
e x c e s s iv e  artificial o sc illa tio n s  in ad vection  dom inated problem s.

6. TVD Method

T h e T V D  m ethod is availab le  on ly  w ith  M T 3D M S , M T 3 D 9 9  and R T 3D V .2.5. 
T he third-order tota l-varia tion -d im in ish in g  (T V D ) sch em e, w h ich  is m ass  
con serva tive , so lv es  the ad vection  term based on U L T IM A T E  algorithm  (U n iversa l 
L im iter for Transient Interpolation M od elin g  o f  the A d v ectiv e  Transport E quations). 
A s in the particle-based m ethods, the T V D  sch em e so lv e s  the ad vection  com p on en t 
independent o f  the other term s in the transport equation. R esults from  the third-order 
T V D  sch em e m ay exh ib it m inor num erical dispersion and m inor o sc illa tio n s  in 
prob lem s having sharp concentration  fronts. S in ce  the algorithm  is ex p lic it there is a 
stability  constraint on the step s ize . T he m axim um  a llow ed  va lu e for the tim e step is 
the m inim um  tim e step ca lcu lated  for every  active  ce ll.



Dispersion equation

D isp ersion  is a m ech anical p rocess that tends to ‘d isp e rse ’, or spread, the 
contam inant m ass in the X, Y and z  direction s a lon g  the ad v ectiv e  path o f  the plum e  
and acts to reduce the m ass concentration . D ispersion  is caused  by the tortuosity o f  
the flow p ath s o f  the groundw ater as it travels through the interconnected  pores o f  the 
so il. D isp ersion  is ca lcu lated  using  the equation;

D  = a ,  * ~ f  +  a\v\ + D '

W here; D is the D isp ersion
a ,  is the longitudinal d isp ersiv ity  (units o f  1/len gth )
V I  is the longitudinal v e lo c ity  o f  flow  a lon g  the plum e m igration

pathw ay
a H is the horizontal d isp ersiv ity  (units o f  1/len g th )
V II is the horizontal v e lo c ity  o f  flo w  a lon g  the p lu m e m igration  

pathw ay
a v is the vertical d ispersiv ity  (units o f  1/length)
V v is the vertical v e lo c ity  o f  f lo w  a lon g  the plum e m igration

pathw ay
D* is the d iffu sion  co e ffic ien t (no units)

M T 3D  ca lcu la tes the D isp ersion  ten sor for the m ass transport m odel using the 
fo llo w in g  parameters:

•  L ongitudinal D isp ersiv ity  for each  transport grid cell
•  R atio o f  H orizontal to  Longitudinal D isp ersiv ity  for each layer
•  R atio o f  Vertical to L ongitudinal D isp ersiv ity  for each layer
•  M olecu lar D iffu sion  C o effic ien t for each  layer
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