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CHAPTER 1
PRELIMINARIES

In this chapter, we give some definitions, notation and results which will be used

for this thesis. Throughout, all rings have identity 1 # 0.

1.1 Basic Knowledge in Algebra

Here, we recall some definitions and elementary theorems in group and ring theories
that are referred in this thesis. The quoted of more advanced results are cited with

references.

Definition 1.1. An ideal of M of a ring R is maximal if M # R and for every
ideal J of R,
MCJCR=J=MorJ=R.

Theorem 1.2. Let R be a commutative ring and M an ideal of R. Then M is a
mazximal ideal of R if and only if R/M s a field.

Definition 1.3. A local ring is a commutative ring which has a unique maximal

ideal.

Theorem 1.4. Let R be a local ring with a unique mazimal ideal M. If u is a

unit in R and m € M, then u+ m is a unit in R

Let R be a ring and n € N. Let R* denote the group of units of R. Let M, (R)
denote the ring of n x n matrices over R. The group of all invertible matrices over
R is denoted by GL,(R). we write I,, for the n x n identity matrix and 0,,x, for

the n X n zero matrix.

Theorem 1.5. Let R be a ring, I an ideal of R andn € N. Then M, (R)/ M, (I) =
M, (R/T).



Let F be the field of g elements.

Proposition 1.6. The number of invertible matrices in M, (F) is (¢" — 1)(¢" —

q) ... (" —q" ).

Theorem 1.7. |15/ The number of n X n matrices of rank k over a field F is

(" —D(q"—q)- (" =" ")
(" =gk —q)---(¢F — ¢ 1)

Definition 1.8. A matrix in M, (F) is a linear derangement if it is invertible

and does not fix any nonzero vector.

Theorem 1.9. [13] Let e, be the number of linear derangements in M, (F) and

define eg = 1. Then e, satisfies the recursion

n(n—1)

en = en1(q" — 1)an1 + <_1)nq 2

1.2 Basic Knowledge in Graph Theory

We give some terminologies and quote results from graph theory in this section.

Definition 1.10. Let G be a graph. A clique is a subgraph that is a complete
graph and cliqgue number of G is the size of largest clique in G, denoted by w(G). A
set I of vertices of G is called an independent set if no distinct vertices of I are
adjacent. The independence number of G is the size of a maximal independent
set, denoted by a(G). The chromatic number of G is the least number of colors
needed to color the vertices of G so that no two adjacent vertices share the same
color. We write x(G) for the chromatic number of G. The edge chromatic
number of G is the least nuber of colors needed to color edges of G so that no
two edges having a common vertex share the same color. We write x/(G) for the

edge chromatic number

Definition 1.11. If every vertex of a graph G is adjacent to k vertices, then G
is a k-regular graph. We say that a k-regular graph G is edge regular if there



exists a parameter \ such that for any two adjacent vertices, there are exactly
A vertices adjacent to both of them. If an edge regular graph with parameters
k, X also satisfies an additional property that for any two non-adjacent vertices,
there are exactly p vertices adjacent to both of them, then it is called a strongly

regular graph with parameters k, A, u.

Definition 1.12. The adjacency matrix of a simple graph G with vertex set
{vi,...,v,} is the n X n symmetric Ag in which entry a;j, is the number of edges

(0 or 1) in G with endpoints {v;, v} for all j,k € {1,2,....,n}.

Definition 1.13. An eigenvalue of a graph G is an eigenvalue of the adjacency

matrix of a graph G. The spectrum of a graph G is the list of its eigenval-

ues together with their multiplicities. If A\y,..., A\, are eigenvalues of a graph G
. o : . AL A
with multiplicities my, ..., m,, respectively, we write Spec G =
my ... My

to describe the spectrum of G

Theorem 1.14. 2] If G is a connected reqular graph which is not a complete graph,

then G is strongly regular if and only if G has exactly three distinct eigenvalues.

Definition 1.15. The complete graph K, is the graph with n vertices such that
every are adjacent. Moreover, the complete graph with vertex set X with a loop

on each vertex is written as X.

Theorem 1.16. Let X be a set of n vertices. Then

o n 0
Spec (X ) =
1 n—1
Theorem 1.17. If G is a connected k—reqular graph, then k is an eigenvalue of

G with multiplicity 1.

Definition 1.18. The energy of a graph G, E(G), is the sum of absolute value

Al A
of its eigenvalues. That is, if Spec G = ' , then

my ... My

E(G) = my| M| + - - + ma| M.



A graph G on n vertices is said to be hyperenergytic if E(G) > 2(n —1). A
k-regular graph G is a Ramanujan graph if |\| < 2v/k — 1 for all eigenvalues A
of G other than £k.

Definition 1.19. Let A be an n x n matrix. The trace, tr(A), of A is the sum of

the diagonal entries of A.

Theorem 1.20. Let G be a graph with e edges and A the adjacency matriz of G.
If A, ...\, are eigenvalues of G, then

n

Z Ai =tr(A) =0 and Z M2 = tr(A?) = 2e.

i=1 i=1
Definition 1.21. Let G and H be undirected graphs. The product graph G x H
is the graph consisting a vertex set V(G)®V (H) and an edge set {{(x1,y1), (x2,y2)} :

x1 is adjacent to x9 in G and y; is adjacent to ys in H}.

Theorem 1.22. Let \i,..., Ny, and py,...u, be eigenvalues of graphs G and
H, respectively. Then the eigenvalues of G @ H are \jj; for i = 1,...,m and
=1 ...,n.

Definition 1.23. Let G and H be graphs. We say that G is isomorphic to H,
denoted by G = H is there is a bijection f from G onto H such that for any
x,y € V(G), x is adjacent to y in G if and only if f(x) and f(y) is adjacent in H.

1.3 Additive character

To introduce our methology, we recall some results on characters of finite abelian

groups.

Definition 1.24. Let G be a finite abelian group. A map y : G — (C ~ {0}, ) is

a character if y is a group homomorphism.

Proposition 1.25. [10] Let G be a finite abelian group. Then the set of all char-

acters of G, denoted by CAJ, forms an abelian group under pointwise multiplication



where for any characters x1, x2 of G, we define
X1 x2: G = (C~A{0},)

by (x1- x2)(9) = x1(9)xz2(g) for all g € G.

Theorem 1.26. [1(] Let Gy, Go be finite abelian groups. Then there is a canonical
isomorphism from é\l X é\g onto G’;<\G2 given by (x1, X2) — x1X2 for all x1 € (/?\1

and xo € é\g

Definition 1.27. Let G be a finite group and let S C G be a subset. The Cayley
graph, Cay(G, S), is a graph with vertex set G and for each g, h € G, z is adjacent
to y if and only if gh™! € S.

Theorem 1.28. [14] Let G be a finite abelian group and let S be a subset of G
such that e ¢ S and s=' € S for all s € S, called a symmetric subset of G.
Then the eigenvalues of Cay(G,S) are given by

A= x(s)

sES

as x ranges over all characters of G.

Definition 1.29. Let F' be a finite field extension of Z, which has order p” for

some r € N and a prime p. The trace map from F' to Z, is the Z,-linear map

r—1

Tr:z—ao+2P4+---+2?

Note that Tr = idg,

2,

Theorem 1.30 (Hilbert’s Theorem 90). The trace map is a surjective map.

Theorem 1.31. [10] Let F be a finite field extension of Z,. Each character of the

group (F,+) is given by
2™ Ty(ag)
Xo(Z) =€? forallx € F

where a € F' is fized.



1.4 Owur objectives

We first define our main object.

Definition 1.32. Let R be a ring. The unitary Cayley graph of R, denoted
by Cg, with V(Cgr) = R and for each z,y € R, z is adjacent to y if and only if
r—y € R

The unitary Cayley graphs have been widely studied by many authors (see,
for example, [3, 9, B, [, 6]). As discovered in [, 6], if R is a finite commutative
ring, then R can be decomposed as a direct product of finite local rings Ry, ..., R
and Cp is the tensor product of the graphs Cg,,...,Cpg,. In addition, if R is
a finite local ring with maximal ideal M, then Cpg is a complete multi-partite
graph whose partite sets are the cosets of M. Thus, the unitary Cayley graphs of
finite commutative rings are well studied. Their spectral properties including the
energies are also well known (see [6]).

For non-commutative rings, Kiani et al. [[7] worked on unitary Cayley graphs
of the ring M,,, (F}) x - - - x M,,, (F},) where ny,...,n; € Nand F,..., Fy are finite
fields. They obtained the clique number, the chromatic number and the indepen-
dence number of the graph. They also studied the role between Cg and the struc-
ture of R. Later in [8], they proved that if F is a finite field, then Cyy, (r) is an edge
regular graph with k = | GL,,(F)| and A = |(, + GL,(F)) N GL,(F)| = e,. Kiani

10
showed further that Cy, () is strongly regular with 4 = + GLo(F) | N GLy(F)
0 0

but Cy,(r) is not strongly regular.
Note that (M, (F),+) = (F,+) X (F,+) x - -- x (F,+) (n* copies). By theorem
, we may identify a character of M,,(F) as xa = H Xa;; Where A = [a]nxn
1<i,j<n

is in M, (F) and so it follows from Theorem that the eigenvalues of Cy,, ()

are given by

as A ranges over all matrices in M,,(F).



The thesis is organized as follows. We focus on Cy,,(p) and £(Cui, (7)) for all
n > 2. In Chapter II, we use the above additive characters to find some eigenvalues
of Cu, () and show that the graph Cyy, () is strongly regular if and only if n = 2.
Next, we show that the graph is hyperenergetic and characterize all fields F' and
n > 2 such that Cy,(r) is Ramanujan. In Chapter III, we use the lifting theorem
to extend the results on Cyy,(r) to the results on Cyy, (r), where R is a finite local
ring. We show that if R is a local ring which is not a field, then the graph is
neither strongly regular nor Ramanujan and prove that it is hyperenergetic. We
end this chapter by proving that the unitary Cayley graph of product of matrix

rings is also hyperenergetic.



CHAPTER II
SPECTRAL PROPERTIES OF Cy (r)

2.1 Strong regularity of Cy (r)

Let F be the finite field with ¢ elements and n > 2. Our main work is to show that
the graph Cyy, () is strongly regular if and only if n = 2. We begin by determining

some eigenvalues of the graph by considering three matrices in M,,(F'), namely,

100 --- 0 110 --- 0

000 -0 100 --- 0
Al = Oan, A2 = and Ag = .
000 0 100 0

Clearly, we have

pa, = |GL(F) = ("= D(¢"—q)...(¢" —¢"7").

Note that
PA; = Z Nme%Tr(m)

mekF
where N,, is the number of invertible matrices with m at the left-top corner for
all m € F. If an invertible matrix has the left-top corner being 0, then the other
n —1 elements in the first column cannot be all zeros, so there are ¢"~' — 1 choices

for the first column. Thus,

No=(""=D(" = )" =) ... (¢" —¢"")

because the second column must not be multiple of the first column, and the jth

column must not be a linear combination of the previous 7 — 1 columns for all



j €{2,...,n}, so there are ¢" — ¢! choices for jth column. Now, we have

|GLo(F)| = No= (" =" )N¢"—)(d" =) ... (¢" —¢"")

invertible matrices with the top—left corner being nonzero. Since m GL,(F) =

GL,(F) for all m # 0, N,,, = Ny for all m # 0, so we have

(@=DNi =Y No=("—¢"N" =" =) (¢"—q"")
m#0

SO
Nl — qn—l(qn _q>(qn _qZ)‘”(qn _qn—l)'

It follows that

P, Nep TrO)+N Z(BQT”TI"(m)
m=#0

27 rm
= (" =@ =)@ =) (=) N Y e
m7#0

= =" =" =) (" =)+ ) =) (=)

27rz
+M; )
m#0

="~ )(¢" ~) - (@~ T+ N Y e T,

meF
By Hilbert’s theorem 90, we know that the trace map is surjective and Trjz, =

idz,, so we get

27”T”")—|ke1rTr|Zev ™ — |ker Tr| er™ =0,

meF meZp meZp

Here, the last sum is the sum of pth root of unity which equals to zero. Therefore,

pa, =—("— )" — ) ...(¢" — " ).
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Finally, we determine p4,. Since

27i
— =2 Tr(my+mae+-+mp+mpi1
pas = N(my,ma, ..., myi1) g e v 1 ntmos1)

mi1,ma,...;Mp41€F

where N(mq, ma,...,my,41) is the number of invertible matrices of the form
My Mpyyr - *
mo * *
My * *
and my,mg,...,myy1 € F. For my = 0, we can determine N (0, ma, ..., My11)

according to m, 1 as follows. If m,.; # 0, then the first column and the second
column are linearly independent, so the second column can be arbitrarily chosen.
If m,+1 = 0, then the second column must not be multiple of the first column and
the jth column must not be a linear combination of the previous j — 1 columns
for all j € {2,...,n}. Thus, N(0,ma,...,0) = (¢" H(¢" — ¢*)...(¢" — ¢"!) and
N0, ma,...,mps1) = (" (" —q¢*) ... (¢"—¢" ') if my1 # 0. Now, assume that
my # 0. Then N(my,mo, ... ,mui1) = N(L,ma,...,myyq) for all mo, ... m,4q €
F. To find N(1,ms,...,myy1), we note that the second column cannot be m,, -
multiple of the first column and similarly the jth column must not be a linear

combination of the previous j — 1 columns for all j € {2,...,n}, so

N(1,ma,...,mus1) = (q”_1 —1)(q" — q2) ("= q"_l).

Now, we compute

Io2mi mo+...mn
pas = (=)@ =) . ("= 1)Y e THmatemn)

! 278 Ty (gt mp 1M,
_i_qnfl(qn_qZ)”'(qn_qnfl)z e Tr(maz+ +Mnt1)

Mp+170

! 2mi m m My, My
+(qn—1_1)(qn_q2)”‘(qn_qn—1) Z Z Z e r Tr(mi+ma+ +Mpt1)

m17#0 Mp+1E€EF
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/
where Z denotes the sum over ms,...,m, € F such that ' is the first

mp

column of an invertible matrix. Note that

6% Tr(mi+mo+..mp+mny1) _ 6% Tr(mi+ma+...mnp) 6% Tr(mnp+1)

Mnp4+1E€EF Mmp+1€F

27
Since E er T0mni) — () the last sum is 0, so we can rewrite PAs S
mp+1€F

- n n n— ! 278 Ty (mg+...mp
pay =" =) (=" ) ey Mttt

mn+1eF

I 2w
n 2 n n—1 2T Tr(ma+...mp)
—q(@"—q)...(¢"—=q") ) e "
The first sum is again zero because m,; varies over F. Now, since m; = 0,

ms, ..., m, cannot be all zeros and so

Z/ e% Tr(ma+...mn) £ § : 6% Tr(ma+...mn)

{mg,,mn}5£{0}
- Z e% Tr(mat.ma) 1 _ 1

ma,...,mpEF

n n—1>‘

Hence, pa, = q(¢" = ¢*) ... (¢" — ¢

Let A and B be n x n matrices over F'. Assume that rank A = rank B. Then
there exist invertible matrices P and @) such that A = PBQ. Consider A =
[aij]an, B = [bij]an7 P = [pij]an and Q = [q”]an For S = [Sij]an € GLn<F),
we have

(A(8) = B T(Erciszesn)
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From

Z aijSij = Z ( Z pilblekj>3ij

1<4,j<n 1<ij<n 1<kl<n

— Z Z bu (PitSijQn;)

1<i,5<n 1<k, l<n

— Z blk Z (pz‘lsiijj)'

1<ki<n  1<ij<n

and Z PitSijQrj = (PtSQt)lk, it follows that x4(S) = x(P'SQ"). Since P and
1<i,j<n

Q are invertible, GL,(F) = P'GL,(F)Q", so

Yo oxal®) = Y. xs().

SeGLy (F) SeGL, (F)
Hence, we have shown:

Theorem 2.1. If A and B are n X n matrices over F' of the same rank, then
PA = PB-

Since Cy,,(p) is connected and |GL, (F)|-regular, p4, induced from the zero
matrix has multiplicity 1. Observe that ps, and pa, are induced by matrices of
rank 1 and 2, respectively. Since the set of characters are linearly independent, the
multiplicities of them are the number of matrices of such rank. Suppose n = 2.
The number of matrices of rank 1 is (‘IZ%)Q = (¢ —1)(¢ + 1)? and the number of

matrices of rank 2 is (¢* — 1)(¢* — q). Then

E(Cyiyry) = (¢ = D(¢* =) + (¢ =) = D(g+1)* +q(¢° = 1)(¢° — q)
= (@ =D~ +(g+1)+g
=2(¢* - 1)(¢® — )¢+ 1)
=2¢(¢* = 1)(g—D(g+1)

=29(¢* — 1),

We record this result in:
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@-D(@-q9 —(*—q) q

Theorem 2.2. Spec Cy,(r) =
1 (@=Dla+1)?* (¢*=D(g*—q)

and E(Cyyry) = 2q(q*> — 1)%

It n =3, then pa, = (¢° — (¢’ — 9)(¢° — ¢*), pa, = —(¢° — @)(¢’ — ¢*) and
pas = q(¢* — ¢*) are eigenvalues of Cyy,(p) induced from matrices of rank 0, 1 and
2, respectively. Let A be the eigenvalue induced from matrices of rank 3. Since the

sum of all eigenvalues is zero, counting the number of matrices of each rank gives

@ - =) =) — (=) - qQ)@;_fi)z
(¢* = 1)*(¢* — ¢)?

(¢> =1)(¢* = q)

+q(¢® = ¢%) + (@ - - @@ —F)r=0.

Dividing by (¢* — 1)(¢* — )(¢* ~ ¢°) gives

-1 +q(q3—1)(q3—Q)
—q)

! q=1 " "(¢®=1)(¢?

+A=0

Hence, we have

P il B (R ),
A= T Y=g
Jg—D(@+q+1)(¢*—1)

(¢> = 1)q(qg — 1)
=1+ +q+1-¢ ~¢—q=—¢

=-1+("+qg+1)—q

This proves the following theorem.

(@ - - -¢) — (=@ — )

Theorem 2.3. Spec Cyy,(p) =
1 (=1 (*+q+1)

q(¢* — ¢*) —¢

(@ =)@ =P +q+1) (-1 —a) (¢ —¢*)

Recall that a connected regular graph with exactly three distinct eigenvalues

is strongly regular. So, we can conclude from Theorem @ that Cyp,(r) is strongly
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regular. Next, we assume that n > 3 and Cy,(r) is strongly regular. Accord-
ing to 4], Cwm,(r) has only three eigenvalues. From our computation, they must
be pa,,pa, and pa,. Suppose the multiplicities of pas, and pa, are mo and ms,

respectively. Since the sum of eigenvalues of Cyy,,(r) is 0, we have

("D (q"=q) .. (""" )= (q"—q) ... (¢"—¢" " )matq(q"—¢*) ... (¢"—¢" " )ms = 0.

Dividing by (¢" — ¢*)...(¢" — ¢" ') gives

(" = 1)(¢" —q) = (¢" — g)mz + qgm3 = 0.

Note that 1 4+ mg + m3 = q”2, SO My = q”2 — mg — 1. Putting my in the previous
equation gives ms = q(¢"~! — 1)(¢” ™" — 1). By theorem , the sum of square
of eigenvalues of the adjacency matrix A is the trace of A2 which is twice of the
number of edges of the graph. Since the sum of degree of all vertices equals twice
of the number of edge in the graph and our graph is |GL, (F)|-regular, if E, is the

number of edges, then

2K, = q”g(q” —1)... (" =4").

This yields another relation on my and mg given by
(" =D —q). . (@ =)+ ("= a) ... (¢" = ")) ’mz

+a(g" =) - (" =" ))Pmy = ¢ (¢" = 1) ... (¢" — ¢" 7).
Dividing by (¢" — ¢%) ... (¢" — ¢"~') and substituting ms = q(¢"~* — 1)(¢"" ™" — 1)

give

"= 1D" =" =) ("= ")+ a" =)@ =) (" =" )me
+ q3(qn - q2) o (qn — qn_l)(q"_l _ 1)(qn2—n _ 1)

=q"(¢" — 1)(¢" — q)
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Since ¢ " —1 = (¢"~')" —1, the left hand side is divisible by (¢"!—1)2, so (¢" ! —

1) divides ¢ (¢" —1)(¢" — q). It follows that ¢"~' — 1 divides ¢""*1(¢" —1). Since

q and ¢" — 1 are relatively prime, we have ¢" ' — 1 divides ¢" —1 = ¢" —q+ (¢ — 1),
n—1

so ¢"+ — 1 divides ¢ — 1 which is a contradiction because n > 3. Therefore, we

have our desired result.
Theorem 2.4. The graph Cy,(r) is strongly reqular if and only if n = 2.

From the above theorem, we learn that Cyy, (r) is not strongly regular for n > 3.
Since it is edge regular with A = e,,, there are more than one value of the number
of common neighborhoods of non-adjacent vertices in Cy,(p). If A, B € M,(F)
and rank(A — B) = r for some 0 < r < n, then there exist invertible matrices P, Q)

such that

IT' 07‘ n—r

P(A-B)Q = <)
O(n—r)xr O(n—r)x(n—r)

For A € M,,(F), let N(A) be the set of neighbors of A. According to Kiani (Lemma

2.1 of [8]), we have
I, 0O
IN(A)NN(B)| = + GL,(F) | N GL,(F)

for all A, B € M,,(F) with A # B. It gives the number of common neighbors of

any pair of two vertices A and B in M,,(F). For 1 <r < n, we define

I, 0
d(n,r) = 0 o + GL,(F) | NGL,(F)].

Since two matrices A and B are adjacent if and only if rank(A — B) = n, d(n,n) =
e, mentioned in chapterl. Observe that d(n,r) is the number of invertible matrices

I. 0
A such that A— is also invertible. Now, let {é7, €5, ..., &,} be the standard
0 0
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basis of F™. Consider the set X’ of vectors given by

X = {A: [51 Gy ... G| €GLu(F):d €é +span{a’2,...,an}}.
I, 0
Note that if A € X, then A is invertible but A — is not invertible. We
0 0

proceed to compute d(n,1). Since d(n,1) = |GL,(F)| — |X|, we shall deter-

mine the cardinality of X. Let A = [aij]nxn be in X. Then rank A = n and

1
rank | A — =n — 1. It follows that @; ¢ Span{ds,...,d,} but a; €

00
€, + Span{ds, ..., d,}. This forces that €| &€ Span{dy,...,d,}. Also, {ds,...,d,}

n

must be linearly independent. Thus, there are (¢" — q)...(¢" — ¢"!) choices
for {ds,...,d,}. As for @, it suffices to count under a condition @; € €& +
Span{ds, ..., d,} because if @; € Span{ds,...,d,}, then & € Span{ds,...,d,},

which is absurd, so there are ¢" ! choices for @;. Hence,

X =¢"¢"—q)...(¢" —¢" 7).

Then
Theorem 2.5. d(n,1) = |GL,(F)|—|X| = (¢"—q¢" ' —1)(¢"—q) ... (" —q" ).

Remark 2.6. For » > 2, we can find a lower bound for d(n,r). Consider a

A0
matrix of the form Y = where A, B and C are r x r, (n —r) X r and

B C
(n —r) x (n — r) matrices, respectively. It is easy to see that detY = det Adet C,

r

0
and det [ X — = det(A—1,)det C. If we choose A to be a derangement
0 0

matrix and C is an invertible matrix, then Y and Y — | are invertible. Since
0 0

there are e, choices for A | ¢"=") choices for B, and (¢"" —1)...(¢" " —¢" ")
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choices for C', we have

d(n, T) Z 6Tqr(n—r)(qn—r . 1) o (qn—’r‘ . qn—r—1> — er(qn _ qr) o (qn . qn—l)'

2.2 Hyperenegetic graphs and Ramanujan graphs

Let F be the finite field with ¢ elements. In this section, without explicitly com-
puting the spectrum of the graph, we show that the graph Cy, () is hyperenergetic
for all n > 2 and characterize all n and ¢ such that Cy,(r) is Ramanujan.

Since > —1=(q—1)(*+q+1)>¢*+q, weget q(¢*—1)=¢*—q>q¢*+1,
so E(Cuy(r)) = 2q(¢* — 1) > 2(¢* — 1). Then Cyy(p) is hyperenergetic. Next, we

n

assume that n > 3. Recall that pa, = q(¢" — ¢*)...(¢" — ¢" ') is an eigenvalue of

(¢" = 1)*(¢" — q)?

. It follows that
(> = 1)(¢* —q)

Chr,,(ry with multiplicities at least

(¢" = 1)*(¢" — q)?

E(Cw, ;) > q(q" — e B SO N

Thus, to show that Cy,(r) is hyperenergetic, it suffices to prove

(" = 1)*(¢" — q)? 2
(> = D(¢* — q) > 2¢" ~ 1),

Since | GL,(F)| = (¢"—1)(¢" —q) - .. (¢" —¢" '), the above inequality is equivalent

q(q" =) .. (" —=q" )

to
2 - 1)(¢? — q)(¢™ — 1)
(-1 —q)

We shall use induction on n > 3 to show that this inequality holds and conclude

| GL,.(F)| >

that Cyy,(r) is hyperenergetic. If n = 3, then the right-hand side becomes

20 =D =’ =1)  2(g—1)(g+Dglg = 1)(¢* = 1)(¢° +¢* +1)

o -0 —q q(q® — 1)q(q — 1)(q + 1)
2(q—1)

@+ +1)
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and | GL3(F)| = (¢*~1)(¢’—a)(¢’=¢*) = (a=1)(¢*+q+1)(a—1)(¢*+a)(¢*) (q—1) =

(q—1)%(¢°+2¢°+2¢* +¢*) > (¢—1)*(¢®*+¢*>+1). Since ¢ > 2, we have ¢(g—1)* > 2.
2(g—1

Then (qg—1)% > M and the inequality is valid for n = 3. Now, let n > 4 and

assume that

22 — 1)(¢? — ) (¢ D" — 1)
q(¢"' = 1)(¢"' —q)
_29( — )@~ @)(g" " - 1)

q(¢" — ) (¢ —q)
L 20(¢* = 1)(¢* — a)(¢" V" ~ 1)
- q(¢" —q)(¢" — 1)

| GL—1(F)| >

where the last inequality comes from ¢" — 1 — (¢""!' —¢) = (¢" '+ 1)(¢ — 1) > 0.
Since | GL,(F)| = (¢" — 1)(¢" —q)---(¢" = ¢"7) = ¢""H(¢" — 1)| GL,—1(F)], it
follows from the previous inequality that

2q(¢> — 1)(¢? — @)(¢" V" — 1)
q(q" —q)(¢" — 1)

|GLu(F)] > ¢" 7 (¢" = 1)
and so it remains to show that ¢"(¢" — 1)(¢™ V" — 1) > ¢"* — 1. Rewrite

n n n— 2 n2 n n2—n n2—n n 77/2
("= =) =g +1=¢"(¢" T =TT =+ ) =" +1
n2 n2—n TLZ n n
=¢" =g T " — P+ "+ 1

n?—n n— n n
=q" " (" Mg —1) ="+ "+ L.
Since n > 4 and q > 2,
TLQ—?’L n— n n2—n n n TLQ—TL
T (" g—1) ) = > T = = (g T — 1) > 0.

This completes the proof of the next theorem.
Theorem 2.7. Cy,(r) 8 hyperenergetic for all n > 2.

Recall that a k-regular graph is Ramanujan if |A\| < 2v/k — 1 for all eigenvalues

A other than +k. Since eigenvalues of a graph are real numbers, this inequality is
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equivalent to A* — 4(k — 1) < 0. We know that Cyy,(r) is regular with parameter
k=(¢"—1)(q"—q)...(¢" — q"'). If n = 2, then its eigenvalues are q, —(¢*> — q)
and (¢*> — 1)(¢® — q). Since ¢ > 2, we have ¢> — ¢ > 2, so

¢ +4<4¢* and (q2 —q)2—|—4 < 4(q2 —q).

The first inequality gives ¢*> + 4 < 4q(q + 1)(q — 1)? which is equivalent to ¢* —
4(¢* — 1)(¢* — q) + 4 < 0 and the second inequality directly proves (¢ — ¢q)* <
4(¢* = 1)(¢* — q) — 4. Thus, Cyyr is Ramanujan. Now suppose that n > 3 and

Cu,(r) is @ Ramanujan graph. From the computation in the previous section,

n n—l)

pa, = ("= )" —¢) ... (" —¢q is an eigenvalue of Cy,(r), so

0> p%,—4(¢"=1)(¢"=q) ... (¢"—q" ") +4 = ph,—4q" D) |pa,|+4 = (pa,+2)* 44" pa, |

It follows that 4¢"|pa,| > (pa, + 2)* > [p%,], s0 4¢" > pa,. For n = 3, we have
4 > (¢ — ¢)(¢®* — ¢*), so 4 > (¢*> — 1)(¢ — 1) which implies that ¢ = 2 and for

n >4, Wehaven+2§Tnandso

(n—)n (=1)n

A" > pal=q 2 ("' =D ?-1...(¢g—1)>q =

which leads to a contradiction for all ¢ > 2. Finally, if n = 3 and ¢ = 2, by
Theorem @, we have —(23 —2)(23 — 2?) = —24,2(2% — 2%) = 8 and —2% = —8 are
eigenvalues of Cyp(z,) and 4((2* — 1)(2% — 2)(2® — 2%) — 1) = 668 is greater than
242 and 82. Hence, Ciy(z,) is also Ramanujan.

We record this result in the following theorem.

Theorem 2.8. The graph Cw,(ry is Ramanujan if and only if n = 2 or (n = 3
and F = 7).



CHAPTER I11
THE UNITARY CAYLEY GRAPH OF PRODUCT OF
MATRIX RINGS

In this chapter, we study the unitary Cayley graph of product of matrix rings. We
introduce the lifting theorem in the first section. In the second section, we use the
lifting theorem to extend the results from finite fields to finite local rings. Finally,
we study the unitary Cayley graph of product of matrix rings. We determine the
clique number, the chromatic number and the independence number of the graph,

and show that the graph is hyperenergetic.

3.1 Lifting theorem

Let R be a local ring with unique maximal ideal M and residue field k. Recall that
R/M = k results in M,,(R)/ M, (M) = M, (R/M) = M, (k). Then elements in R
can be partitioned into cosets of M and can be viewed as lifting from elements of
k. Suppose |M| =m and |k| = q. We fix Ay, ... ,Aqn2 to be coset representatives
of M,,(M) in M, (R).

Lemma 3.1. Let A € M,,(R) and X € M, (M). Then
det(A+ X) = (det A) +m' for some m’ € M.
In particular, A is invertible if and only if A+ X is invertible.

Proof. Write A = [a;;]nxn and X = [my;]nxn. Then

det(A+ X) = Z (sgno)(aie(1) + Mic@)) - - - (Anom) + Mno(n))

O'ESTL

= Z (sgno)(ais() - - - Anom)) +m' = (det A) +m’
UESn
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for some m’ € M. Moreover, det A is a unit if and only if det(A+ X) = det A+m/
is a unit by Theorem @ O]

The above lemma directly implies the following theorem.

Theorem 3.2. 1. For A, B € M,(R), A and B are adjacent in Cy, (r) if and
only if A+ M, (M) and B + M, (M) are adjacent in Cyr, x)-

2. The set M, (R)/M,(M) = {A; + My (M),..., A2 + M, (M)} is a partition

of the vertex set of Cyy, (ry such that

(a) for eachi € {1,... ,q”Q}, any two distinct vertices in A; + M,,(M) are

nonadjacent vertices, and

(b) fori,je{l,....q"Y, A and A; are adjacent in Cyi,(g) if and only if
A + M, (M) and A; + M, (M) are adjacent in Cyy, (x)-

3. Let M, (M) be the complete graph of | M,,(M)| vertices with a loop on every
vertez. Define f : My (k) % My(M) — M, (R) by f(A;+Mo (M), X) = A+ X
for all i € {1,... ,q"Q} and X € M,,(M). Then f is an isomorphism from
the graph Cw,, ) ® M, (M) onto the graph Catn(R) -

Proof. The above discussion implies (1) and (2). For (3), we first show that f is an
injection. Let 7,5 € {1,... ,q”2} and X,Y € M, (M) such that A; + X = A, +Y.
Then A;—A; =Y — X € M,,(M). This forces that A; + M, (M) = A; +M, (M) in
M, (k), so i = j and X =Y. Since | M,,(k) x M,,(M)| = | M, (R)|, f is a bijection.
Finally, for i,5 € {1,...,¢""} and X, Y € M, (M), we have (A; + M, (M), X) and
(A; + M, (M),Y) are adjacent in Cyp, k) ® M,,(M) if and only if A; + M, (M) and
A; 4+ M, (M) are adjacent if and only if A; and A; are adjacent by (2). Hence, f

is a graph isomorphism. O

3.2 Unitary Cayley graph of product of matrix rings

First, we assume that R is a finite local ring which is not a field with unique

maximal ideal M and residue field k. Let |M| = m and |[k| = ¢. Since the adjacency
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matrix of M, (M) is the all-ones matrix of size m”, we have Spec (Mn(M )) =
m" 0
1 m” -1

and ¢(¢" — ¢*) ... (¢" — ¢

and (¢" - 1" —q)...(¢"— ¢ ), =" —q)...(¢" — ¢")

"~1) are eigenvalues of Cyy, k). Since the eigenvalues of

G ® H are \jp; where \;’s and p;’s are eigenvalues of G and H, respectively, we

can conclude from the isomorphism in Theorem @ (3) that 0,m™ (¢" — 1)(¢" —

n2

—m n

n__ . n—1 n__ .n—1

n—gnh), —q)...(¢"—q"") and m"q(¢" — ¢*) ... (¢" — ¢" ) are

q)---(¢"—q (g

distinct eigenvalues of Cyy,(g). Then we have shown the following theorem.

Theorem 3.3. If R is a local ring which is not a field and n > 2, then Cyy, (r) s

not strongly reqular.
However, it turns out that the graph Cy,(r) is hyperenergetic.
Theorem 3.4. If R is a local ring, then Cy,(g) s hyperenergetic for all n > 2.

Proof. Let k be the residue field of R and assume that |k| = ¢. Recall that Cyy, )

n

"~1) as an eigenvalue

is hyperenergetic and Cyy,(g) has —m"Qq(q” —q¢*)...(¢" —q

n __ 1 2 n o __ 2
(q( > 3)2(2 q)) . The proof of Theorem @ tells us
q- — q-—q

(¢" — D*(¢" = 9)? w2
@-D—q 2™ 1),

Note that the left-hand side is a multiple of ¢. It follows that

with multiplicities at least

that

alg" =) ... (¢"— ¢

n_12 n 2 9

n__ 2
A=) la @D —q) >
Multiplying by m™ both sides gives

W PR Ul Vs Cil’) MY N
m"q(q" —q7)...(¢" —q )(q2_1)(q2_q) > 2(mq)" > 2((mq)"™ — 1)

which completes the proof. O

Theorem 3.5. If R is a local ring which is not a field, then Cyy,(g) is not Ra-

manujan for all n > 2
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Proof. For simplicity, let k = | GL,(k)|. We first handle case n > 3 and ¢ > 3.
Then Cy, () is not Ramanujan by Theorem @ From the proof of Theorem @,

we have (¢" —q)...(¢" — ¢"') > 2/k — 1. Thus,

n2 n n n— n2
m" (¢ —q)...(¢" — ¢ ") >2m" Vk -1,

so we must show that m™” VE—1>+vVm"”k — 1. Rewrite

2

m* (k—1) — (mk—1) = (m" = )(m" k—m" —1).

Since R is not a field, we have m > 2, so (m™ — 1)(m”’k —m"™ —1) > 0 and
the desired inequality follows. Next, we assume that n = 3 and ¢ = 2. Then
—m?(2% —2)(2° — 2%) = —24m? is an eigenvalue of Cyy,(g). Moreover, k = m?(2% —
1)(23-2)(23—2?) = 168m°. We have 576m'® —4(168m°—1) = m®(576m° —672)+4.
Since m > 2, we get 24m® > 21/168m° — 1. Finally, if n = 2, then —m*(¢> — q) is

an eigenvalue of Cyy,(g) and k= m*(¢* — 1)(¢* — ¢), so

m®*(¢* — q)* —4(m*(¢® = 1)(¢* = ) = 1) = m®(¢* — q)* — 4m™(¢* — 1)(¢" — ¢) + 4
>m®(¢* —q)* —4m*(¢* —q)* + 4
= (m® —4m")(¢* —¢)* +4 >0

because m > 2. Hence, Cyy,(g) is not Ramanujan. O]

Let Ry, ..., R, be finite local rings with maximal ideals My, ..., M, and residue
fields ky, ..., ks, respectively. Let R = M,,, (R;) X - -+ x M,,_(R;) where ny,...n; €
N. By Theorem 3.8 of [7], we have

X(Cr) = w(Cr) = W(Cu,, (r) x-xMy, (k) = min {[k;["}

1<i<s

Finally, we compute o(Cg). Theorem @ (3) gives

Cr = (CMnl(kl) R ® CMnS(ks)) ® (Mm(Ml) R ® Mng(Ms))
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Since the second product is a complete graph with a loop on each vertex, we can

see that

s

a(Cr) = a(Cup,, () @+ ® Cary, o) [ [ Mo, (M5)]

=1

Hle(ki)| . ®
= Ty H IM,,, (M;)| = i ([}

== -
1%’125{ [k i=1 1<i<s }

Thus, we prove:
R
min {|k;|""}

1<i<s

Theorem 3.6. w(Cr) = x(Cr) = 1I£li£ {Ik:|™} and a(Cr) =

For each 1 <i < s, let |M;| =m; and |k;| = ¢;. Recall that p; = —mi”qui(qi”i—
;%) ... (¢ —q;"") is an eigenvalue of Cyy,, (r,) With multiplicities at least ¢; where

(" —1)%(¢™ — q;)?

ti -
(> — D(%:® — ¢)
multiplicities at least [[_, t;. By Theorem @, we have p;t; > 2(|M,,(R;)| — 1)

for all 4. Hence, [[;_, pi is an eigenvalue of Cx with

for all 1 <i < s. Note that the left-hand side is a multiple of ¢;. We can conclude
that p;t; > Q\Ri\”i2. It follows that

=1 =1 =1 =1 =1 =1

This shows that:

Theorem 3.7. The graph Cg is hyperenergetic. In particular, if R is a finite

commutative ring, then Cy,(g) 8 hypergeometric for all n > 2.

Remark 3.8. The later statement comes from the fact that every finite commu-
tative ring is isomorphic to a direct product of finite local rings. Indeed, we can
use this fact and Theorem @ to compute the clique number, chromatic number
and independence number for the unitary Cayley graph of a matrix ring over a

finite commutative ring.

Moreover, if s > 2, then we can show that Cgz is neither a strongly regular

graph nor a Ramanujan graph.
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Theorem 3.9. If s > 2, then Cg is not strongly regular.

Proof. If there exists 1 <4 < s such that the graph Cyy, (r;) is not strongly regular,
then CMni( r;) has more than three distinct eigenvalues which implies that Cr has
more than three distinct eigenvalues, so it is not stongly regular.

Assume that Cy, (r,) is strongly regular for all 7 € {1,2,...,s}. By Theorems
2.4 and 3.5, we have n;, = 2 and R; = k; for all i € {1,2,...,s}. Thus, p; =

H(%‘2 —)(q* = @), p2 = (—1)° l_I(qZ-2 —¢;) and p3 = H ¢; are eigenvalues of Cx .

i=1 i=1 i=1
If there exists i € {1,2,...,s} such that ¢; > 2 say i = 1, then py, po and ps are

three distinct eigenvalues of Cx. Let p = —(ql2 —q1) H q;- 1t is clear that p # p;.
i=2

Since ¢12 — q1 > q1, we can conclude that p # p;. Next, we assume p = pa, SO
S

—Ga...qs = (—1)*"1 1_[(%2 —¢;). This forces that s is even and ¢ = -+ = ¢; = 2.
i=2
Now, R 22 My (ki) x (Ma(Zs))*™" where s is even, and p; = (¢ — 1)(¢:% — )25,

p2 = (=1)*(q1? — ¢1)2°7! and p3 = 2°7'q;. Recall that —2 is an eigenvalue of
Chy(zy)- Let pp = —q:2°7'. Then p # py and p # ps. Also, ¢1*> — ¢1 > ¢ implies
p # pa. Hence, Cx has more than three distinct eigenvalues, so it is not strongly
regular.

Finally, we assume that ¢; = 2 for all ¢ € {1,2,...,s}. If s > 3, then 6°,2° 6 -
2571 and 2 - 6°7! are 4 distinct eigenvalues of Cg. If s = 2, then 6,2 and —2

are eigenvalues of Cy,(z,), so we have 36,4,12, —12 are 4 distinct eigenvalues of

CMQ(ZQ)XMQ(ZQ)‘ D
Theorem 3.10. If s > 2, then Cg is not Ramanujan.

Proof. Let r; = GL,,(R;) forall i € {1,2,...,s}. If there exist 1 <14 < s such that
the graph Cyy, (r,) is Ramanujan, then p = —m" (g™ —q) ... (¢ — g™ —1) is an
eigenvalue of Cy, (r,) other than +7; such that |p| > 2/r; — 1. We may assume
i=s. Then |ry...re_1p| >2r1...7._1\/rs — 1. Let m =ry...7r 1 > 2. We have
4m2(ry — 1) — 4(mry — 1) = dmry(m — 1) > 0,80 |ry...7s_1p| > 2¢/r1...15 — 1.
Hencec, Cx is not Ramanujan.

Next, suppose that Cy, (r;) is Ramanujan for all ¢ € {1,...,s}. Then for any
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1, we have
(n; =2 and R =Kk; is a field) or (n; =3 and R; = Z,).

We may assume ny = ...n; = 2 and ny4q = ... = ng = 3 where t > 0. We have
R, =2k;isafieldforalll < i< tand R = Zy forall t+1 < ¢ < s. Recall
that —(2% — 2)(2% — 2?) = —24 is an eigenvalue of Cyyy(z,) and | GL3(Zs)| = 168.
Suppose that s > t. Let A =ry...7r(—24)*"" and assume that

A < 2¢/r1 .. 7(168)57t — 1 < 24/71 .. .1 (168)5,

168\°" 672
If t > 0, then it follows that 6 < ri...7, < 4 (%) < =6 < 2 which is
S 168\
absurd. If ¢ = 0, then 576° < 4(168)® which implies that 1 < 4 =5 which

is absurd again. Hence, we have s = ¢t and R = My(ky) x -+ x My(ky). Let

p=—(q@?—q)ra...rs. Suppose |u| < 2. .1, —1< 2247“1...7’5. Since r; =
-1

@2 —q

3 3
< 3 because ¢; > 2. It follows that 6 <ry...r, < 4- 3 < 6 which is

(1? — 1)(¢:%> — q1), we can conclude that ry...7, < 4 ( ) Moreover, we

C]12—1

a2 —q
a contradiction. OJ

get
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