
CHAPTER 3
TH EO RETICA L CO N SIDERA TIO NS AND LITERATURE

SURVEY

3.1 Theoretical Considerations
Scheduling theory is much more considered as a mathematical model related to 
scheduling function. Several models as well as techniques are developed to be an 
interface between theory and practice. In this thesis, single machine with due dates is 
considered. Even there are many operations in the production, they can be considered 
as a single machine since all operations are continuously linked together with only 1 
machine per each operation. This is not included the backend process which will 
separately consider as another process.

There are many objectives for scheduling depending on each particular business and 
its problems. Before moving forward, table 3 shows the key performance 
measurement usually used in scheduling.

P e r t ' o r m a n c e  M e a s u r e m e n t  in  M a t h e m a t i c a l  T e r m s
di d u e  d a t e T h e  p r o m is e d  d e l iv e r y  d a t e
a , a l l o w a n c e A l lo w e d  t im e  fo r  p o r c e s s i n g  b e t w e e n  r e a d y  t im e  a n d  t h e  d u e  d a t e
W ik w a it in g  t im e T h e  w a it in g  t im e  o f  j o b 'T  p r e c e d in g  its  "k" o p e r a t io n
W i to t a l  w a i t in g  t im e T h e  t o t a l  w a it in g  t im e
C i c o m p le t io n  t im e T h e  t i m e  a t  w h ic h  p r o c e s s i n g  o f  Ji f in i s h e s .
Fi f lo w  t im e T h e  s p e n d i n g  t im e  o f  Ji in t h e  p r o d u c t io n  lin e .
Li l a t e n e s s T h e  d i f f e r e n c e  b e t w e e n  it s  c o m p le t io n  t im e  a n d  it s  d u e  d a t e  : Lj =  Cj -  dj
Tj t a r d i n e s s M a x  (L j,0 )
Ei e a r l i n e s s M a x  { -L i,0 )
Table 3 The Performance Measurement in Mathematical Terms [Simon French, 1988]

In this case, tardiness and weighted tardiness is the key performance measurement. 

Tardiness Criteria:
If a job completes later than its due date, it would say that the job is “tardy”. It can 
be defined as Tj = max(0, Cj - dj ). In the other hands, Tj = max (0, Lj)
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3.1.1 Dynamic Programming Approach:
Dynamic programming originated by Bellman is applicable to various optimizing 
problems, not just only for scheduling problem. The concept of this method is to 
break down any problems into a sequence of nested problem. The solution of each 
nested problem will be derived in a straight-forward fashion from that of the 
preceding problem. It could be said that this technique works “bottom up” rather than 
“top down”.

Dynamic programming is consisted of four main methods as described below:
> Characterize the structure of the optimal solution
> Recursively define the value of optimal solution
> Compute the value of solution in a “bottom up” fashion
> Constructed the optimal solution using the computed solution

Normally, in scheduling point of view, a regular measurement of performance is a 
function of job completion time versus its priority.

Z=/(Ci, C2, ... , Cn)

This formula interprets a measurement z  as a cost function. However, in some 
problems, a measurement z  can be described by

z  = 2 gj (Cj)
j-1

In this case, total tardiness penalty is considered then

gj (Çj) = Wj(Çj-dj) if Cj > dj

gj (Çj) = 0 if Cj <= dj

From this form, the dynamic programming can be applied in order to get an optimum 
sequence.
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Define “J” as a subset of ท jobs and J' as the complement of set J.
Define “qj” as the total time required to process the jobs in set J ’.

«นุ = 2  tj j eJ

Suppose that ฟ! the jobs in set J ’ has been constructed before every job in set J. Then, 
if such a sequence is an optimal sequence, the principle of optimality of dynamic 
programming requires that.

No matter how the jobs in J ’ are sequenced, the jobs in J  must be sequenced 
optimally, subject to the constraint that none may begin prior qj.

Figure 8 The structure of a job sequence of the purposes of dynamic 
programming [Kenneth, 1974]

Define G(J) as the minimum cost for the jobs in set J, subject to the constraint that 
non begin prior to qj. Also define K as the set of all jobs. Then,

G(K) = min [gj(tj) + G(K -  {j}].................... (1)
jeK

G(J) = min [gj(qj + tj) + G(K -  {j}]................(2)

G(0) = 0............................ (3)

At each stage, the function G(J) measures the total tardiness contributed by the jobs in 
set J, when set J  is considered at the end of the schedule and is sequenced optimally. 
The “recursion relations” of (1) and (2) shows that in order to calculate the value of G 
for each particular subset of size k, it is necessary to know the value of G for k subsexs 
of size k-1 before hand. Thus, the procedure starts with knowledge of the value of G 
for a subset of size zero, from (3).

or,

when,
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After that, by using (2), the value of G for all subsets of size 1 can be calculated, and 
then the value of G for all subsets of size 2, and so on. In this manner, it clearly shows 
the backward procedure. This method determines which job should be scheduled first 
and calculated from (1) the optimal value of z as G(K).

To illustrate the method, below is an example of dynamic programming when T (total 
Tardiness) is considered as the performance measurement.

Jobj t| dj Wj
1 1 2 1
2 2 7 1
3 3 5 1
4 4 6 1

Table 4 The example of Dynamic Programming

Consider the set J = {1,2,4} in the stage #3. The set J’ in this cast contains only job 3, 
thus qj for this set is equal to 3. In this set, we have to consider all the possible casts 
for the first job. So, there are three subsets;

> Job 1 comes first in the set J.
> Job 2 comes first in the set J.
> Job 4 comes first in the set J.

In cast that job 1 come first, then gi(Ci) = 2 and for the remaining jobs G({2,4}) = 4, 
so that the total contribution from this set, when job 1 comes first, is 6. Be noted that 
G({2,4}) value can be looked up from stage # 2.

In case that job 2 comes first, then g2(Cî) = 0 and for the remaining jobs G({ 1,4}) = 8, 
so that the total contribution from this set, when job 2 comes first, is 8.

In case that job 4 comes first, then g4(C4) = 1 and for the remaining jobs G({ 1,2}) = 9, 
so that the total contribution from this set, when job 4 comes first, is 10.

The minimum from these three subsets is 6, which is designated as G(J) in the table, 
this can be achieved when job 1 comes first.
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At the final stage, stage # 4, the G(J) is 4 and this indicates that job 1 should come 
first in the sequence. So, there are only 3 jobs, job 2,3,and 4, have to be sequenced. 
From set {2,3,4) in stage 3, it shows that job 3 should come first in this set, thus job 3 
should occupy the second job in the optimal sequence. Continuing in this fashion, the 
optimal sequence can be constructed as 1-3-2-4 with the total tardiness as 4, G(K).

S t a g e  # 1
J {1} {2 } {3} {4}
q j 9  8  7  6
j ร J 1 2  3  4
9 | 8  3  5  4
G (J-{j}) 0  0  0  0
G (J ) 8  3  5  4

_ _ _ _ _ _ _ _ _ _ S t a g e  # 2
J { 1 ,2 } {1 ,3 } {1 ,4 } {2 ,3 } {2 ,4 } <3,4}
q j 7 6 5 5 4 3
j ร J 1 2 1 3 1 4 2  3 2  4 3  4
9] 6  2 5  4 4  3 0  3 0  2 1 1
G (J -Ü » 3  8 5  8 4  'ร่ 8 5  3 _â_ 3 4  5
G (J) ร ่ โ  1 0 Z i p  1 2 :  - Z 3  - ! 1 - " T H  6 H i  5 a l  f i

S t a g e  #  4
J { 1 ,2 ,3 ,4 }
q j 0
j e  J 1 2  3  4
9i 8  3  5  4
G (J-fi}) F IO IO IO

G (J )

O p t im u m  S e q u e n c e :  1 -  3 - 2 - 4

Figure 9 Dynamic Programming Calculation

It is very important to realize the computational properties of the dynamic 
programming. The number of subsets is 2n.
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No. of iobfs) No. of subsets

1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024

No. of iob(s) No. of subsets No. ofiobfe) No. of subsets
11 2048 21 2097152
12 4096 22 4194304
13 8192 23 8388608
14 16384 24 16777216
15 32768 25 33554432
16 65536 26 67108864
17 131072 27 134217728
18 262144 28 268435456
19 524288 29 536870912
20 1048576 30 1073741824

r
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Figure 10 The computational properties of the dynamic programming
procedure.

In this manner, dynamic programming is typical of many general purposed procedures 
for combinatorial optimization, in that the effort required to solve the problem grows 
at an exponential rate with increasing problem size as shown in figure 9.

This is the major constrain that makes dynamic programming becomes an inefficient 
method in some of the simple problems that have large sample size. However, for 
problems which efficient optimizing procedures have not been developed such as 
weighted mean tardiness or weighted number of tardy jobs, dynamic programming 
may be a reasonable approach.

Comparing with complete enumeration method, dynamic programming is considered 
to be more efficient because it will considers certain sequences only indirectly,
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without actually evaluation them explicitly (all feasible sequences). This technique is 
often described as an “im p lic it en u m era tion  tech n iqu e

3.1.2 Forward and Backward Scheduling
The forward and backward scheduling are mostly used for short-term scheduling. 
These methods try to:

> Minimize the completion time
> Maximize the utilization
> Minimize WIP (Work In Process)
> Minimize customer waiting time

Forward Scheduling Backward Scheduling

Today Due Date Today Due Date
Figure 11 The forward and backward scheduling

Forward Scheduling:
The forward scheduling will begin the schedule as soon as the requirements are 
known. That means,

> It is a make to order job
> Schedule can be accomplished even if due date is missed
> It mostly build up the WIP (พork In Process)



2 6

Backward Scheduling:
The backward scheduling will begins by using the due date of the find operation. 
That means, the jobs is scheduled in reverse order. This method is used in many 
manufacturing considering on due date.

3.1.3 Johnson’s Rule -  Scheduling N Jobs on Two Machines
This method is for scheduling N jobs on two machines in the same order. The 
objective of this method is to minimize the make span in the shop floor. During the 
problem formulation, job j  is characterized by processing time

> tji, required on machine 1
> tj2, required on machine 2 after complete on machine 1

The optimal sequence can be achieved by the below rule for ordering pairs of jobs

Min{tji,tj2} < Min{tj2,tji}

In other words, the result is directly constructed with an adaptation of the sequence. 
The order in sequence is characterized by a one-pass mechanism that identifies a job 
that should be filled either at the first or last. The Johnson’s rule is as below

Johnson’s Rule:

Step 1: Find mini{tji,tj2 }
Step 2a: If the minimum processing time requires machine 1, place that job in the 
first available position in sequence. Go to step 3.
Step 2b: If the minimum processing time requires machine 2, place that job in the 
last available position in sequence. Go to step 3.
Step 3: Remove that job from the list and return to step 1 until all the jobs are 
filled.
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Below is an example of Johnson’s rule with 5 jobs.

Jobj 1 2 3 4 5
3 5 1 7

h 6 2 2 6 5
Stage Unscheduled Jobs Minimum tik Assignment Partial Schedule

1 1,2, 3 , 0 t31 3 = [1] 3 X X X X
2 1,2, 4, 5 t22 2 = [5] 3xxx2
3 1,4,5 tu 1 = [2] 3 1 X X 2
4 4,5 5 = [4] 3 1 x 5 2
5 4 *41 = น2 4 = [3] 3 1 4 5 2

MachineĴ
Machine 2

m o
UL

►
►

Figure 12 The Johnson’s Rule example.

3.2 Literature Survey

Toshiba Corporation, fll:
Toshiba Corporation has developed scheduling system for Toshiba’s gas insulated 
switchgears. This system is expected to solve the significant machine setup times, 
strict local buffer capacities, the option of choosing a few alternative processing 
routes, and long horizontal. It was developed from Lagrangian relaxation method and 
dynamic programming. The final result shows that this system contributes to high 
quality schedules in a timely fashion. It makes the company to achieve on time 
delivery and low inventory. This system also can generate near optimal solutions with 
quantifiable quality in a computationally efficient manner.

University of Connecticut. Storrs. CT 121:
Their รณdy demonstrates the scheduling solution by using novel neural network 
optimization techniques with the Lagragian Relaxation method, so called Lagrangian 
relaxation neural network (LRNN). For unconstrained optimization, the neural 
networks have been based on “Lyapunov stability theory” of dynamic system. The 
concept is that if a network is “stable”, its ‘energy” will be minimize and becomes
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equilibrium. For constrained optimization, Hopfield-tpe networks, known as penalty 
networks, will approximate a constrained problem as an unconstrained problem, so 
that, it can be solved by neural networks. The convergence proof of LRMM shows an 
effective framework for job shop scheduling contains the novel neural dynamic 
programming . It can overcome the difficulties associated with local minima and 
solution infeasibility encountered by conventional Hopfield type networks.

Real-Time Factory Floor Scheduling Enhances Responsiveness 131;
In the past, most of scheduling systems are built around MRP n which not allow the 
factory to respond optimally to rapidly changing demands. The traditional concept of 
“not scheduling too often” does not properly work anymore since the customer 
responsiveness is a large parts of what differentiates one supplier from others. The 
concept of “ virtual work order” which can be revised any time, is needed.

The real time scheduling shows the current highest manufacturing priority and how to 
work towards satisfying it. The system can reduce the instabilities and oscillations in 
the batch planning and scheduling by using the real-time feedback from actual 
production data. Unexpected changes such as machine downtime, materials shortages, 
etc can be detected easily, after that the system will re scheduling immediately. The 
main benefit of this system is controllability in the shop floor. The threaded 
scheduling, one kind of real time scheduling, add extra benefit by being an 
information-intensive automated process. With threaded scheduling, resource 
commitments are identified and made individually for each order, but their physical 
identity isn’t fixed until an operation actually starts.
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Figure 13 Threaded Scheduling Of Shared Resource

A Framework for Service Employee Scheduling 141:
Rather than shop floor control, scheduling can be implemented in the service 
employee scheduling. In service operations, inadequate capacity leads to long waiting 
time and potential loss sales. So that, employee scheduling has to support acceptable 
service levels and specify results in hours and minutes. This scheduling system has to 
find out the lowest cost set of feasible schedules that can satisfy the requirements for 
each period.

On-Line Simulation For Real-Time Scheduling Of Manufacturing Systems 151:
If manufacturing environment has no uncertainty, production planning and scheduling 
could be generated off-line. Unfortunately, there are many uncertainties in the 
operation line such as operator absenteeism, material shortages, order changes, yield 
variation and so on.

In current situation which has many uncertainties as described above, it might be 
advantageous to change the way that operation is controlled in to the optimum way. 
On line simulation can be used to support real-time scheduling decisions by giving the 
best option to deal with unexpected events on the shop floor. Thus, on-line simulation 
based scheduling system can operate as a “What now” tool, capable to advise about 
current decision.
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The production nlannine 
and control hierarchy

Figure 14 On-Line Simulation as a “What Now” tool.

Dynamic Production Scheduling For A Process Industry fill:
Renato and Moique studied the complex decisions and cost tradeoffs in capacity- 
oriented production scheduling (CPS) by using tile manufacturing. The contribution 
of this รณdy lies in developing an efficient procedure for scheduling the production of 
product families on several flexible lines over a given number of periods, to minimize 
the total production, inventory, and changeover cost. The solution approaches that 
have been used include dynamic programming, Lagrangian techniques, and the 
cutting plane method to strengthen linear programming. The developed model tries 
satisfying all the demands of underproduced products utilizing lines that are idle or 
have been assigned to overproduced product. A couple of feaffires that distinguish the 
heuristic from other forward scheduling approaches are its lookahead scheme in 
prioritizing the underproduced products, and the efficient method of assigning and 
reassigning products to production line. The result from this model show about 53% 
of the cases had gaps less than 5% and 30% of the cases had gaps between 5 and 8%.



New Lower And Upper Bounds For Scheduling Around A Small Common Due 
Date 1121:
They consider the single machine problem of scheduling ท jobs to minimize the sum 
of the deviations of the job completion times from a given small common due date. 
They developed a branch-and-bound algorithm based on Lagrangian lower and upper 
bounds that are found in 0 (ท log ท) time. The common due date is either specified as 
part of the problem instance, or is a decision variable that has to be optimized 
simultaneously with the job sequence. They developed an approximation algorithm 
for the common due date problem based upon Johnson’s approximation algorithm for 
subset-sum, which runs in 0(m)time after sorting, and worst-case behavior by using 
the Even-Odd Heuristic.

Scheduling Unit Time Open Shops With Deadlines โ!31:
This study considers ท jobs and 7ท machines. A feasible combination of the machine 
and job orders is called a schedule. They developed a minimal total completion time 
and a minimal number of tardy jobs and the minimal value of maximum lateness by 
using latin rectangle LR[n, m, k]. This is to ensure that each machine cannot process 
tow jobs at the same time and each job will occur at most once in every column. The 
minimizing number of late job problem is solved based on the fact that if there is a 
schedule with exactly k tardy jogs, then there exists a schedule in which the jobs with 
the k smallest due dates are late and all other jobs are on time. In this study, they show 
that there is a common optimal schedule for both Cmax and £C1, even if we minimize 
these fonctions with respect to deadline.

Scheduling Groups Of Jobs On A Single Machine 1141:
Since economies of scale are fondamental to manufacturing operations, it manifests 
itself in efficiencies gained from grouping similar jobs together. This paper 
demonstrates the single machine scheduling models that incorporate benefits from job 
grouping. There are three main areas focused, family scheduling with item 
availability, family scheduling with batch availability, and batch processing. The 
grouping of jobs is a desirable or necessary tactic because of some technological 
feature of the processing capability such as changeover time, or setup time.

3 1
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Item Availability Family Scheduling Models.
In general, any family scheduling model can be viewed as a single machine model 
with sequence dependent setup times. For the job following a member of the same 
family, its setup time is zero. However, by exploiting the special structure of family 
scheduling, we can sometimes avoid the enumerative techniques that would ordinarily 
be required. The techniques for this group are minimizing total weighted flow time 
under the GT assumption and minimizing maximum lateness.

Batch Availability Family Scheduling Models:
Batch availability is a bit more difficult than item availability. Typically a batch 
processing model is related to the weight, size, or the number of jobs in a batch. Batch 
availability is characteristic of systems in which jobs transported and ultimately 
delivered in container such as boxed, pallets, or carts. The techniques used in this 
model are minimizing total weighted flow time under the GT assumption and 
minimizing maximum lateness.

Batch Processing Models:
A batch processor can accommodate several jobs simultaneously. Its limitation is the 
maximum number of jobs that can be processed at any one time. Batch processing 
models tend to be much more complex when the capacity consumption of each job is 
allowed to vary. The techniques normally used for this group are minimizing 
makespan with dynamic arrival, minimizing total flow time with dynamic arrivals, 
minimizing maximum lateness with dynamic arrivals, and batch dependent processing 
times.

Optimal Scheduling Of Fallible Inspections 1151:
This paper demonstrates the optimal solution to the problem of designing inspection 
schedules with fallible and time-consuming test procedures. The inspection 
scheduling is important to detect promptly the occurrence of events that are not 
immediately manifest. It is designed to achieve a balance between the cost of 
inspections and the cost of undetected failure. The solutions is derived in continuous 
time, with arbitrary failure distribution, and is depended on infinite-horizon dynamic 
programming with time-dependent utilities, and with an additional optimization with 
respect to initial conditions.
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Scheduling Jobs On Several Machines With The Job Splitting Property โ!61:
This รณdy is conducted in a textile industry in which jobs may be independently split 
over several specified machines, and preemption is allowed. Deadlines are also 
concerned for each job. Minimizing maximum weighted tardiness used in this รณdy 
can be done in polynomial time. In general case of unrelated machines, this problem 
can be solved by linear programming or by generalized network flow techniques. 
However, in the case of uniform machines, a network flow model can be developed 
with algorithms based on max flow computations. In order to schedule all jobs as 
early as possible, to minimizing the maximum weighted tardiness, they address the 
problem of finding so-called Unordered Lexico optimal solution.

Mean Flow Time Minimization In Reentrant Job Shops With A Hub [171;
They รณdy the problem of scheduling a reentrant job shop which can be found in 
many production systems such as in VLSI (Very Large Scale Integrated circuit), 
wafer fabrication process, PCBs (Printed Circuit Board) and so on.

In their รณdy, there are two step approach to scheduling primary operations on the 
hub machine. The first step is to optimize sequences of jobs under the Hereditary 
Order (HO) assumption. The second step is to find an optimal sequence of primary 
operations for a given sequence of jobs by using dynamic programming algorithm. 
This study shows that the SPT (Shortest Processing Time) job order is optimal for the 
single machine reentrant, and a dynamic programming is proposed to derive an 
optimal no-passing schedule for a given job order.

A Dynamic Subgradient-Based Branch-And-Bound Procedure For Set Covering
LULL
They developed a branch and bound algorithm for set covering. The new procedure is 
known as dynamic subgradient optimization (DYNSGRAD). This DYNSGRAD 
combines the standard subgradient method with primal and dual heuristics. The main 
advantage of subgradient optimization over the simplex method is its low 
computational cost due to the number of iterations required for convergence does not 
depend on problem size. It performs significantly better than other procedures in 
terms of the quality of solution obtainable with a certain computational effort.
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Dynamic Programming Strategies For The Traveling Salesman Problem With 
Time Window And Precedence Constraints โ!91:
They study on traveling sale man problem with time window and precedence 
constraints (TSP-TWPC). They describe an exact ฟgorithm to solve the problem 
based on dynamic programming and make use of bounding function to reduce the 
state space graph. These functions are obtained by means of a new technique that is a 
generalization of the “State Space Relaxation” for dynamic programming. The main 
contribution in this paper is a new method to derive from the state space associated 
with the dynamic programming recursion of the problem. A new bounding procedure 
is developed by using forward and backward dynamic programming recursion in 
order to derive a better reduced state space by eliminating those states that cannot lead 
to the optimal solution.

Scheduling Semiconductor Burn-In Operations To Minimize Total Flow Time
m i l
They address a batching scheduling problem in the bum-in stage of semiconductor 
manufacturing. This problem involves assigning jobs to batches and determining the 
batch sequence in order to minimize the total flow time. They develop a dynamic 
programming based heuristic for the general problem which guarantees a solution that 
is at most twice the value of the optimal solution.

Due-Date Scheduling: Asymptotic Optimality Of Generalized Longest Queue 
And Generalized Largest Delay Rules [211:
Jan use Gcu rules to optimize nonlinear criteria specified in term of delays and /or 
queue. This technique provides a simple but effective tool. Its objective is to simplify 
a generalized longest queue (GLQ) or generalized largest delay (GLD) rule.

Melt Scheduling to Trade Off Material Waste and Shipping Performance 1221:
They develop an efficient melt-scheduling heuristic for the steel manufacturing 
process by using MIP (Mixed-Integer-Programming) formulation. They used two 
level processes in the scheduling heuristic as below.
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> Level 1 : Ingot Selection. This is to solve knapsack problem.
> Level 2: Detailed Resource Allocation: To determine in case that the particular 

set of ingots selected in level 1 can be processed in the facility.

The objective function is a convex combination of total waste and total tardiness. 
This is to bring out the interesting trade-off between the business objective (shipping 
performance) and the manufacturing objective (waste reduction).
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