บทที่ 4

ผลการทดลองและบทวิจารณ์

4.1 การแปรผลข้อมูลการกระจายขนาดประชากรผลึก

ตารางที่ 4.2 เป็นตัวอย่างข้อมูลผลการวัดการกระจายประชากรผลึกที่ได้จากการวัด โดยเครื่อง Particle Size Laser ของการทคลอง RUN# A1 แสดงผลเป็นข้อมูลเปอร์เซ็นต์จำนวน (Number %) โดยแปรผลมาจากข้อมูลเปอร์เซนต์ปริมาตร (Volume %) ขนาดเฉลี่ยของตัวอย่างตะกอน ผลึกแสดงในรูปของค่าเปอร์เซนไตน์ที่ 50 คือ *D(n*,50) ขนาดเฉลี่ยของตะกอนผลึกของการทดลอง RUN# A1 เท่ากับ 0.78 ไมโครเมตร(ในช่อง Result Statistics ของตารางที่ 4.2) สำหรับข้อมูลผลการ วัดฯของการทดลองทั้ง 27 ชุดแสดงไว้ไภาคผนวก ก. ตารางที่ ก.1 ถึง ก.27

ตารางที่ 4.3 เป็นตัวอย่างสำหรับของทคลอง RUN# A1 ในการแปรผลข้อมูลข้อมูลเปอร์เซ็นต์ปริมาตร (Volume %) เป็นข้อมูลเปอร์เซ็นต์จำนวน (Number %) และข้อมูลความหนาแน่น ประชากร (P0pulation Density), *n(L)* จากความสัมพันธ์ในหัวข้อที่ 2.3 และ 2.4 โดยใช้ข้อมูลความ หนาแน่นตะกอนผลึก *M*_T (Suspension Density) ซึ่งได้จากการทคลอง และแสดงไว้ในตารางที่ 4.1 สำหรับการแปรผลข้อมูลผลการวัดฯของการทคลองทั้ง 27 ชุดแสดงไว้ไภาคผนวก ข. ตารางที่ ข.1 ถึง ข.27

4.2 สภาวะคงที่ (Steady state) ของระบบ

การทคลองแบ่งได้เป็น 2 ขั้นตอนคือ ขั้นตอนการกำหนดเวลาที่กระบวนการตกผลึก เข้าสู่สภาวะคงที่ของการกระจายขนาดประชากรผลึก และขั้นตอนการทคลองเพื่อหาผลกระทบของตัว แปรต่าง ๆ ต่อกระบวนการตกผลึก

การศึกษาเบื้องด้นเพื่อกำหนดสภาวะคงที่ของระบบในการวิจัยได้ทำการควบคุมความเข้มข้นของ องค์ประกอบทางเคมีคือโซเดียมซัลเฟตในน้ำเกลือดิบที่ป้อนเข้าและแคลเซี่ยมอิออนภายในถัง ปฏิกรณ์ พบว่าองค์ประกอบทางเคมีภายในถังปฏิกรณ์จะมีค่าคงที่เมื่อเวลาผ่านไปประมาณ 2 เท่า ของ Residence Time แต่พบว่าสภาวะคงที่ที่แท้จริงจะยังคงไม่เกิดขึ้นคือระบบยังคงมีการเคลื่อน ไหว (Dynamic) โดยมีการเปลี่ยนแปลงของการกระจายขนาดประชากรผลึกเนื่องจากการละลาย ของผลึกขนาดเล็กและการเติบโตของผลึก การทดลองเพื่อกำหนดเวลาที่ระบบเข้าสู่ สภาวะคงท์ กระทำโดยการวิเคราะห์ตัวอย่างตะกอนผลึกที่เวลาต่างๆ (เก็บตัวอย่างเป็นจำนวนเท่าของ Residence time) จากนั้นทำการสร้างกราฟฟังก์ชันความหนาแน่นประชากรผลึก n(L) ต่อขนาด ผลึก (L)ในรูปของ In(Number %/100 ΔL)

รูปที่ 4.1-1 และ 4.1-2 แสดงกราฟฟังก์ชันความหนาแน่นประชากรผลึกของการทดลอง Run# A5 และ A4 (ตามลำคับ) พบว่าระบบเข้าสู่สภาวะกงที่ภายหลังเวลา 6 เท่าของ Residence time ในขั้น ต่อไปของงานวิจัยได้ทำการทดลองเป็นเวลานาน 9 เท่าของ residence time (นับเวลาหลังจากที่ ระบบมีความเข้มข้นของแกลเซียมอิออนกงที่)

4.3 อัตราการเติบโตและอัตราการเกิดแกนผลึก

กราฟฟังก์ชันความหนาแน่นประชากรผลึกในรูป *ln(n)* ต่อ *L* สำหรับเครื่อง ปฏิกรณ์ตกผลึกชนิด MSMPR (สมการที่ 2.8-8) จะได้ความสัมพันธ์เป็นเส้นตรง โดยมีจุดตัดแกน *y* ที่ *ln n^o* และ และมีค่าความชัน *-1/GT* ดังนั้นด้วอย่างตะกอนผลึกจากการทดลองแต่ละการ ทดลอง จะทำให้ทราบค่าอัตราการเติบโตและอัตราการเกิดแกนผลึกได้ ตารางที่ 4.4 แสดงอัตรา การเติบโตและอัตราการเกิดแกนผลึกของแต่ละการทดลอง ซึ่งได้จากการสร้างกราฟฟังก์ชันความ หนาแน่นประชากรดังแสดงในรูปที่ 4.2-1 ถึง 4.2-27 โดยใช้ข้อมูลความหนาแน่นประชากร *n* จาก ตารางที่ ข.1 ถึง ข.27

จากตารางที่ 4.4 พบว่าอัตราการเดิบโตของผลึก G มีก่าต่ำมากในช่วง 0.01 ถึง 0.03 ไมครอน/นาที มีผลทำให้ขนาดเฉลี่ยของผลึกที่ได้จากการกำนวณจาก L_D (เท่ากับ GT) มีขนาดเล็กมาก ซึ่งสอด คล้องกับผลการวิเคราะห์จำนวนผลึกที่ให้ก่าขนาดเฉลี่ย L(n,0.5) อย่ในช่วงประมาณ 0.7 ถึง 0.9 ในครอน (หมายเหตุขนาดของผลึก L(n,0.5) คือก่า D(n,0.5) ในตารางแสดงผลการวัดฯของ เครื่อง Particle Size Laser)

อัตราการเกิดแกนผลึก B^0 (Nucleation rate) มีค่าในระดับ 10 กumber/(ml-min)

4.4 อันดับทางจลนศาสตร์ *i* (Kinetic order)

ในการกำหนดก่าคงที่ k_N และอันดับทางจลนศาสตร์ *i* ของอัตราการเกิดแกน ผลึกปฐมภูมิเนื่องจากความอิ่มตัวขวดยิ่ง *s* (Supersaturation) สามารถทำได้โดยการสร้างกราฟ ความสัมพันธ์ระหว่างอัตราการเติบโตและการเกิดแกนผลึก (สมการที่2.3-5) ของการทดลองที่ สภาวะคงที่ที่ Residence time ต่างๆ กันในรูปของ *ln B* ^o และ *ln G* ดังแสดงในรูปที่ 4.3-1 ถึง 4.3-7 จะได้ความสัมพันธ์เป็นเส้นตรงโดยมีจุดคัดแกน y ที่ *ln* และมีความชัน = *i* ตารางที่ 4.5 แสดงข้อมูลของ *B* ^o และ *G* ของแต่ละชุดการทดลองที่อุณหภูมิกงทก่ากงที่ k_N และอันดับทาง จลนศาสตร์ *i* ที่ได้จากความสร้างกราฟแสดงไว้ในตารางที่ 4.6

จากตารางที่ 4.6 จะเห็นว่ากระบวนการตกผลึกตะกอนแคลเซียมซัลเฟตในน้ำเกลือมีค่าอันดับทาง จลนศาสตร์ *i* ที่ต่ำ (ประมาณ 1.7)

ค่าอันดับทางจลนศาสตร์ *i* สามารถนำไปอธิบายกระบวนการตกผลึกที่ระดับความอิ่มตัวยิ่งยวด ต่างกันได้(1) โดยพิจารณาถังปฏิกรณ์ตกผลึกที่เดินเครื่องที่ความหนาแน่นตะกอนผลึก (Suspension Density) เท่ากัน และค่า Residence Time ต่างกัน จะได้ว่า

$\frac{G_2}{G_1}$	=	$\left(\frac{\tau_1}{\tau_2}\right)^{\frac{4}{(i+3)}}$	=	$\left(\frac{\tau_1}{\tau_2}\right)^{0.85}$
$\frac{n_2^0}{n_1^0}$	-	$\left(\frac{\tau_1}{\tau_2}\right)^{\frac{4(i-1)}{(i+3)}}$		$\left(\frac{\tau_1}{\tau_2}\right)^{0.6}$
$\frac{L_{d2}}{L_{d1}}$	-	$\left(\frac{\tau_1}{\tau_2}\right)^{(i-1)}_{(i+3)}$	=	$\left(\frac{\tau_1}{\tau_2}\right)^{0.15}$

ที่ก่าอันดับทางจลนศาสตร์ *i* เท่ากับ1.7 จะได้ว่า เมื่อ Residence Time ลดลง (ความอิ่มตัวขวดยิ่ง เพิ่มขึ้น) จะมีผลทำให้อัตราการเดิบโตและอัตราการเกิดแกนผลึกเพิ่มขึ้นแต่มีผลเพียงเล็กน้อยต่อ ขนาดเฉลี่ยของผลึก

4.5 ผลกระทบของตัวแปรต่าง ๆต่ออัตราการเติบโตและอัตราการเกิดแกนผลึก

รูปที่ 4.4 แสดงผลของอุณหภูมิ แคลเซี่ยมอิออน และ Residence Time ต่ออัตรา การเกิดแกนผลึก และรูปที่ 4.5 แสดงผลของอุณหภูมิ แกลเซี่ยมอิออน และ Residence time ต่อ อัตราการเติบโตของผลึก จากรูปที่ 4.4 และ 4.5 พบว่า

 เมื่อ Residence Time ลดลง (ความอิ่มตัวขิ่งขวดเพิ่มขึ้น) มีผลทำให้อัตราการ เติบโตและอัตราการเกิดแกนผลึกเพิ่มขึ้น

 2. จากรูปที่ 4.4 พิจารณาผลของอุณหภู มิต่ออัตราการเติบโตของผลึก พบว่าที่ Residence Time มาก (τ = 30, 50 นาที) อุณหภูมิไม่มีผลต่ออัตราการเติบโตของผลึก แต่ที่ Residence time น้อย (τ = 20 นาที) เมื่ออุณหภูมิสูงขึ้นจะมีผลให้อัตราการเติบโตเพิ่มขึ้น

 3. จากรูปที่ 4.5 พิจารณาผลของความเข้มข้นแคลเซียมอิออนต่ออัตราการเติบโต ของผลึก พบว่าแคลเซียมอิออนไม่มีผลต่ออัตราการเติบโตของผลึก

 จากรูปที่ 4.4 พิจารณาผลของอุณหภูมิต่ออัตราการเกิดแกนผลึก พบว่าที่ Residence Time มาก (τ = 30, 50 นาที) อุณหภูมิไม่มีผลด่ออัตราการเกิดแกนผลึก แต่ที่ Residence time น้อย (τ = 20 นาที) เมื่ออุณหภูมิสูงขึ้นจะมีผลให้อัตราการเกิดแกนผลึกเพิ่มขึ้น 5. จากรูปที่ 4.5 พิจารณาผลของความเข้มข้นแคลเซียมอิออนต่ออัตราการเกิดแกน

ผลึก พบว่าที่ Residence Time มาก (τ = 30, 50 นาที) ความเข้มข้นแคลเซียมอิออนไม่มีผลต่อ อัตราการเกิดแกนผลึก แต่ที่ Residence time น้อย (τ = 20 นาที) พบว่าเมื่อความเข้มข้นแคลเซียม อิออนสูงขึ้นจะมีผลให้อัตรา การเกิดแกนผลึกเพิ่มขึ้น

ตารางที่ 4.1 ผลการเก็บตัวอย่างตะกอนผลึกของแต่ละการทดลอง

÷

Run #	น้ำหนักผลิกแห้ง	ปริมาตรตะกอนผลึก	ความเข้มข้นตะกอนผลึก	เวลาที่เก็บตัวอย่าง
	W (g)	V (ml)	M ₁ (g/ml)	
Al	0.8089	180	0.0045	9τ
A2	0.0035	225	0.0000	9τ
A3	1.0755	225	0.0048	8τ
A4	0.9640	160	0.0060	10 τ
A5	1.1135	205	0.0054	8τ
A6	1.1698	205	0.0057	8τ
A7	0.7404	205	0.0036	9τ
A8	0.5418	176	0.0031	8τ
A9	0.2926	150	0.0020	12 T
B1	0.8984	206	0.0044	6τ
B2	0.4163	192	0.0022	5τ
В3	0.4502	176	0.0026	6τ
B4	0.5907	206	0.0029	9τ
B5	0.2988	145	0.0021	7τ
B6	0.1826	178	0.0010	4τ
B7	0.6269	180	0.0035	9τ
B8	0.7647	234	0.0033	10 τ
В9	0.3894	260	0.0015	9τ
Cl	0.9102	195	0.0047	9τ
C2	0.8919	195	0.0046	10 T
C3	0.7965	180	0.0044	9τ
C4	0.8100	180	0.0045	9τ
C5	1.0318	250	0.0041	9τ
C6	1.6090	250	0.0064	12 τ
C7	1.7720	200	0.0089	11 τ
C8	1.5824	200	0.0079	12 τ
C9	0.6086	200	0.0030	9τ

.

ดารางที่ 4.2 ผลการวัดการกระจาขของขนาดอนุภากโดยเกรื่อง Particle Size Laser

Run # Al-9T สภาวะ น = 30 นาที่ .[Ca2+] = 3.5 g/L .T = 70°C

Result:	Histogram	Report
---------	-----------	--------

.

٠.

SAMPLE ID #			۸I						
CRYSTAL WEIGHT (W)			0 8089	2					
SAMPLE VOLUME (V.)			180 0000	cni 3					
SUSPENSION DENSITY ()	MT)		0.0045	g/cm3					
TOTAL NUMBER DENSIT	Y(NI)		1 96E+07	no/cm3					
Particle size range	CSD Data	CSD Result	l'article size, L	n(l.)	Particle size range	CSD Data	CSD Result	Particle size, I.	n(l.)
1.1m	ui Vot!.	in Num•.	յետ	ոս/ուլ-իլա	mm	in Vol%	in Num%	<u> </u> լլու	no/ml-jlm
0.0582	0		<u> </u>	· · · · · · · · · · · · · · · · · · ·	7.7219	0.3254	0.1665	7.1×	L0E+01
0.0679	0	0.0000	0.06		8.9960	0.4250	0.1375	8_36	L0E+01
0.0791	n	0.0000	0.07		10.4804	0.5040	0.1031	9.74	9.5E+00
0 11921	a	0_0000	0.09		12.2096	0.5488	0.0710	11.35	9.01:+00
0.1073	0	0.0000	0.10		14.2242	0.5560	0.0455	13 22	8.4E+00
0.1250	0	0.0000	0.12		16.5712	0.5364	0.0278	15 40	7.71(+00
0.1456	0	0.0000	0.14		19.3055	0.5163	0.0169	17.94	7.1E+00
0.1697	0	0.0000	0.16		22.4909	0.5287	0.0109	20.90	6.5100
0 1977	0	0.0000	0.18		26.2019	0.6053	0.0079	24.35	6 012+00
0.2303	0	0.0000	0.21		30,5252	0 7662	0.0063	28.36	5.7E+00
0.2683	n	0.0000	0.25		35.5618	1.0151	0.0053	33.04	5.312+00
0.3125	n	0.0000	0.29		41.4295	1.3391	0.0044	38.50	5.012+00
0.3641	a	0.0000	0.34		48.2654	1.7031	0.0036	44.85	4.6E+00
0.1242	a	0.0000	0.39		56.2292	2.0687	0.0027	52.25	4.21:+00
0 4911	a	0.0000	0.46		65.5070	2.4009	0.0020	60.87	3.71:+00
0.5757	0.0160	19.7076	0.53	1.812+01	76.3157	2.6965	0.0014	70.91	3.312+00
0 6707	0.0208	16.2483	0.62	1.715+01	KN.9077	2.9925	0.0010	×2.61	2.715+00
0.7813	0.0300	14.8308	0.73	1.76101	103.5775	3.3532	0.0007	96.24	2.310 00
0.9103	0.0452	14.1018	0.85	1.76+01	120.6678	3.8339	0.0005	112.12	1.818+00
1.060-1	0.0587	11.5875	0.99	1.712+01	140.5780	4.4257	0.0004	130.62	1.3E+00
1 2354	0.0697	8.7134	1.15	1.612+01	163.7733	5.1223	0_0003	152.18	8.416-01
1 4393	0.0763	6.0277	1.34	1.66+01	190.7959	5.9041	0.0002	177.28	3.715-01
1 6767	0.0750	3 7453	1.56	1.516+01	222.2773	6.7174	0.0001	206_54	-1.116-0
1.9534	0.0653	2.06-11	1.82	1.415+01	258.9530	7.5232	0.0001	240.62	-6.112-0
2 2757	0.0506	1.011-0	2.11	1.3E+01	301.6802	8.3057	0.0001	280.32	+1.1E+0
2.6512	0.0342	0.4317	2.46	1.2E(01	351,4575	8.2949	0.0000	326.57	-1.715+00
3.0887	0.0222	0 1776	2 87	1.18+01	409.4479	7.6830	0.0000	380-45	-2.410.00
1.5983	0.0211	0,1067	3.34	1.112)01	477.0068	6.5352	0.0000	443.23	-3.215(00
1 1920	0 0370	0_1183	3.90	1.1E+01	555.7130	5.0924	0.0400	516.36	~L1E000
1 88 17	0.0752	0_1522	4.54	1.112(01	647.4056	3.6496	0.0000	601.56	-5.010+0
5.6895	0 1386	0.1773	5.29	LIE+01	75-1.2275	2.2069	0.0000	700.82	-6.115+0
6.62×3	0.2218	0.1818	6.16	1.116(01	878.6750	0.7641	0 0000	816.45	-7.81(+0)

ตารางที่ 4.3 ตารางการแปรผลข้อมูลเปอร์เซนต์ปริมาตรเป็นเปอร์เซนต์จำนวนผลึก RUN # A1

-									
Run #	τ	(Ca ²⁺)	Temp	Correlation	n°	G	Во	L(n , 0.5) (1)	G τ ₍₂₎
	min.	g/I	с	coefficient, R ²	no./ m1-µLm	µm∕min	no./ ml-min	<u>μ</u> m	μ m
Al	30	3.5	70	0.9247	9.63E+07	0.017	1.59E+06	0.78	0.50
A2	30	3.5	55	0.9268	8.76E+07	0.017	1.45E+06	0.09	0.50
A3	30	3.5	40	0.94	8.59E+07	0.016	1.34E+06	0.77	0.47
A4	30	3.0	70	0.9431	9.58E+07	0.017	1.65E+06	0.95	0.52
A5	30	3.0	55	0.9214	8.71E+07	0.017	1.48E+06	0.82	0.51
A6	30	3.0	40	0.96	8.54E+07	0.023	2.00E+06	0.97	0.70
A7	30	2.5	70	0.95	9.54E+07	0.017	1.64E+06	0.93	0.51
A8	30	2.5	55	0.9445	8.67E+07	0.017	1.46E+06	0.91	0.51
A9	30	2.5	40	0.9433	8.50E+07	0.016	1.35E+06	0.79	0.48
			7.0	0.00	< +< C - 03			• •	
BI	50	3.5	70	0.92	6.46E+07	0.011	7.11E+05	0.8	0.55
B2	50	3.5	55	0.9467	5.87E+07	0.010	5.72E+05	0.85	0.49
B3	50	3.5	40	0.927	5.76E+07	0.012	6.64E+05	0.91	0.58
B4	50	3.0	70	0.93	6.43E+07	0.011	7.37E+05	0.91	0.57
B5	50	3.0	55	0.9	5.84E+07	0.011	6.68E+05	0.84	0.57
B6	50	3.0	40	0.931	5.73E+07	0.011	6.31E+05	0.74	0.55
B7	50	2.5	70	0.9	6.40E+07	0.011	7.31E+05	0.79	0.57
B8	50	2.5	55	0.92	5.81E+07	0.011	6.63E+05	0.92	0.57
B9	50	2.5	40	0.9407	5.70E+07	0.011	6.45E+05	0.91	0.57
Cl	20	3.5	70	0.95	1.34E+08	0.03	4.78E+06	0.83	0.60
C2	20	3.5	55	0.924	1.22E+08	0.052	6.33E+06	0.86	1.04
C3	20	3.5	40	0.916	1.19E+08	0.034	4.06E+06	0.89	0.68
C4	20	3.0	70	0.931	1.33E+08	0.034	4.48E+06	0.89	0.67
C5	20	3.0	55	0.9233	1.21E+08	0.030	3.61E+06	0.84	0.60
C6	20	3.0	40	0.933	1.39E+08	0.029	4.03E+06	0.94	0.58
C7	20	2.5	70	0.89	1.32E+08	0.032	4.30E+06	0.92	0.65
C8	20	2.5	55	0.925	1.20E+08	0.029	3.50E+06	0.83	0.58
C9	20	2.5	40	0.9491	1.18E+08	0.024	2.84E+06	0.76	0.48

ตารางที่ 4.4 อัตราการเติบโตและอัตราการเกิดแกนผลึกที่วัดได้

(1) ข้อมูลจากผลการวัดการกระจายขนาดประชากรผลึกโดยเกรื่อง Partical Size Laser

(2) $G\tau$ = Dominant Size

.

ตารางที่ 4.5 ข้อมูล B & G เพื่อกำหนด Kinetic Data

		#	τ	G	B	ln G	ln B ^o
Ca = 2.5	T = 40	C9-9T	20	0.024098708	2.84E+06	-3.725597037	14.86059815
		A9-12T	30	0.015883605	1.35E+06	-4.142467837	14.11569398
		B9-9T	. 50	0.011321182	6.45E+05	-4.481079801	13.37748203
	T = 55	#	τ	G	B	ln G	ln B ⁰
		C8-12T	20	0.029093448	3.50E+06	-3.537242279	15.06875553
		A8-8T	30	0.016877637	1.46E+06	-4.08176578	14.19619866
		B8-1	50	0.01139731	6.63E+05	-4.474377896	13.40398656
	T = 70	#	τ	G	B	ln G	ln B ^O
		C7-11T	20	0.032450675	4.30E+06	-3.428034036	15.27327395
		A7-9T	30	0.017149423	1.64E+06	-4.065790755	14.30748387
		B7-9T	50	0.011437068	7.31E+05	-4.47089566	13.50277897
Ca = 3.0	T = 40	#	τ	G	B	ln G	ln B ^O
		C6-12T	20	0.029034319	4.03E+06	-3.53927675	15.20926786
		A6-8T	30	0.023377048	2.00E+06	-3.756000575	14.50714878
		B6-4	50	0.011009578	6.31E+05	-4.508989628	13.35455974
	T = 55	#	τ	G	B	ln G	ln B ^O
		C5-9T	20	0.029829376	3.61E+06	-3.5122616	15.09872375
		A5-8T	30	0.017005935	1.48E+06	-4.074192874	14.20875911
		B5-7T	50	0.011437068	6.68E+05	-4.47089566	13.41245633
	T = 70	#	τ	G	B	ln G	ln B ^O
		C4-9T	20	0.033690452	4.48E+06	-3.390540801	15.31575473
		A4-10T	30	0.017198975	1.65E+06	-4.062905493	14.31535667
		B4-9T	50	0.011459348	7.37E+05	-4.468949466	13.50971271
Ca = 3.5	T = 40	#	τ	G	B	ln G	ln B ^O
		C3-9T	20	0.034085486	4.06E+06	-3.378883604	15.21728666
		A3-8T	30	0.01562964	1.34E+06	-4.158586164	14.10955073
		B3-6T	50	0.011541347	6.64E+05	-4.461819311	13.4067176
	T = 55	#	τ	G	B	ln G	ln B ^o
		C2-10T	20	0.052077909	6.33E+06	-2.95501444	15.66095845
		B2-5T	50	0.009735202	5.72E+05	-4.63200684	13.2563327
		A2-9T	30	0.016556566	1.45E+06	-4.100972549	14.18696698
	T = 70	#	τ	G	B	ln G	In B ^O
		C1	20	0.0000	0.00E+00	#NUM!	#NUM!
		A1-9T	30	0.016556566	1.59E+06	-4.100972549	14.28227716
		B1-6T	50	0.011012003	7.11E+05	-4.508769412	13.4748803

แคลเซี่ยมอิออน	อุณหภูมิ	Kinetic order	Kinetic constant	Correlation
g/l	с	i	k _N	Coefficient ,R ²
	313	1.96	4.25E+09	0.9967
2.5	328	1.77	1.78E+09	0.998
	343	1.68	1.46E+09	0.997
	313	1.81	2.15E+09	0.986
3	328	1.75	1.71E+09	0.996
	343	1.67	1.27E+09	0.997
	313	1.62	1.01E+09	0.986
3.5	328	1.41	4.22E+08	0.994

ดารางที่ 4.6 งลน์ศาสตร์ของการตกผลึกตะกอนแคลเซียมซัลเฟต

รูปที่ 4.1-1 กราฟฟังก์ชันความหนาแน่นประชากรเพื่อกำหนดสภาวะสมดุลย์ Run # A5

.

รูปที่ 4.1-2 กราฟฟังก์ชันความหนาแน่นประชากรเพื่อกำหนดสภาวะสมคุลย์

Run # A4

รูปที่ 4.2-1 กราฟความสัมพันธ์ระหว่าง ln n vs L

รูปที่ 4.2-2 กราฟความสัมพันธ์ระหว่าง ln n vs L

Run # A2

รูปที่ 4.2-4 กราฟความสัมพันธ์ระหว่าง ln n vs L

Run # A4

Run # A6

รูปที่ 4.2-8 กราฟความสัมพันธ์ระหว่าง ln n vs L

Run # A8

รูปที่ 4.2-10 กราฟความสัมพันธ์ระหว่าง ln n vs L

Run # B1

Run # B2

รูปที่ 4.2-14 กราฟความสัมพันธ์ระหว่าง ln n vs L

Run # B5

Run # B7

รูปที่ 4.2-18 กราฟความสัมพันธ์ระหว่าง ln n vs L

Run # B9

รูปที่ 4.2-20 กราฟความสัมพันธ์ระหว่าง ln n vs L

Run # C2

54

รูปที่ 4.2-22 กราฟความสัมพันธ์ระหว่าง ln n vs L

Run # C4

รูปที่ 4.2-24 กราฟความสัมพันธ์ระหว่าง ln n vs L

Run # C6

Run # C7

รูปที่ 4.2-26 กราฟความสัมพันธ์ระหว่าง ln n vs L

Run # C8

Run # C9

รปที่ 4.3.3 Kinetic Data Condition Ca = 3.5 T = 40 Run # C3 - A3 - B3

รูปที่ 4.3.5 Kinetic Data Condition Ca = 3.0 T = 55 Run # C5 - A5 - B5

รูปที่ 4.3.7 Kinetic Data Condition Ca = 2.5 T = 70 Run # C7 - A7 - B7

รูปที่ 4.3.9 Kinetic Data Condition Ca = 2.5 T = 40 Run # C9 - A9 - B9

62

T-24ED NAME

รูปที่ 4.4 ผลของ Resident Time, Temperature และ Calcium Ion ต่ออัตราการเกิดแกนผลึก

รูปที่ 4.5 ผลของ Resident Time, Temperature และ Calcium Ion ต่ออัตราการเติบโตของผลึก

