SHEAR-INDUCED CRYSTALLIZATION IN POLY(TRIMETHYLENE TEREPHTHALATE)

Mr. Phornphon Srimoaon

A Thesis Submitted in Partial Fulfilment of the Requirements For the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University In Academic Partnership with The University of Michigan, The University of Oklahoma, And Case Western Reserve University 2003 ISBN 974-17-2337-7 Thesis Title:Shear-Induced Crystallization in Poly(trimethylene terephthalate)By:Phornphon SrimoaonProgram:Polymer ScienceThesis Advisor:Asst. Prof. Pitt Supaphol
Assoc. Prof. Anuvat Sirivat

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyahint. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

(Asst. Prof. Pitt Supaphol)

Anuateria

(Assoc. Prof. Anuvat Sirivat)

Rathananan Magaryoh

(Asst. Prof. Rathanawan Magaraphan)

(Dr. Manit Mithitanakul)

ABSTRACT

4472018063 : POLYMER SCIENCE PROGRAM Phornphon Srimoaon : Shear-Induced Crystallization in Poly(trimethylene terephthalate). Thesis Advisor : Asst. Prof. Pitt Supaphol, Assoc. Prof. Anuvat Sirivat, 189 pp. ISBN 974-17-2337-7 Keywords : Poly(trimethylene terephthalate)/Shear-Induced Crystallization/
Crystallization Kinetics

In plastics processing, polymer melts are generally sheared (i.e., they undergo shear flow) which may or may not enhance crystallization rates depending on the favored conformational state of polymer molecules in the crystals. Poly(trimethylene terephthalate) (PTT) is a new type of polyester that has recently been commercialized as a result of the low production cost. In this work, shearinduced crystallization in PTT was investigated from both the melt and the glassy states and in both isothermal and non-isothermal regimes using differential scanning calorimetry technique. In cold crystallization, shear-treated samples were prepared using cone-and-plate and capillary rheometers. The cold crystallization peak temperature for shear-treated samples was also shifted to lower temperatures. A modified differential Nakamura model, which takes into account the effect of shear, was used to analyze the data. A cone-and-plate rheometer was used to investigate the *in situ* shear-induced melt crystallization in PTT. A simplified model describing the effect of shear on the shift in the induction time was used to analyze the data.

บทคัดย่อ

พรพล ศรีโมอ่อน : การศึกษาพฤติกรรมการตกผลึกของพอลิ(ไตรเมทธิลินเทเรฟ -ทาเลท)ที่ถูกเหนี่ยวนำโดยการเฉือน (Shear-Induced Crystallization of Poly(trimethylene terephthalate) อ. ที่ปรึกษา : ผศ.คร. พิชญ์ ศุภผล และ รศ.คร.อนุวัฒน์ ศิริวัฒน์ 189 หน้า ISBN 974-17-2337-7

ในสภาวะการขึ้นรูป ปกติพอลิเมอร์หลอมเหลวจะถูกเฉือนภายใต้แรงเฉือนซึ่งอาจจะ เพิ่มอัตราการตกผลึก หรือ เหนี่ยวนำการตกผลึกขึ้นอยู่กับสภาวะการจัดเรียงตัวของพอลิเมอร์ โมเลกุลในผลึก พอลิไตรเมธิลีนเทเรฟทาเลท เป็นพอลิเอสเทอร์ชนิดใหม่ที่เหมาะสมในทางการค้า เมื่อไม่นานนี้เนื่องจากด้นทุนในการผลิตที่ด่ำลง ในการศึกษาครั้งนี้ การตกผลึกของพอลิไตรเมธิ ลีนเทเรฟทาเลทที่ผ่านการเฉือนถูกติดตามโดยใช้เทคนิค differential scanning calorimetry (DSC) ในสภาวะการตกผลึกแบบเย็น ตัวอย่างที่ผ่านการเฉือนถูกเตรียมโดยใช้ cone and plate rheometer และ capillary rheometer อุณหภูมิสูงสุดของการตกผลึกแบบเย็นพบว่า สามารถเกิด ที่อุณหภูมิด่ำกว่าเมื่อเปรียบเทียบกับตัวอย่างที่ไม่ผ่านการเฉือน Nakamura ที่คำนึงถึงปัจจัยของการเฉือนถูกนำมาใช้ในการวิเคราะห์ผลการทดลอง cone and plate rheometer สามารถใช้ในการติดตามการตกผลึกของตัวอย่างในสภาวะการตกผลึกจากการ หลอมเหลว แบบจำลองอย่างง่ายที่พิจารณาว่า ผลของการเฉือนสามารถเหนี่ยวนำช่วงเวลาที่ใช้ ก่อนการตกผลึกถูกใช้อธิบายผลการทดลองด้วย

ACKNOWLEDGEMENTS

The author is grateful for the partial scholarship and partial funding of the thesis work provided by Postgraduate Eduation and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium). The author would like to express the grateful appreciation to the author advisors, Asst. Prof. Pitt Supaphol and Assoc. Prof. Anuvat Sirivat for their intensive suggestion, invaluable guidance and vital help throughout this research work.

The authors wish to thank Dr. Hoe H. Chuah and his co-workers of Shell Chemical Company (USA) Ltd. for supply and assistance on molecular weight measurements of PTT.

The author would like to sincerely thank all the staff of the Petroleum and Petrochemical College, Chulalongkorn University for their assistance and in helping the author to use the research facilities.

Ultimately, extreme appreciation is to the author family for their love, understanding, and encouragement during the author studies and thesis work.

TABLE OF CONTENTS

Title Page	ii
Abstract (English)	111
Abstract (Thai)	iv
Acknowledgement	v
Table of Contents	vi
List of Tables	x
List of figures	xiv

CHAPTER

I	INTRODUCTION	1
II	LITERATURE SURVEY	2
	2.1 Introduction to Poly(trimethylene terephthalate)	2
	2.2 Multiple Melting Behavior in Polymer	3
	2.3 Crystallization Study	4
	2.3.1 Quiescent Crystallization	4
	2.3.2 Uniaxial Stress-induced Crystallization	5
	2.3.3 Shear-induced Crystallization	5
Ш	THEORETICAL BACKGROUND	11
	3.1 Quiescent Crystallization	11
	3.2 Shear-induced Crystallization	16
IV	EXPERIMENTAL	21
	4.1 Material	21
	4.2 Methodology	21
	4.2.1 Multiple Melting Behavior in Isothermally	
	Crystallized PTT	21

	4.2.2	Effects of Crystalline and Orientational Memory	
		Phenomena on Isothermal Bulk Crystallization and	
		Subsequent Melting Behavior of PTT	22
	4.2.3	Quiescent and Shear-induced Cold Crystallization	
		in PTT	24
	4.2.4	Quiescent and Shear-induced Cold Crystallization	
		in PTT	26
V	MULTIP	LE MELTING BEHAVIOR IN	
	ISOTHE	RMALLY CRYSTALLIZED	
	POLY(TF	RIMETHYLENE TEREPHTHALATE)	28
	Abstract		28
	Introductio	on	29
	Experimer	Ital	32
	Results an	d Discussion	33
	Conclusion	ns	42
	Acknowle	dgements	43
	Reference	5	44
	Caption of	Tables	46
	Caption of	Figures	47
VI	EFFECTS	S OF CRYSTALLINE AND ORIENTATIONAL	
	MEMOR	Y PHENOMENA ON ISOTHERMAL BULK	
	CRYSTA	LLIZATION AND SUBSEQUENT MELTING	
	BEHAVIO	OR OF POLY(TRIMETHYLENE	
	TEREPH	THALATE)	63
	Abstract		63
	Introductio	on	64
	Theoretica	l Background	66
	Experimer	Ital	67

PAGE

.

Results and Discussion	69
Conclusions	76
Acknowledgements	77
References	78
Caption of Figures	80

VII QUIESCENT AND SHEAR-INDUCED COLD **CRYSTALLIZATION IN POLY(TRIMETHYLENE TEREPHTHALATE**) 97 97 Abstract 98 Introduction 100 Theoretical Background 106 Experimental Results and Discussion 107 115 Conclusions Acknowledgements 116 117 References Caption of Tables 119 Caption of Figures 120

VIII QUIESCENT AND SHEAR-INDUCED MELT

CRYSTALLIZATION IN POLY(TRIMETHYLENE

TEREPHTHALATE)	142
Abstract	142
Introduction	143
Theoretical Background	144
Experimental	148
Results and Discussion	150
Conclusions	155
Acknowledgements	155

CHAPTER		PAGE	
	References		156
	Caption of Tal	bles	157
	Caption of Figures		158
IX	CONCLUSIO	ONS AND RECOMMENDATIONS	174
	REFERENCI	ES	178
APPENDICES		2.S	181
	Appendix A	Origin of multiple peak of PTT	181
	Appendix B	Calculation in capillary rheometer	182
	Appendix C	Melting behavior of PTT	183
	Appendix D	Crystallization behavior of PTT	
		crystallized from glassy state	185
	Appendix E	Crystallization behavior of PTT	
		Crystallized from melt state	188
	CURRICULI	J M VITAE	189

ix

LIST OF TABLES

TABLE

CHAPTER V

1	Variation of low-melting peak temperature T_1 , middle-	
	melting peak temperature $T_{\rm ll}$, high-melting peak	
	temperature $T_{\rm HI}$, and enthalpy of fusion $\Delta H_{\rm f}$ for PTT	
	measured at various crystallization temperature $T_{\rm c}$	48
2	Variation of low-melting peak temperature T_{l} , middle-	
	melting peak temperature T_{II} , and enthalpy of fusion ΔH_{f}	
	for PTT measured at crystallization temperature T_{c} of	
	182, 198, and 208°C for various crystallization time	
	intervals	49
3	Variation of low-melting peak temperature T_{l} , middle-	
	melting peak temperature T_{II} , high-melting peak	
	temperature T_{III} , and enthalpy of fusion $\Delta H_{\rm f}$ for PTT	
	measured at crystallization T_c of 182, 198, and 208°C for	
	various heating rates	50
4	Variation of estimated equilibrium melting temperature	
	$T_{\rm m}^{\circ}$ according to linear Hoffmann-Weeks extrapolative	
	method for different observed melting temperature T_{c}	
	data ranges	51

CHAPTER VI

1	Overall crystallization kinetic data for all of the PTT	
	samples studied based on the Avrami analysis	82
2	Overall crystallization kinetic data for all of the PTT	
	samples studied based on the Urbanovici–Segal analysis	83

CHAPTER VII

1	The peak tempearature of cold crystallization T_{cc} and	
	subsequent melting endotherms of PTT samples at a	
	heating rate of 20°C·min ⁻¹	121
2	Non-isothermal crystallization kinetics of PTT shear untreated	
	and treated samples based on Avrami, Tobin, Urbanovici-Segal	
	analysis at a heating rate of 20°C·min ⁻¹	122
3	Isothermal crystallization kinetics of PTT shear untreated and	
	treated samples based on Avrami, Tobin, Urbanovici-Segal	
	analysis at a crystallization temperature 60°C	123
4	Crystallization rate parameters in Nakamura model n, K_g	
	and degree of orientation $h(T, \tau)$ of shear untreated and	
	treated PTT samples.	124
5	Crystallization rate parameters in Nakamura model $(t_{0.5}^{-1})_0$,	
	n, K_g and degree of orientation $h(T, \tau)$ of shear untreated	
	and treated PTT samples at four different heating rate	125
6	Effective activation energy ΔE describing the overall	
	crystallization process of shear untreated and treated	
	PTT samples	126
7	Effective activation energy ΔE describing the overall	
	crystallization process of shear untreated and treated	
	PTT samples	127

CHAPTER VIII

1	Induction time and equilibrium melting temperature of	
	PTT Samples with different crystallization temperature	
	and shear rate	159
2	Crystallization kinetic parameters for PTT samples	
	based on Differential Nakamura and Modified	

PAGE

	Differential Nakamura model	160
3	Overall crystallization kinetic data for PTT samples based	
	on Avrami model	161
4	Effective activation energy ΔE describing the overall	
	crystallization process of shear untreated and shear treated	
	PTT samples based on Friedman method	162

APPENDICES

C1	Melting Behavior of PTT S0 after isothermal crystallization at	
	200°C recorded at a heating rate of 20°C min ⁻¹ . Blank is as	
	prepared film recorded at a same heating rate	183
C2	Melting Behabvior of PTT S92.1 after isothermal crystallization	
	at 200°C recorded at a heating rate of 20°C min ⁻¹	183
C3	Melting Behavior of PTT S245.6 after isothermal crystallization	
	at 200°C recorded at a heating rate of 20°C min ⁻¹	184
Dl	Crystallization and melting behavior of PTT shear untreated	
	and shear treated samples at shearing temperature = 250°C	
	(first heating scan)	185
D2	Crystallization and melting behavior of PTT shear untreated	
	and shear treated samples at shearing temperature = 250°C	
	(second heating scan)	186
D3	Crystallization and melting behavior of PTT shear untreated	
	and shear treated samples at shearing temperature = 260° C	
	(first heating scan)	186
D4	PTT samples at shear rate 0 s ⁻¹ melted at $T_f 260^{\circ}$ C for 5 min	
	following by quenching in liquid nitrogen and heated at different	
	heating rate	187

PA	GE
----	----

D5	PTT samples at shear rate 92.1 s ⁻¹ melted at $T_{\rm f}$ 260°C for 5 min	
	following by quenching in liquid nitrogen and heated at different	
	heating rate	187
D6	PTT samples at shear rate 245.6 s ⁻¹ melted at $T_{\rm f}$ 260°C for 5 min	
	following by quenching in liquid nitrogen and heated at different	
	heating rate	187
El	PTT samples at shear rate 0 s ⁻¹ melted at $T_{\rm f}$ 260°C for 5 min	188
E2	PTT samples at shear rate 92.1 s ⁻¹ melted at $T_{\rm f}$ 260°C for 5 min	188
E3	PTT samples at shear rate 245.6 s ⁻¹ melted at $T_{\rm f}$ 260°C for 5 min	188

LIST OF FIGURES

FIGURE

CHAPTER V

1	Subsequent melting endotherms (recorded at 10°C·min ⁻¹)		
	for PTT samples isothermally crystallized from the melt		
	state at different crystallization temperatures. Peaks I, II,		
	and III denoted the low-, middle-, and high temperature		
	melting endotherm, respectively	52	
2	Wide-angle X-ray diffractograms of PTT samples		
	isothermally crystallized from melt at the different		
	crystallization temperatures	53	
3	Subsequent melting endotherms (recorded at 20° C·min ⁻¹)		
	for PTT samples after partial crystallization at (T_c) 182°C		
	for different time intervals as indicated	54	
4	Subsequent melting endotherms (recorded at 20°C·min ⁻¹)		
	for PTT samples after partial crystallization at (T_c) 198°C		
	for different time intervals as indicated	55	
5	Subsequent melting endotherms (recorded at 20°C·min ⁻¹)		
	for PTT samples after partial crystallization at (T_c) 208°C		
	for different time intervals as indicated	56	
6	Subsequent melting endotherms for PTT samples recorded		
	using different heating rates ranging from 5 to 20 $\mathrm{C} \cdot \mathrm{min}^{-1}$		
	after complete crystallization at 182°C	57	
7	Subsequent melting endotherms for PTT samples recorded		
	using different heating rates ranging from 5 to 20 C min ⁻¹		
	after complete crystallization at 198°C	58	
8	Subsequent melting endotherms for PTT samples recorded		
	using different heating rates ranging from 5 to 20 $\text{C}\cdot\text{min}^{-1}$		
	after complete crystallization at 208°C	59	

9	Observed melting temperature of the primary crystallites	
	as a function of crystallization temperature for PTT shown	
	along with the linear Hoffman–Weeks extrapolation (solid	
	line) and the non-linear Hoffman-Weeks extrapolation	
	(dotted line, calculated using $\beta^{m} = 1.00$ and $a = 1.02$;	
	dashed dot line, calculated using $\beta^{m} = 1.00$ and $a = 0.58$)	60
10	Plots of the scaled observed melting temperature	
	$[M = T_{\rm m}^{\circ}/(T_{\rm m}^{\circ} - T_{\rm m})]$ versus the scaled crystallization	
	temperature $[X = T_m^{\circ}/(T_m^{\circ} - T_c)]$ for various choices of the	
	seeded equilibrium melting temperature (T_m°) for PTT (for	
	the data collected over the T_c range of 188 to 208°C)	61
11	The variation of the thickening coefficient (β^m) as a	
	function of the seeded equilibrium melting temperature	
	$(T_{\rm m}^{\rm o})$ for PTT (for the data collected over the $T_{\rm c}$ range of	
	188 to 208°C)	62

CHAPTER VI

1	Subsequent isothermal crystallization exotherm for neat PTT	
	samples isothermally crystallized at 200°C after being melted	
	at each respective melt-annealing temperature $T_{\rm f}$ for 5 min	84
2	Subsequent isothermal crystallization exotherm for sheared	
	PTT samples (at 92.1 s ⁻¹) isothermally crystallized at 200°C	
	after being melted at each respective melt-annealing	
	temperature T [*] _f for 5 min	85
3	Subsequent isothermal crystallization exotherm for	
	sheared PTT samples (at 245.6 s^{-1}) samples isothermally	
	crystallized at 200°C after being melted at each	
	respective melt-annealing temperature $T_{\rm f}$ for 5 min	86

PAGE

FIGURE

4	Typical relative crystallinity function of time $\theta(t)$ for neat	
	PTT samples isothermally crystallized at 200°C after being	
	melted at each respective melt-annealing temperature $T_{\rm f}$ for 5	
	min. The raw data, shown as various geometrical points,	
	were fitted to the Avrami and Urbanovici-Segal macrokinetic	
	models, with the beat fits being shown as dashed and solid lines,	
	respectively	87
5	Relative crystallinity function of time $\theta(t)$ for all of the neat	
	and sheared samples studied, which were isothermally	
	crystallized at 200°C after being melted at a melt-annealing	
	temperature $T_{\rm f}$ of 270°C for 5 min	88
6	Variation of the crystallization half-time $t_{0.5}$ as a function	
	of the melt-annealing temperature $T_{\rm f}$ for all of the neat	
	and sheared PTT samples studied	89
7	Variation of the reciprocal value of the crystallization	
	half-time $t_{0.5}^{-1}$ as a function of the melt-annealing temperature	
	$T_{\rm f}$ for all of the neat and sheared PTT samples studied	90
8	Variation of the Avrami rate constant K_a as a function of the	
	melt-annealing temperature $T_{\rm f}$ for all of the neat and sheared	
	PTT samples studied	91
9	Variation of the Urbanovici–Segal rate constant K_{us} as a function	
	of the melt-annealing temperature $T_{\rm f}$ for all of the neat and	
	sheared PTT samples studied	92
10	WAXD patterns of neat PTT samples isothermally crystallized	
	at 200°C after being melted at each respective fusion	
	temperature $T_{\rm f}$ for 5 min.	93
11	Subsequent melting thermogram (20°C·min ⁻¹) for neat PTT	
	samples isothermally crystallized at 200°C after being melted	
	at each respective melt-annealing temperature $T_{\rm f}$ for 5 min	94

PAGE

PAGE

xvii

12	Subsequent melting thermogram $(20^{\circ}C \cdot min^{-1})$ for sheared	
	PTT samples (at 92.1 s ⁻¹) isothermally crystallized at 200°C	
	after being melted at each respective melt-annealing	
	temperature $T_{\rm f}$ for 5 min	95
13	Subsequent melting thermogram (20°C·min ⁻¹) for sheared	
	PTT samples (at 245.6 s ⁻¹) isothermally crystallized at 200°C	
	after being melted at each respective melt-annealing	
	temperature $T_{\rm f}$ for 5 min	96

CHAPTER VII

1	Non-isothermal cold crystallization exotherm of PTT without	
	shear effect and relative crystallinity recorded at a heating rate	
	of 20°C·min ⁻¹	128
2	Non-isothermal cold crystallization exotherms of PTT	
	shear untreated and shear treated samples at 5 and 10 $\rm s^{-1}$ at	
	three different shearing time. Crystallization exotherm of	
	the second heating scan of PTT at shear rate 5 s ⁻¹ at	
	shearing time for 1 min are also shown (recorded at a	
	heating rate of 20°C·min ⁻¹)	129
3	Non-isothermal cold crystallization exotherms of PTT shear	
	untreated and shear treated samples at low shear rates for	
	fixed shearing time 1 min and at high shear rate.	
	Crystallization exotherm of the second heating scan of PTT at	
	shear rate 92.1 s ⁻¹ are also shown (recorded at a heating rate	
	of 20°C·min ⁻¹)	130
4	Plot of peak temperature of cold crystallization of PTT	
	non-sheared and sheared samples at a heating rate of $20^{\circ}C \cdot min^{-1}$	131
5	Relative crystallization function of temperature of PTT	
	non-sheared and sheared sample at different shear rate at a	

	heating rate of 20°C·min ⁻¹	132
6	Isothermal cold crystallization exotherms of PTT non-sheared	
	and sheared samples at three different shear rates at a	
	crystallization temperature at 60 °C	133
7	Relative crystallization function of time of PTT	
	isothermally cold crystallized at different shear rates. The	
	experimental data, shown as points, were fitted to the	
	Avrami, Tobin, and Urbanovici-Segal as the solid, dashed,	
	and dotted lines, respectively	134
8	Degree of orientation $h(T, \tau)$ as a function of shear stress for	
	PTT shear treated samples at different shearing temperature	
	Ts 250 and 260°C	135
9	Non-isothermal cold crystallization exotherms of PTT	
	shear untreated and treated sample at 92.1 and 25.6 s ⁻¹	
	recording at four different heating rate	136
10	Relative crystallization function of temperature of PTT	
	shear untreated samples non-isothermally cold	
	crystallized at four different heating rates	137
11	Relative crystallization function of temperature of PTT	
	shear untreated and treated samples non-isothermally cold	
	crystallized at a heating rate of 20°C min ⁻¹	138
12	Degree of orientation $h(T, \tau)$ as a function of shear stress for	
	PTT shear treated samples at 92.1 and 245.6 s^{-1} at four different	
	heating rate	139
13	Determination of the effective activation energy ΔE describing	

FIGURE

140

14 Determination of the effective activation energy ΔE as a

and 250.6 s⁻¹ based on (a) the Kissinger method

(b) the Takhor method

the overall crystallization process for PTT at shear rate 0, 92.1,

PAGE

function of melt conversion α describing the overall	
crystallization process for PTT samples at shear rate 0,	
92.1, and 245.6 s ⁻¹ based on Friedman method	141

CHAPTER VIII

1	Induction time t_i as a function of crystallization temperature	
	$T_{\rm c}$ of PTT samples	163
2	Plot of log t_i against log(T_m^{o} - T_c) for various choice of	
	Crystallization temperature T_c ranging from 198 to 213°C	164
3	Reciprocal half-time as a function of crystallization temperature	
	of PTT samples	165
4	Analysis of the half-times of crystallization based on the	
	Modified growth rate theory for the PTT samples	166
5	Shear stress as a function of shearing time at crystallization	
	temperature T_c 210°C with different shear rate 1 and 3 s ⁻¹	167
6	Equilibrium melting temperature shift as a function of shear	
	stress, solid line shown the result of fitting data	168
7	Bulk crystallization rate as afunction of temperature with various	
	Shear stress applied during crystallization of PTT samples	169
8	Relative crystallinity as a function of neat PTT with different	
	cooling rates. The fitting results using differential Nakamura	
	model and isothermal parameters is shown as dash and solid	
	line, respectively	170
9	Non-isothermal melt crystallization exotherms of PTT samples	
	at shear rate 0, 92.1 and 245.6 s^{-1} at different four cooling rates	171
10	Degree of orientation $h(T, \tau)$ as a function of shear stress for	
	PTT shear treated sample at 92.1 and 245.6 s^{-1} at different four	
	cooling rate	172
11	Determination of the effective activation energy ΔE as a	

function of melt conversion α describing the overall crystallization process for PTT samples at shear rate 0, 92.1, 173 and 245.6 s⁻¹ based on Friedman method

APPENDIX

- A1 Plots of the scaled observed melting temerature
 [M = T_m°/(T_m° T_m)] versus the scaled crystallization
 temperature [X = T_m°/(T_m° T_c)] for various choices of
 the seeded equilibrium melting temperature (T_m°) of PTT
 (T_m T_c data 188 to 215°C)
 A2 The variation of the thickening coefficient (β^m) as a function
- A2 The variation of the thickening coefficient (β) as a function of the seeded equilibrium melting temperature ($T_m - T_c$ data 188 to 215°C) 181