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In plastics processing, polymer melts are generally sheared (i, they
undergo shear flow) which may or may not enhance crystallization rates depending
on the favored conformational state of polymer molecules in the crystals.
Poly(trimethylene terephthalate) (PTT) is a new type of polyester that has recently
been commercialized as a result of the low production cost. In this work, shear-
Induced crystallization in PTT was investigated from both the melt and the glassy
states and in both isothermal and non-isothermal regimes using differential scanning
calorimetry technique. In cold crystallization, shear-treated samples were prepared
using cone-anc-plate and capillary rheometers.  The cold crystallization peak
temperature for shear-treated samples was also shifted to lower temperatures, A
modified differential Nakamura model, which takes into account the effect of shear,
was Used to analyze the data. A cone-and-plate rheometer was used to investigate
the in situ shear-induced melt crystallization in PTT. A simplified model describing
the effect of shear on the shift in the induction time was used to analyze the data
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