
CHAPTER m
THEORETICAL BACKGROUND

3.1 Quiescent Crystallization

Isothermal bulk crystallization kinetics of semicrystalline polymers is 
usually studied by following a crystallization exothermic trace in a DSC. This can be 
carried out based on the assumption that the evolution of crystallinity is linearly 
proportional to the evolution of heat released during the course of crystallization. 
Based on this notion, the relative crystallinity as a function of time (9(t) can be 
obtained according to the following equation: (Supaphol, 2001)

where t and t = 00 are the elapsed time during the course of crystallization and at the 
end of crystallization process, respectively, and dHc is the enthalpy of crystallization 
released during and infinitesimal time interval dt.

In order to quantitatively describe the macroscopic evolution of crystallinity 
during primarily crystallization under quiescent isothermal conditions, a number of 
macrokinetic models have been proposed over the past sixty years: they are, for 
examples, the so called the Avrami, the Tobin, the Malkin, and the Urbanovici-Segal 
models (Supaphol, 2001). In Avrami model, the relative crystallinity as a function of 
time 61(f) is related to the crystallization time t according to the equation:

where Ka and «a are the Avrami crystallization rate constant and the Avrami 
exponent, respectively. Usually, the Avrami rate constant Ka is written in the form of 
the composite Avrami rate constant kà (i.e. ka = Ka ). It was shown that kd (the 
dimension of which is given in (time)'") is not only a function of temperature, but 
also a function of the Avrami exponent «a- As a result, use of Ka should be more 
preferable than use of ka due partly to the facts that it is dependent of the Avrami 
exponent «a and its dimension is given in (time)'1. It should be noted that both Kà

e{t) = 1 -  exp  - { K t f *  e [ 0 , l ] ( 3 .2 )
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and «a are constants specific to a given crystalline morphology and type of nucléation 
for a particular crystallization condition and that based on the original assumptions of 
the theory, the value of the Avrami exponent ทa should be an integer ranging from 1 
to 4.

Aiming at improving the Avrami equation in describing the experimental 
data at the later stages of crystallization, Tobin proposed a different expression to 
describe the kinetics of phase transformation by taking the growth impingement into 
account. The original theory was written in the form of a nonlinear Volterra integral 
equation, of which the zero order solution is given by:

1 + (A ^)"4 6 [0,1] (3.3)

where Kx is the Tobin rate constant, and tไX the Tobin exponent. Based on this 
proposition, the Tobin exponent needs not be integral , and it is mainly governed by 
different types of nucléation and growth mechanisms. It should be noted that, 
according to the original applications, the Tobin rate constant is written in the form 
of the composite Tobin rate constant kx (i.e. kx = Kxn), which is not only a function of 
time, but also a function of the Tobin exponent Hx (similar to the case of K  mentioned 
previously). As a result, use of Kx should be more preferable than use of kx due partly 
to the facts that it is independent of the Tobin exponent fix and its dimension is given 
in (time)'1.

Derived based on a postulation that the overall crystallization rate equals the 
summation of the rate at which the degree of crystallinity varies with the emergence 
of primary nuclei and the rate of variation in the degree of crystallinity varies with 
crystal growth rate, we arrived at a totally different kinetic equation:

e(t) = 1 - c  0 + 1 6 [0,1] (3.4)c  0 + exp(Cif)
where Co is the Malkin exponent which relates directly to the ratio of the crystal 
growth rate G to the primary nucléation rate /  (i.e. Co a  G/I), and Cl is the Malkin 
crystallization rate constant which relates directly to overall crystallization (i.e. Cl = 
aG+bl, where a and b are specific constants). It should be noted that the dimension 
of the Malkin rate constant is given in (time)'1.
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Recently, Urbanovici and Segal model proposed a new macrokinetic 
equation, which is essentially a generalization of the Avrami model. In this 
proposition, the relation between the relative crystallinity as a function of time $(t) 
and the crystallization time t is written as:

where Kus and «US are the Urbanovici-Segal crystallization rate constant and the 
Urbanovici-Segal exponent, respectively, r is the parameter satisfying the condition 
r > 0. At the condition where r—>1, the Urbanovici-Segal model becomes identical 
to the Avrami model. This simply means that parameter r merely the factor 
determining the degree of deviation of the Urbanovici-Segal model from the Avrami 
model. It is worth noting that both Kuร and «US have similar physical meanings to the 
Avrami kinetics parameters (i.e. Ka. and «a), and the dimension of Kus is also in 
(time)'1.

Actually, the Avrami model has been widely used to describe polymer 
crystallization kinetics under isothermal condition in the form

Equation (3.6) does not consider the induction time to for the crystallization 
process in polymers. An empirical relationship between induction time and 
crystallization temperature is generally used in the form (Guo and Narh, 2002)

where tm (Kaร) and a are material constants, 7m° is the equilibrium melting 
temperature, Tc is the crystallization temperature, and t\ is the induction time at 
temperature Tc.

For non-isothermal conditions, on the basis of isokinetic conditions and the 
assumption that the number of activated nuclei is constant. Nakamura developed the 
following equation from the Avrami theory (Guo and Narh, 2002):

^ )  =  i - ^ ( A - i ) ( / r U5f n" ) f / ( M e [ 0 , i ] (3.5)

๙(0 = l-exp(-*ar ) (3.6)

(3.7)

( 9 ( 0  =  1  -  e x p  -  [ ]K (T )dt\
V0 )

(3.8)
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where K(T) is the non-isothermal crystallization rate constant. Its relationship to the 
Avrami isothermal crystallization rate constant k can be expressed in the form

K iT ) = [ k { T ) f ^ = ๒ (3.9)

where *0.5 is the crystallization half-time and f/s is the overall rate of isothermal 
quiescent-state crystallization.

In LH secondary nucléation theory (Supaphol 2000), the linear growth rate G 
of a crystalline aggregate (e g. spherulite or axialite) for each regime is independent 
on the degree of undercooling, and is defined by the following equation:

KnG  - G 0 exp
บ* K

~ R ( T c -  r j  “ T , ( i r ) f )
(3.10)

where Go is a pre-exponential term which is not strongly dependent on temperature, 
บ* is the activation energy for the transportation of segments of molecules across the 
melt/solid surface boundary and is usually given by a universal value of 1500 cal
mol'1, Tc is the crystallization temperature, Taois the temperature where the molecular 
motion ceases (i.e. Too = Tg-30), R is the universal gas constant, AT is the degree of
undercooling (i.e. AT = r m°-30),and f  is a factor used to correct for the temperature
dependence of the heat of fusion (i.e. /  = 2Tc/(Tc+Tm°)) and Kg is the nucléation 
exponent, and is defined as:

_ ÇboGoJn
9= ka h ;

(3.11)

where £ equals 2 for regime n and 4 for regimes I and EH, b0 denotes the crystal layer 
thickness along the growth direction, a  and cre are the lateral and fold surface free 
energy, respectively, 7in0is the equilibrium melting temperature, ÂÜS the boltzmann’s 
constant, and A//f° is the equilibrium heat of fusion.

Referring to Equation (3.10), the first exponential term, exp(U/R(Tc-Toc)),
corresponds to the diffusion of polymer molecules or segment of them from the 
equilibrium melt onto the growth face. The second exponential term, exp(- 
Kg/(Tc(AT]f), relates to the formation of the critical nucleus on the growth face.



15

Intuitively, from the competing contributions of the transport and nucléation terms, 
one expects that there should be a maximum in growth rate data at a temperature 
somewhere between the glass transition temperature and the equilibrium melting 
temperature. Indeed, maximum in the growth rate data as a function of 
crystallization temperature are usually observed at (0.7-0.9)7^°.

As mentioned earlier, in each regime the linear growth rate G relates 
directly to the secondary nucléation rate / :G oc /'” , where ท equals 1 in regime I and 
in, and 0.5 in regime n. Since the second exponential term in Equation (3.9) 
correspond directly to the secondary nucléation rate, observation of the relationship 
between G and I can be determined by rearranging the logarithmic product of 
Equation (3.9), which results in the equations:

log G +-------- ^ ---------= log G o --------- — ,— —  (3.12)y 2.303R ( T C - T J  y 0 2.303rc(A T ) f
In practice, the test of regime can be done through the plot of logG + 

G*/2.303i?(7c-Too) versus 1/2.303 Tc(A7y . This type of plot factors out the 
contribution of the transport term to the growth rate, and the slope equals the 
negative value of the nucléation exponent (i.e., slope = -Kg). According to Equation 
(3.11), regime I to n transition is evident when a downward change in slope is 
observed, whereas it is an upward change in slope that is observed in the transition 
from regime n to in.

It is well accepted that the bulk crystallization rate parameters (e.g. f„5, Kà, 
Kt, Cl, and Kus) relate in one way or another, to the primary nucléation rate /  and/or 
the subsequent crystal growth rate G (Supaphol, 2000), the temperature-dependence 
of the bulk rate parameters can accordingly be quantified and described. Even 
though the temperature-dependence of the parameters /  and G are known to have a 
different temperature-dependence, the bulk crystallization rate parameters have often 
been taken to have a similar temperature dependence to that of the subsequent crystal 
growth rate G (written in the context of the original Lauritzen and Hoffmann 
secondary nucléation theory (LH theory) (Supaphol, 2000)), which can expressed as:

yAJ) = y/o exp R{Tc -  (Tç- C)) ~ Tc{a T)f),V (3.13)
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where yAJ) and y/o are the respective crystallization rate parameters (i.e. Jos’1) and 
the respective pre-exponential parameter (i.e. (£05)0), related to the activation energy 
characterizing the molecular diffusion across the melt/crystal interface, while B is a 
parameter related to the secondary nucléation. Tg is glass transition temperature, c  
is the parameter which determines the temperature where the cessation of long range 
molecular motion is expected (i.e. Tg-C) and is often taken to be either ca. 30 K or 50 
K below the glass transition temperature, R is the universal gas constant, A7ris the 
degree of undercooling (i.e. A T= Tm°-Tc), and finally/is the factor used to correct for 
the temperature dependence of the heat of fusion (i.e. 2TC/(TC + Tm°)).

By assigning the universal values to i f  and Tg as suggested by Hoffmann et
al. (Guo and Narh, 2002) there are only two unknown parameters: (fô^o and Kg, 
which have to be determined experimentally. The non-linear regression method was 
used to fit the experimental data to Eq.(3.13).

Chan and Isayev (1994) have carried out similar experimental studies using 
PET as a model material. By fitting Eq. (3.6) with their experimental data, the 
following constants were obtained: tm = 4.68 X 1012 Kaร and a = 6.40.

The non-isothermal crystallization process can be considered as a 
combination of finite steps of isothermal crystallization process. Thus, the non- 
isothermal crystallization process can be predicted by using parameters from the 
isothermal crystallization kinetics.

3.2 Shear induced Crystallization

All plastic processing operations involve the application of heat and stress, 
resulting in deformation of the polymer melt, especially at high shear rates. Because 
of the unique, long chain nature of polymer molecules, deformation of the melt 
resulted in molecular orientations. This orientation process when acting during 
crystallization may or may not affect the rate of crystallization and the morphology 
of the final product (Guo and Narh, 2002)

At the melting temperature, the free energy of the crystals equals the free 
energy of the melt so that the melting temperature may be written as



17

T° =' ทา AH' Hm -H c (3.14)ASf “ Sc
where AHf is the heat of fusion, ASf is the entropy of fusion, Hm and Hc are the 
enthalpies of the melt and crystalline phases, respectively, and sm and sc are the 
entropies of the melt and crystalline phases, respectively.

A polymer melt at rest consists of coiled and entangled molecules, which 
assume the most random set of conformations that maximize their entropy. The 
application of shear stress to the melt sample should be resulted in chain orientation 
of the polymer molecular chains. It is known that an oriented polymer molecule has 
fewer possible conformations than that of a coiled one and, therefore, has a lower 
entropy. For an oriented melt, the decrease in entropy may be considered to increase 
the melting temperature and the degree of undercooling. This idea was first 
proposed by Flory (Guo and Narh, 2002) and was applied to the thermodynamics of 
a cross-linked system subjected to a tensile force by considering a model of axially 
oriented crystalline regions coexisting with an amorphous zone.

By assuming that the free energy of the crystalline phase is independent of 
the applied strained, and that the deformation energy follows Hooke's law. Haas and 
Maxwell (Guo and Narh, 2002) arrived at the following expression for the increased 
melting point for a stressed polymer melt:

Tr เทโท AHf 2 G + t: (3.15)

where Tm is the melting temperature under shear stress, G is the elastic shear 
modulus of the polymer, and r is the elastic shear stress.

The first term on the right side of Eq. (3.14) can be though of as the increase 
in melting temperature that is,

ŝhift X2
2G (3.16)

Equation (3.16) is based on the assumption that shear modulus is independent of the 
applied shear stress. However, the relationship between the shear modulus and shear 
stress is very complicated. Therefore, the melting temperature shift may not 
necessarily follow Equation (3.16).
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At low shear stress, the polymer molecules do not receive enough energy for 
their chains to extend. Hence, there is usually a critical stress or shear rate associated 
with the coil-stretch transition for the orientational of the molecular chains. The 
effect of shear stress on the crystallization process becomes prominent only when the 
stress exceeds a critical value (Patel and Spruiell, 1991). However, in the extremely 
high stress range, when the molecules are fully extended, any further increase in 
shear stress will not cause further orientation of polymer molecules. The effect of 
stress on the crystallization process in the high stress range should thus tend to a 
constant value. Based on these analyzed, a phenomenological relationship between 
the equilibrium melting temperature shift and the shear stress T, in the form

T ^ = c / ^  (3.17)
where Cl and C2 are material constants that can be determined directly form the 
experimental data.

If it is assumed that the effect of stress on the kinetics of crystallization is 
only by increasing the melting temperature, i.e. by increasing the degree of 
undercooling, then by replacing Tm° in Eq. (3.12) with Tm

(318)
and therefore

f  = 7- + 7L (3.19)

We can arrive at a simplified stress-induced crystallization model. The effect of 
shear stress on the induction time can also be obtained by replacing the equilibrium 
melting temperature in Eq. (3 .7) with Tm-

t \ ( T ,r )  = tm(Tm - T )'* (3.20)
Since it is very difficult to follow the stress-induced crystallization process 

experimentally, efforts to investigate the effect of stress on the kinetics of 
crystallization have been scarce. By assuming that shear stress affects only the 
melting temperature of the polymer, the parameters needed to be determined in the 
stress-induced crystallization kinetics model are kept to a minimum. Consequently, 
it is possible to model stress-induced crystallization with available experimental 
methods.
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A rotational viscometer is a common device used to study flow-induced 
crystallization in polymers. In the rotational viscometer with cone and plate 
geometry, constant shear gradient is applied to the melt at constant temperatures by 
the relative rotation of two plates. A sudden rise in the shear stress or viscosity with 
time was interpreted as the onset of crystallization. Rearranging Eq. (3.20)

L ๆ!/a
Tn๓ Tc + (3.21)

So the final result, the equilibrium melting temperature shift Tshift can be 
readily expressed as

T'sh ift T -T°' m ' m
!ๆ I a

-Trทา (3.22)

Taking into account the effects of temperature lag between the sample and 
the diferential scanning calorimetry (DSC) furnace and non-isothermal induction 
times which are obtained from isothermal induction times, Chan and Isayev (1994) 
analyzed the non-isothermal crystallization data for polyethylene terephthalate) 
(PET) over a range of cooling rates from 2 to 40°c/min using the differential form of 
the Nakamura equation.

= nK(T\1 - e)[- ๒(1 -

K(r) = k ( r f n = (เท ,5)x/n 1

(1 / e.5 ) = (1/ ̂ 0.5 )o exp - บ
R(TC - T0 exp

CO y พ
(3.23)

(3.24)

(3.25)

where Tc is the crystallization temperature; to.5 the time taken for half of the 
crystallization develop; (l/to.5)o, a pre-exponential factor that include all terms 
independent of temperature; R, the universal gas constant; AT = Tm°-Tc, degree of 
undercooling; Tm°, the equilibrium melting temperature;/= 2T/(7’+7m°), a correction 
factor accounting for the reduction in the latent heat of fusion as the temperature is 
decreased; Too = Tg -  30 K, the temperature below which transport ceases; Eg, the 
glass transiton temperature; i f ,  the activation energy for segmental jump rate in 
polymer; and Kg, the nucléation exponent.
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They calculated the relative crystallinity developed during non-isothermal 
crystallization under various constant cooling and heating rates with and without the 
inclusion of induction time. The results with the incorporation of induction time 
show generally good agreement between the experimental data and the model 
predictions.

Patel and Spruiell (1991) presented an analysis of available method of 
dealing with polymer crystallization for process modeling. Problems encountered in 
using isothermal data to predict non-isothermal results are discussed and illustrated 
using non-isothermal experimental data for nylon 6 collected over a range of cooling 
rates from 2 to 40°Cmin'\ It was concluded that none of available models is entirely 
satisfactory in predicting non-isothermal based on isothermal data. These authors 
used a non-linear regression method to fit their non-isothermal crystallization data 
using a simplified differential Nakamura model. By letting Y = ln (l/(l-0 ), the non- 
isothermal crystallization rate equation was written as follows:

where Cl and C2 are the parameters of the crystallization rate equation. Keeping ท = 
2 (» is Avrami exponent), the non-isothermal data was fitted with various pairs of 
values of Cl and C2 (parameters of the model). For constant values of C2, the data 
for each cooling rate was fitted individually to obtain the Cl value. Different values 
for Cl were obtained for different cooling rate. Using the average value of Cl, 
predictions according to the simplified differential Nakamura model were found to 
match the experimental data

= nK (T\Y (3.26)

(3.27)

(3.28)
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